Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer’s Disease

Author(s): Sahil Khan, Kalyani H. Barve, Maushmi S. Kumar*

Journal Name: Current Neuropharmacology

Volume 18 , Issue 11 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: The only conclusive way to diagnose Alzheimer’s is to carry out brain autopsy of the patient’s brain tissue and ascertain whether the subject had Alzheimer’s or any other form of dementia. However, due to the non-feasibility of such methods, to diagnose and conclude the conditions, medical practitioners use tests that examine a patient’s mental ability.

Objective: Accurate diagnosis at an early stage is the need of the hour for initiation of therapy. The cause for most Alzheimer’s cases still remains unknown except where genetic distinctions have been observed. Thus, a standard drug regimen ensues in every Alzheimer’s patient, irrespective of the cause, which may not always be beneficial in halting or reversing the disease progression. To provide a better life to such patients by suppressing existing symptoms, early diagnosis, curative therapy, site-specific delivery of drugs, and application of hyphenated methods like artificial intelligence need to be brought into the main field of Alzheimer’s therapeutics.

Methods: In this review, we have compiled existing hypotheses to explain the cause of the disease, and highlighted gene therapy, immunotherapy, peptidomimetics, metal chelators, probiotics and quantum dots as advancements in the existing strategies to manage Alzheimer’s.

Conclusion: Biomarkers, brain-imaging, and theranostics, along with artificial intelligence, are understood to be the future of the management of Alzheimer’s.

Keywords: Artificial intelligence, biomarkers, brain imaging, mild cognitive impairment, theranostics, gene therapy.

[1]
Duthey, B. Alzheimer Disease and other dementias: priority medicines for Europe and the World. A Public Health Approach to Innovation https://www.who.int/medicines/areas/priority_medicines/BP6_11Alzheimer.pdf(Accessed October 18, 2019)
[2]
Barage, S.H.; Sonawane, K.D. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides, 2015, 52, 1-18.
[http://dx.doi.org/10.1016/j.npep.2015.06.008] [PMID: 26149638]
[3]
Grimm, M.O.W.; Hartmann, T. Recent understanding of the molecular mechanisms of Alzheimer’s disease. J. Addict. Res. Ther., 2012(S5), 004.
[4]
Begcevic, I.; Brinc, D.; Brown, M.; Martinez-Morillo, E.; Goldhardt, O.; Grimmer, T.; Magdolen, V.; Batruch, I.; Diamandis, E.P. Brain-related proteins as potential CSF biomarkers of Alzheimer’s disease: A targeted mass spectrometry approach. J. Proteomics, 2018, 182, 12-20.
[http://dx.doi.org/10.1016/j.jprot.2018.04.027] [PMID: 29684683]
[5]
Mullane, K.; Williams, M. Alzheimer’s disease (AD) therapeutics - 1: Repeated clinical failures continue to question the amyloid hypothesis of AD and the current understanding of AD causality. Biochem. Pharmacol., 2018, 158, 359-375.
[http://dx.doi.org/10.1016/j.bcp.2018.09.026] [PMID: 30273553]
[6]
Crews, L.; Masliah, E. Molecular mechanisms of neurodegeneration in Alzheimer’s disease. Hum. Mol. Genet., 2010, 19(R1), R12-R20.
[http://dx.doi.org/10.1093/hmg/ddq160] [PMID: 20413653]
[7]
Huang, F.; Wang, M.; Liu, R.; Wang, J.Z.; Schadt, E.; Haroutunian, V.; Katsel, P.; Zhang, B.; Wang, X. CDT2-controlled cell cycle reentry regulates the pathogenesis of Alzheimer’s disease. Alzheimers Dement., 2019, 15(2), 217-231.
[http://dx.doi.org/10.1016/j.jalz.2018.08.013] [PMID: 30321504]
[8]
Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J.; Khachaturian, Z.S. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain, 2018, 141(7), 1917-1933.
[http://dx.doi.org/10.1093/brain/awy132] [PMID: 29850777]
[9]
Ferreira-Vieira, T.H.; Guimaraes, I.M.; Silva, F.R.; Ribeiro, F.M. Alzheimer’s disease: Targeting the cholinergic system. Curr. Neuropharmacol., 2016, 14(1), 101-115.
[http://dx.doi.org/10.2174/1570159X13666150716165726] [PMID: 26813123]
[10]
Leanza, G.; Gulino, R.; Zorec, R. Noradrenergic hypothesis linking neurodegeneration-based cognitive decline and astroglia. Front. Mol. Neurosci., 2018, 11, 254.
[http://dx.doi.org/10.3389/fnmol.2018.00254] [PMID: 30100866]
[11]
Vakalopoulos, C. Alzheimer’s Disease: The alternative serotonergic hypothesis of cognitive decline. J. Alzheimers Dis., 2017, 60(3), 859-866.
[http://dx.doi.org/10.3233/JAD-170364] [PMID: 28984594]
[12]
Guo, L.; Tian, J.; Du, H. Mitochondrial dysfunction and synaptic transmission failure in Alzheimer’s disease. J. Alzheimers Dis., 2017, 57(4), 1071-1086.
[http://dx.doi.org/10.3233/JAD-160702] [PMID: 27662318]
[13]
Yun, H.M.; Park, K.R.; Kim, E.C.; Kim, S.; Hong, J.T. Serotonin 6 receptor controls Alzheimer’s disease and depression. Oncotarget, 2015, 6(29), 26716-26728.
[http://dx.doi.org/10.18632/oncotarget.5777] [PMID: 26449188]
[14]
Cochran, J.N.; Hall, A.M.; Roberson, E.D. The dendritic hypothesis for Alzheimer’s disease pathophysiology. Brain Res. Bull., 2014, 103, 18-28.
[http://dx.doi.org/10.1016/j.brainresbull.2013.12.004] [PMID: 24333192]
[15]
Ittner, A.; Ittner, L.M. Dendritic tau in Alzheimer’s Disease. Neuron, 2018, 99(1), 13-27.
[http://dx.doi.org/10.1016/j.neuron.2018.06.003] [PMID: 30001506]
[16]
Heneka, M.T.; Golenbock, D.T.; Latz, E. Innate immunity in Alzheimer’s disease. Nat. Immunol., 2015, 16(3), 229-236.
[http://dx.doi.org/10.1038/ni.3102] [PMID: 25689443]
[17]
Kinney, J.W.; Bemiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement. (N. Y.), 2018, 4, 575-590.
[http://dx.doi.org/10.1016/j.trci.2018.06.014] [PMID: 30406177]
[18]
Heppner, F.L.; Ransohoff, R.M.; Becher, B. Immune attack: the role of inflammation in Alzheimer disease. Nat. Rev. Neurosci., 2015, 16(6), 358-372.
[http://dx.doi.org/10.1038/nrn3880] [PMID: 25991443]
[19]
Ashraf, G.M.; Tarasov, V.V.; Makhmutova, A.; Chubarev, V.N.; Avila-Rodriguez, M.; Bachurin, S.O.; Aliev, G. The possibility of an infectious etiology of Alzheimer Disease. Mol. Neurobiol., 2019, 56(6), 4479-4491.
[http://dx.doi.org/10.1007/s12035-018-1388-y] [PMID: 30338482]
[20]
Bir, S.C.; Chernyshev, O.Y.; Minagar, A. Roles of toll-like receptors in pathophysiology of Alzheimer’s Disease and multiple sclerosis; Neuroinflammation, 2018, pp. 541-562.
[21]
Mahmoudian, D.S.; Arnold, M.; Nho, K.; Ahmad, S.; Jia, W.; Xie, G.; Louie, G.; Kueider-Paisley, A.; Moseley, M.A.; Thompson, J.W.; St. John, W.L.; Tenenbaum, J.D.; Blach, C.; Baillie, R.; Han, X.; Bhattacharyya, S.; Toledo, J.B.; Schafferer, S.; Klein, S.; Koal, T.; Risacher, S.L.; Kling, M.A.; Motsinger-Reif, A.; Rotroff, D.M.; Jack, J.; Hankemeier, T.; Bennett, D.A.; De Jager, P.L.; Trojanowski, J.Q.; Shaw, L.M.; Weiner, M.W.; Doraiswamy, P.M.; van Duijn, C.M.; Saykin, A.J.; Kastenmüller, G.; Kaddurah-Daouk, R. Alzheimer’s Disease neuroimaging initiative and the Alzheimer disease metabolomics consortium. altered bile acid profile associates with cognitive impairment in Alzheimer’s disease-An emerging role for gut microbiome. Alzheimers Dement., 2019, 15(1), 76-92.
[http://dx.doi.org/10.1016/j.jalz.2018.07.217] [PMID: 30337151]
[22]
Zhang, T.; Han, Y.; Wang, J.; Hou, D.; Deng, H.; Deng, Y.L.; Song, Z. Comparative epidemiological investigation of Alzheimer’s disease and colorectal cancer: the possible role of gastrointestinal conditions in the pathogenesis of AD. Front. Aging Neurosci., 2018, 10, 176.
[http://dx.doi.org/10.3389/fnagi.2018.00176] [PMID: 30323761]
[23]
de J R De-Paula. V.; Forlenza, A.S.; Forlenza, O.V.; Forlenza, O.V. Relevance of gutmicrobiota in cognition, behaviour and Alzheimer’s disease. Pharmacol. Res., 2018, 136, 29-34.
[http://dx.doi.org/10.1016/j.phrs.2018.07.007] [PMID: 30138667]
[24]
Luca, M.; Di Mauro, M.; Di Mauro, M.; Luca, A. Gut microbiota in alzheimer’s disease, depression, and type 2 diabetes mellitus: the role of oxidative stress. Oxid. Med. Cell. Longev., 2019, 2019 4730539
[http://dx.doi.org/10.1155/2019/4730539] [PMID: 31178961]
[25]
Pistollato, F.; Sumalla Cano, S.; Elio, I.; Masias Vergara, M.; Giampieri, F.; Battino, M. Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr. Rev., 2016, 74(10), 624-634.
[http://dx.doi.org/10.1093/nutrit/nuw023] [PMID: 27634977]
[26]
Angelucci, F.; Cechova, K.; Amlerova, J.; Hort, J. Antibiotics, gut microbiota, and Alzheimer’s disease. J. Neuroinflammation, 2019, 16(1), 108.
[http://dx.doi.org/10.1186/s12974-019-1494-4] [PMID: 31118068]
[27]
Kanatsu, K.; Tomita, T. Molecular mechanisms of the genetic risk factors in pathogenesis of Alzheimer disease. Front. Biosci., 2017, 22, 180-192.
[http://dx.doi.org/10.2741/4480] [PMID: 27814610]
[28]
Van Cauwenberghe, C.; Van Broeckhoven, C.; Sleegers, K. The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet. Med., 2016, 18(5), 421-430.
[http://dx.doi.org/10.1038/gim.2015.117] [PMID: 26312828]
[29]
Moreira, P.I.; Carvalho, C.; Zhu, X.; Smith, M.A.; Perry, G. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim. Biophys. Acta, 2010, 1802(1), 2-10.
[http://dx.doi.org/10.1016/j.bbadis.2009.10.006] [PMID: 19853658]
[30]
Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol., 2018, 14, 450-464.
[http://dx.doi.org/10.1016/j.redox.2017.10.014] [PMID: 29080524]
[31]
Liu, Z.; Zhou, T.; Ziegler, A.C.; Dimitrion, P.; Zuo, L. Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxid. Med. Cell. Longev., 2017, 2017 2525967
[http://dx.doi.org/10.1155/2017/2525967] [PMID: 28785371]
[32]
Rajasekhar, K.; Govindaraju, T. Current progress, challenges and future prospects of diagnostic and therapeutic interventions in Alzheimer’s disease. RSC Advances, 2018, 8, 23780-23804.
[http://dx.doi.org/10.1039/C8RA03620A]
[33]
Funderburk, S.F.; Marcellino, B.K.; Yue, Z. Cell “self-eating” (autophagy) mechanism in Alzheimer’s disease. Mt. Sinai J. Med., 2010, 77(1), 59-68.
[http://dx.doi.org/10.1002/msj.20161] [PMID: 20101724]
[34]
Bateman, R.J.; Barthélemy, N.R.; Horie, K. Another step forward in blood-based diagnostics for Alzheimer’s disease. Nat. Med., 2020, 26(3), 314-316.
[http://dx.doi.org/10.1038/s41591-020-0797-4] [PMID: 32132715]
[35]
Janelidze, S.; Mattsson, N.; Palmqvist, S.; Smith, R.; Beach, T.G.; Serrano, G.E.; Chai, X.; Proctor, N.K.; Eichenlaub, U.; Zetterberg, H.; Blennow, K.; Reiman, E.M.; Stomrud, E.; Dage, J.L.; Hansson, O. Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat. Med., 2020, 26(3), 379-386.
[http://dx.doi.org/10.1038/s41591-020-0755-1] [PMID: 32123385]
[36]
Thijssen, E.H.; La Joie, R.; Wolf, A.; Strom, A.; Wang, P.; Iaccarino, L.; Bourakova, V.; Cobigo, Y.; Heuer, H.; Spina, S.; VandeVrede, L.; Chai, X.; Proctor, N.K.; Airey, D.C.; Shcherbinin, S.; Duggan Evans, C.; Sims, J.R.; Zetterberg, H.; Blennow, K.; Karydas, A.M.; Teunissen, C.E.; Kramer, J.H.; Grinberg, L.T.; Seeley, W.W.; Rosen, H.; Boeve, B.F.; Miller, B.L.; Rabinovici, G.D.; Dage, J.L.; Rojas, J.C.; Boxer, A.L. Advancing Research and Treatment for Frontotemporal Lobar Degeneration (ARTFL) investigators. Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration. Nat. Med., 2020, 26(3), 387-397.
[http://dx.doi.org/10.1038/s41591-020-0762-2] [PMID: 32123386]
[37]
Weller, J.; Budson, A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000 Res., 2018, 7, 1-9.
[http://dx.doi.org/10.12688/f1000research.14506.1] [PMID: 30135715]
[38]
Bateman, R.J.; Xiong, C.; Benzinger, T.L.S.; Fagan, A.M.; Goate, A.; Fox, N.C.; Marcus, D.S.; Cairns, N.J.; Xie, X.; Blazey, T.M.; Holtzman, D.M.; Santacruz, A.; Buckles, V.; Oliver, A.; Moulder, K.; Aisen, P.S.; Ghetti, B.; Klunk, W.E.; McDade, E.; Martins, R.N.; Masters, C.L.; Mayeux, R.; Ringman, J.M.; Rossor, M.N.; Schofield, P.R.; Sperling, R.A.; Salloway, S.; Morris, J.C. Dominantly Inherited Alzheimer Network. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N. Engl. J. Med., 2012, 367(9), 795-804.
[http://dx.doi.org/10.1056/NEJMoa1202753] [PMID: 22784036]
[39]
Strimbu, K.; Tavel, J.A. What are biomarkers? Curr. Opin. HIV AIDS, 2010, 5(6), 463-466.
[http://dx.doi.org/10.1097/COH.0b013e32833ed177] [PMID: 20978388]
[40]
Humpel, C. Identifying and validating biomarkers for Alzheimer’s disease. Trends Biotechnol., 2011, 29(1), 26-32.
[http://dx.doi.org/10.1016/j.tibtech.2010.09.007] [PMID: 20971518]
[41]
Hansson, O.; Seibyl, J.; Stomrud, E.; Zetterberg, H.; Trojanowski, J.Q.; Bittner, T.; Lifke, V.; Corradini, V.; Eichenlaub, U.; Batrla, R.; Buck, K.; Zink, K.; Rabe, C.; Blennow, K.; Shaw, L.M. Swedish BioFINDER study group; Alzheimer’s Disease Neuroimaging Initiative. CSF biomarkers of Alzheimer’s disease concord with amyloid-β PET and predict clinical progression: A study of fully automated immunoassays in BioFINDER and ADNI cohorts. Alzheimers Dement., 2018, 14(11), 1470-1481.
[http://dx.doi.org/10.1016/j.jalz.2018.01.010] [PMID: 29499171]
[42]
Lashley, T.; Schott, J.M.; Weston, P.; Murray, C.E.; Wellington, H.; Keshavan, A.; Foti, S.C.; Foiani, M.; Toombs, J.; Rohrer, J.D.; Heslegrave, A.; Zetterberg, H. Molecular biomarkers of Alzheimer’s disease: progress and prospects., Dis. Model. Mech., 2018, 11(5)dmm, 031781..
[http://dx.doi.org/10.1242/dmm.031781] [PMID: 29739861]
[43]
Fillit, H.M. We need new biomarkers for Alzheimer’s Disease., https://blogs.scientificamerican.com/observations/we-need-new-biomarkers-for-alzheimers-disease
[44]
Yang, Y.W.; Liou, S.H.; Hsueh, Y.M.; Lyu, W.S.; Liu, C.S.; Liu, H.J.; Chung, M.C.; Hung, P.H.; Chung, C.J. Risk of Alzheimer’s disease with metal concentrations in whole blood and urine: A case-control study using propensity score matching. Toxicol. Appl. Pharmacol., 2018, 356, 8-14.
[http://dx.doi.org/10.1016/j.taap.2018.07.015] [PMID: 30025849]
[45]
Blennow, K.; Zetterberg, H. Biomarkers for Alzheimer’s disease: current status and prospects for the future. J. Intern. Med., 2018, 284(6), 643-663.
[http://dx.doi.org/10.1111/joim.12816] [PMID: 30051512]
[46]
Pawlowski, M.; Meuth, S.G.; Duning, T. Cerebrospinal fluid biomarkers in Alzheimer’s disease-from brain starch to bench and bedside. Diagnostics (Basel), 2017, 7(3), 42.
[http://dx.doi.org/10.3390/diagnostics7030042] [PMID: 28703785]
[47]
Kok, E.H.; Alanne-Kinnunen, M.; Isotalo, K.; Luoto, T.; Haikonen, S.; Goebeler, S.; Perola, M.; Hurme, M.A.; Haapasalo, H.; Karhunen, P.J. CRP gene variation affects early development of Alzheimer’s disease-related plaques. J. Neuroinflammation, 2011, 8, 96.
[http://dx.doi.org/10.1186/1742-2094-8-96] [PMID: 21831326]
[48]
O’Bryant, S.E.; Waring, S.C.; Hobson, V.; Hall, J.R.; Moore, C.B.; Bottiglieri, T.; Massman, P.; Diaz-Arrastia, R. Decreased C-reactive protein levels in Alzheimer disease. J. Geriatr. Psychiatry Neurol., 2010, 23(1), 49-53.
[http://dx.doi.org/10.1177/0891988709351832] [PMID: 19933496]
[49]
O’Bryant, S.E.; Johnson, L.; Edwards, M.; Soares, H.; Devous, M.D.; Ross, S.; Rohlfing, G.; Hall, J. Texas Alzheimer’s Research & Care Consortium. The link between C-reactive protein and Alzheimer’s disease among Mexican Americans. J. Alzheimers Dis., 2013, 34(3), 701-706.
[http://dx.doi.org/10.3233/JAD-122071] [PMID: 23254637]
[50]
Strang, F.; Scheichl, A.; Chen, Y.C.; Wang, X.; Htun, N.M.; Bassler, N.; Eisenhardt, S.U.; Habersberger, J.; Peter, K. Amyloid plaques dissociate pentameric to monomeric C-reactive protein: a novel pathomechanism driving cortical inflammation in Alzheimer’s disease? Brain Pathol., 2012, 22(3), 337-346.
[http://dx.doi.org/10.1111/j.1750-3639.2011.00539.x] [PMID: 21951392]
[51]
Bi, B.T.; Lin, H.B.; Cheng, Y.F.; Zhou, H.; Lin, T.; Zhang, M.Z.; Li, T.J.; Xu, J.P. Promotion of β-amyloid production by C-reactive protein and its implications in the early pathogenesis of Alzheimer’s disease. Neurochem. Int., 2012, 60(3), 257-266.
[http://dx.doi.org/10.1016/j.neuint.2011.12.007] [PMID: 22202667]
[52]
Slevin, M.; Matou, S.; Zeinolabediny, Y.; Corpas, R.; Weston, R.; Liu, D.; Boras, E.; Di Napoli, M.; Petcu, E.; Sarroca, S.; Popa-Wagner, A.; Love, S.; Font, M.A.; Potempa, L.A.; Al-Baradie, R.; Sanfeliu, C.; Revilla, S.; Badimon, L.; Krupinski, J. Monomeric C-reactive protein--a key molecule driving development of Alzheimer’s disease associated with brain ischaemia? Sci. Rep., 2015, 5, 13281.
[http://dx.doi.org/10.1038/srep13281] [PMID: 26335098]
[53]
Hubacek, J.A.; Peasey, A.; Pikhart, H.; Stavek, P.; Kubinova, R.; Marmot, M.; Bobak, M. APOE polymorphism and its effect on plasma C-reactive protein levels in a large general population sample. Hum. Immunol., 2010, 71(3), 304-308.
[http://dx.doi.org/10.1016/j.humimm.2010.01.008] [PMID: 20074603]
[54]
Watanabe, Y.; Kitamura, K.; Nakamura, K.; Sanpei, K.; Wakasugi, M.; Yokoseki, A.; Onodera, O.; Ikeuchi, T.; Kuwano, R.; Momotsu, T.; Narita, I.; Endo, N. Elevated C-reactive protein is associated with cognitive decline in outpatients of a general hospital: the Project in Sado for Total Health (PROST). Dement. Geriatr. Cogn. Disord. Extra, 2016, 6(1), 10-19.
[http://dx.doi.org/10.1159/000442585] [PMID: 26933436]
[55]
Brosseron, F.; Traschütz, A.; Widmann, C.N.; Kummer, M.P.; Tacik, P.; Santarelli, F.; Jessen, F.; Heneka, M.T. Characterization and clinical use of inflammatory cerebrospinal fluid protein markers in Alzheimer’s disease. Alzheimers Res. Ther., 2018, 10(1), 25.
[http://dx.doi.org/10.1186/s13195-018-0353-3] [PMID: 29482610]
[56]
Sharma, S.; Verma, S.; Kapoor, M.; Saini, A.; Nehru, B. Alzheimer’s disease like pathology induced six weeks after aggregated amyloid-beta injection in rats: increased oxidative stress and impaired long-term memory with anxiety-like behavior. Neurol. Res., 2016, 38(9), 838-850.
[http://dx.doi.org/10.1080/01616412.2016.1209337] [PMID: 27431920]
[57]
Shi, L.; Baird, A.L.; Westwood, S.; Hye, A.; Dobson, R.; Thambisetty, M.; Lovestone, S. A decade of blood biomarkers for Alzheimer’s disease research: an evolving field, improving study designs, and the challenge of replication. J. Alzheimers Dis., 2018, 62(3), 1181-1198.
[http://dx.doi.org/10.3233/JAD-170531] [PMID: 29562526]
[58]
Blennow, K.; de Leon, M.J.; Zetterberg, H. Alzheimer’s disease. Lancet, 2006, 368(9533), 387-403.
[http://dx.doi.org/10.1016/S0140-6736(06)69113-7] [PMID: 16876668]
[59]
Schupf, N.; Tang, M.X.; Fukuyama, H.; Manly, J.; Andrews, H.; Mehta, P.; Ravetch, J.; Mayeux, R. Peripheral Abeta subspecies as risk biomarkers of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2008, 105(37), 14052-14057.
[http://dx.doi.org/10.1073/pnas.0805902105] [PMID: 18779561]
[60]
Nabers, A.; Perna, L.; Lange, J.; Mons, U.; Schartner, J.; Güldenhaupt, J.; Saum, K.U.; Janelidze, S.; Holleczek, B.; Rujescu, D.; Hansson, O.; Gerwert, K.; Brenner, H. Amyloid blood biomarker detects Alzheimer’s disease. EMBO Mol. Med., 2018, 10(5) e8763
[http://dx.doi.org/10.15252/emmm.201708763] [PMID: 29626112]
[61]
Björkhem, I.; Meaney, S. Brain cholesterol: long secret life behind a barrier. Arterioscler. Thromb. Vasc. Biol., 2004, 24(5), 806-815.
[http://dx.doi.org/10.1161/01.ATV.0000120374.59826.1b] [PMID: 14764421]
[62]
Cermenati, G.; Mitro, N.; Audano, M.; Melcangi, R.C.; Crestani, M.; De Fabiani, E.; Caruso, D. Lipids in the nervous system: from biochemistry and molecular biology to patho-physiology. Biochim. Biophys. Acta, 2015, 1851(1), 51-60.
[http://dx.doi.org/10.1016/j.bbalip.2014.08.011] [PMID: 25150974]
[63]
Otaegui-Arrazola, A.; Menéndez-Carreño, M.; Ansorena, D.; Astiasarán, I. Oxysterols: A world to explore. Food Chem. Toxicol., 2010, 48(12), 3289-3303.
[http://dx.doi.org/10.1016/j.fct.2010.09.023] [PMID: 20870006]
[64]
Savary, S.; Trompier, D.; Andréoletti, P.; Le Borgne, F.; Demarquoy, J.; Lizard, G. Fatty acids - induced lipotoxicity and inflammation. Curr. Drug Metab., 2012, 13(10), 1358-1370.
[http://dx.doi.org/10.2174/138920012803762729] [PMID: 22978392]
[65]
Beal, E. Lipid biomarkers for early-stage Alzheimer disease. Nat. Rev. Neurol., 2011, 7(9), 474.
[http://dx.doi.org/10.1038/nrneurol.2011.125] [PMID: 21862984]
[66]
Zarrouk, A.; Debbabi, M.; Bezine, M.; Karym, E.M.; Badreddine, A.; Rouaud, O.; Moreau, T.; Cherkaoui-Malki, M.; El Ayeb, M.; Nasser, B.; Hammami, M.; Lizard, G. Lipid biomarkers in Alzheimer’s Disease. Curr. Alzheimer Res., 2018, 15(4), 303-312.
[http://dx.doi.org/10.2174/1567205014666170505101426] [PMID: 28474568]
[67]
Tanzi, R.E.; Kovacs, D.M.; Kim, T.W.; Moir, R.D.; Guenette, S.Y.; Wasco, W. The gene defects responsible for familial Alzheimer’s disease. Neurobiol. Dis., 1996, 3(3), 159-168.
[http://dx.doi.org/10.1006/nbdi.1996.0016] [PMID: 8980016]
[68]
Harold, D.; Abraham, R.; Hollingworth, P.; Sims, R.; Gerrish, A.; Hamshere, M.L.; Pahwa, J.S.; Moskvina, V.; Dowzell, K.; Williams, A.; Jones, N.; Thomas, C.; Stretton, A.; Morgan, A.R.; Lovestone, S.; Powell, J.; Proitsi, P.; Lupton, M.K.; Brayne, C.; Rubinsztein, D.C.; Gill, M.; Lawlor, B.; Lynch, A.; Morgan, K.; Brown, K.S.; Passmore, P.A.; Craig, D.; McGuinness, B.; Todd, S.; Holmes, C.; Mann, D.; Smith, A.D.; Love, S.; Kehoe, P.G.; Hardy, J.; Mead, S.; Fox, N.; Rossor, M.; Collinge, J.; Maier, W.; Jessen, F.; Schürmann, B.; Heun, R.; van den Bussche, H.; Heuser, I.; Kornhuber, J.; Wiltfang, J.; Dichgans, M.; Frölich, L.; Hampel, H.; Hüll, M.; Rujescu, D.; Goate, A.M.; Kauwe, J.S.; Cruchaga, C.; Nowotny, P.; Morris, J.C.; Mayo, K.; Sleegers, K.; Bettens, K.; Engelborghs, S.; De Deyn, P.P.; Van Broeckhoven, C.; Livingston, G.; Bass, N.J.; Gurling, H.; McQuillin, A.; Gwilliam, R.; Deloukas, P.; Al-Chalabi, A.; Shaw, C.E.; Tsolaki, M.; Singleton, A.B.; Guerreiro, R.; Mühleisen, T.W.; Nöthen, M.M.; Moebus, S.; Jöckel, K.H.; Klopp, N.; Wichmann, H.E.; Carrasquillo, M.M.; Pankratz, V.S.; Younkin, S.G.; Holmans, P.A.; O’Donovan, M.; Owen, M.J.; Williams, J. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat. Genet., 2009, 41(10), 1088-1093.
[http://dx.doi.org/10.1038/ng.440] [PMID: 19734902]
[69]
Poirier, J.; Davignon, J.; Bouthillier, D.; Kogan, S.; Bertrand, P.; Gauthier, S. Apolipoprotein E polymorphism and Alzheimer’s disease. Lancet, 1993, 342(8873), 697-699.
[http://dx.doi.org/10.1016/0140-6736(93)91705-Q] [PMID: 8103819]
[70]
Wolk, D.A.; Dickerson, B.C.; Apolipoprotein, E. Alzheimer’s Disease neuroimaging initiative. Apolipoprotein E (APOE) genotype has dissociable effects on memory and attentional-executive network function in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2010, 107(22), 10256-10261.
[http://dx.doi.org/10.1073/pnas.1001412107] [PMID: 20479234]
[71]
Barber, R.C. Biomarkers for early detection of Alzheimer disease. J. Am. Osteopath. Assoc., 2010, 110(9)(Suppl. 8), S10-S15.
[PMID: 20926738]
[72]
Lim, Y.Y.; Villemagne, V.L.; Laws, S.M.; Ames, D.; Pietrzak, R.H.; Ellis, K.A.; Harrington, K.D.; Bourgeat, P.; Salvado, O.; Darby, D.; Snyder, P.J.; Bush, A.I.; Martins, R.N.; Masters, C.L.; Rowe, C.C.; Nathan, P.J.; Maruff, P. Australian Imaging, Biomarkers and Lifestyle (AIBL) Research Group. BDNF Val66Met, Aβ amyloid, and cognitive decline in preclinical Alzheimer’s disease. Neurobiol. Aging, 2013, 34(11), 2457-2464.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.05.006] [PMID: 23769397]
[73]
Lim, Y.Y.; Villemagne, V.L.; Laws, S.M.; Ames, D.; Pietrzak, R.H.; Ellis, K.A.; Harrington, K.; Bourgeat, P.; Bush, A.I.; Martins, R.N.; Masters, C.L.; Rowe, C.C.; Maruff, P. AIBL Research Group. Effect of BDNF Val66Met on memory decline and hippocampal atrophy in prodromal Alzheimer’s disease: a preliminary study. PLoS One, 2014, 9(1) e86498
[http://dx.doi.org/10.1371/journal.pone.0086498] [PMID: 24475133]
[74]
Johannsen, S.; Duning, K.; Pavenstädt, H.; Kremerskothen, J.; Boeckers, T.M. Temporal-spatial expression and novel biochemical properties of the memory-related protein KIBRA. Neuroscience, 2008, 155(4), 1165-1173.
[http://dx.doi.org/10.1016/j.neuroscience.2008.06.054] [PMID: 18672031]
[75]
Kauppi, K.; Nilsson, L.G.; Adolfsson, R.; Eriksson, E.; Nyberg, L. KIBRA polymorphism is related to enhanced memory and elevated hippocampal processing. J. Neurosci., 2011, 31(40), 14218-14222.
[http://dx.doi.org/10.1523/JNEUROSCI.3292-11.2011] [PMID: 21976506]
[76]
Tracy, T.E.; Sohn, P.D.; Minami, S.S.; Wang, C.; Min, S.W.; Li, Y.; Zhou, Y.; Le, D.; Lo, I.; Ponnusamy, R.; Cong, X.; Schilling, B.; Ellerby, L.M.; Huganir, R.L.; Gan, L. Acetylated tau obstructs KIBRA-mediated signaling in synaptic plasticity and promotes tauopathy related memory loss. Neuron, 2016, 90(2), 245-260.
[http://dx.doi.org/10.1016/j.neuron.2016.03.005] [PMID: 27041503]
[77]
Porter, T.; Villemagne, V.L.; Savage, G.; Milicic, L.; Lim, Y.Y.; Maruff, P.; Masters, C.L.; Ames, D.; Bush, A.I.; Martins, R.N.; Rainey-Smith, S.; Rowe, C.C.; Taddei, K.; Groth, D.; Verdile, G.; Burnham, S.C.; Laws, S.M. Cognitive gene risk profile for the prediction of cognitive decline in presymptomatic Alzheimer’s disease. Pers. Med. Psychiatry, 2018, 7–8, 14-20.
[http://dx.doi.org/10.1016/j.pmip.2018.03.001]
[78]
Johnson, K.A.; Fox, N.C.; Sperling, R.A.; Klunk, W.E. Brain imaging in Alzheimer disease. Cold Spring Harb. Perspect. Med., 2012, 2(4) a006213
[http://dx.doi.org/10.1101/cshperspect.a006213] [PMID: 22474610]
[79]
Fantoni, E.R.; Chalkidou, A.; O’ Brien, J.T.; Farrar, G.; Hammers, A. A systematic review and aggregated analysis on the impact of amyloid pet brain imaging on the diagnosis, diagnostic confidence, and management of patients being evaluated for Alzheimer’s Disease. J. Alzheimers Dis., 2018, 63(2), 783-796.
[http://dx.doi.org/10.3233/JAD-171093] [PMID: 29689725]
[80]
Ferreira, L.K.; Busatto, G.F. Neuroimaging in Alzheimer’s disease: current role in clinical practice and potential future applications. Clinics (São Paulo), 2011, 66(Suppl. 1), 19-24.
[http://dx.doi.org/10.1590/S1807-59322011001300003] [PMID: 21779719]
[81]
Lohith, T.G.; Bennacef, I.; Vandenberghe, R.; Vandenbulcke, M.; Salinas, C.A.; Declercq, R.; Reynders, T.; Telan-Choing, N.F.; Riffel, K.; Celen, S.; Serdons, K.; Bormans, G.; Tsai, K.; Walji, A.; Hostetler, E.D.; Evelhoch, J.L.; Van Laere, K.; Forman, M.; Stoch, A.; Sur, C.; Struyk, A. First-in-human brain imaging of Alzheimer dementia patients and elderly controls with 18F-MK-6240, a PET tracer targeting neurofibrillary tangle pathology. J. Nucl. Med., 2019, 60(1), 107-114.
[http://dx.doi.org/10.2967/jnumed.118.208215] [PMID: 29880509]
[82]
Graham, J.E.; Rockwood, K.; Beattie, B.L.; Eastwood, R.; Gauthier, S.; Tuokko, H.; McDowell, I. Prevalence and severity of cognitive impairment with and without dementia in an elderly population. Lancet, 1997, 349(9068), 1793-1796.
[http://dx.doi.org/10.1016/S0140-6736(97)01007-6] [PMID: 9269213]
[83]
Flicker, C.; Ferris, S.H.; Reisberg, B. Mild cognitive impairment in the elderly: predictors of dementia. Neurology, 1991, 41(7), 1006-1009.
[http://dx.doi.org/10.1212/WNL.41.7.1006] [PMID: 2067629]
[84]
Zaudig, M. A new systematic method of measurement and diagnosis of “mild cognitive impairment” and dementia according to ICD-10 and DSM-III-R criteria. Int. Psychogeriatr., 1992, 4(4)(Suppl. 2), 203-219.
[http://dx.doi.org/10.1017/S1041610292001273] [PMID: 1288663]
[85]
Petersen, R.C.; Smith, G.E.; Waring, S.C.; Ivnik, R.J.; Tangalos, E.G.; Kokmen, E. Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol., 1999, 56(3), 303-308.
[http://dx.doi.org/10.1001/archneur.56.3.303] [PMID: 10190820]
[86]
Winblad, B.; Palmer, K.; Kivipelto, M.; Jelic, V.; Fratiglioni, L.; Wahlund, L.O.; Nordberg, A.; Bäckman, L.; Albert, M.; Almkvist, O.; Arai, H.; Basun, H.; Blennow, K.; de Leon, M.; DeCarli, C.; Erkinjuntti, T.; Giacobini, E.; Graff, C.; Hardy, J.; Jack, C.; Jorm, A.; Ritchie, K.; van Duijn, C.; Visser, P.; Petersen, R.C. Mild cognitive impairment--beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J. Intern. Med., 2004, 256(3), 240-246.
[http://dx.doi.org/10.1111/j.1365-2796.2004.01380.x] [PMID: 15324367]
[87]
Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; Snyder, P.J.; Carrillo, M.C.; Thies, B.; Phelps, C.H. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement., 2011, 7(3), 270-279.
[http://dx.doi.org/10.1016/j.jalz.2011.03.008] [PMID: 21514249]
[88]
Ganguli, M. The unbearable lightness of MCI. Int. Psychogeriatr., 2014, 26(3), 353-359.
[http://dx.doi.org/10.1017/S1041610213002275] [PMID: 24308731]
[89]
McEvoy, L.K.; Fennema-Notestine, C.; Roddey, J.C.; Hagler, D.J., Jr; Holland, D.; Karow, D.S.; Pung, C.J.; Brewer, J.B.; Dale, A.M. Alzheimer’s Disease Neuroimaging Initiative. Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment. Radiology, 2009, 251(1), 195-205.
[http://dx.doi.org/10.1148/radiol.2511080924] [PMID: 19201945]
[90]
Kauppi, K.; Fan, C.C.; McEvoy, L.K.; Holland, D.; Tan, C.H.; Chen, C.H.; Andreassen, O.A.; Desikan, R.S.; Dale, A.M. Alzheimer’s Disease neuroimaging initiative. combining polygenic hazard score with volumetric mri and cognitive measures improves prediction of progression from mild cognitive impairment to Alzheimer’s Disease. Front. Neurosci., 2018, 12, 260.
[http://dx.doi.org/10.3389/fnins.2018.00260] [PMID: 29760643]
[91]
Hampel, H.; Teipel, S.J.; Fuchsberger, T.; Andreasen, N.; Wiltfang, J.; Otto, M.; Shen, Y.; Dodel, R.; Du, Y.; Farlow, M.; Möller, H.J.; Blennow, K.; Buerger, K. Value of CSF β-amyloid1-42 and tau as predictors of Alzheimer’s disease in patients with mild cognitive impairment. Mol. Psychiatry, 2004, 9(7), 705-710.
[http://dx.doi.org/10.1038/sj.mp.4001473] [PMID: 14699432]
[92]
World Health Organization. The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines., https://www.who.int/classifications/icd/en/bluebook.pdf
[93]
American Psychiatric Association. Diagnostic and statistical manual of mental disorders., https://www.who.int/substance_abuse/terminology/diagnostic/en/
[94]
Jedynak, B.M.; Lang, A.; Liu, B.; Katz, E.; Zhang, Y.; Wyman, B.T.; Raunig, D.; Jedynak, C.P.; Caffo, B.; Prince, J.L. Alzheimer’s Disease Neuroimaging Initiative. A computational neurodegenerative disease progression score: method and results with the Alzheimer’s disease Neuroimaging Initiative cohort. Neuroimage, 2012, 63(3), 1478-1486.
[http://dx.doi.org/10.1016/j.neuroimage.2012.07.059] [PMID: 22885136]
[95]
American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5®). https://www.psychiatry.org/psychiatrists/practice/dsm
[96]
Headley, A.; De Leon-Benedetti, A.; Dong, C.; Levin, B.; Loewenstein, D.; Camargo, C.; Rundek, T.; Zetterberg, H.; Blennow, K.; Wright, C.B.; Sun, X. Alzheimer’s Disease Neuroimaging Initiative. Neurogranin as a predictor of memory and executive function decline in MCI patients. Neurology, 2018, 90(10), e887-e895.
[http://dx.doi.org/10.1212/WNL.0000000000005057] [PMID: 29429972]
[97]
Chen, Y.; Fu, A.K.Y.; Ip, N.Y. Synaptic dysfunction in Alzheimer’s disease: Mechanisms and therapeutic strategies. Pharmacol. Ther., 2019, 195, 186-198.
[http://dx.doi.org/10.1016/j.pharmthera.2018.11.006] [PMID: 30439458]
[98]
Fish, P.V.; Steadman, D.; Bayle, E.D.; Whiting, P. New approaches for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2019, 29(2), 125-133.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.034] [PMID: 30501965]
[99]
U.S. Food and drug administration. FDA consumer health information, https://www.fda.gov/ForConsumers/ConsumerUpdates/ucm519875.html
[100]
U.S. Food and drug administration. Early Alzheimer’s disease: Developing Drugs for Treatment Guidance for Industry, https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM596728.pdf
[101]
Tuszynski, M.H.; Yang, J.H.; Barba, D. U, H.S.; Bakay, R.A.; Pay, M.M.; Masliah, E.; Conner, J.M.; Kobalka, P.; Roy, S.; Nagahara, A.H. Nerve growth factor gene therapy: activation of neuronal responses in Alzheimer Disease. JAMA Neurol., 2015, 72(10), 1139-1147.
[http://dx.doi.org/10.1001/jamaneurol.2015.1807] [PMID: 26302439]
[102]
Katsouri, L.; Lim, Y.M.; Blondrath, K.; Eleftheriadou, I.; Lombardero, L.; Birch, A.M.; Mirzaei, N.; Irvine, E.E.; Mazarakis, N.D.; Sastre, M. PPARγ-coactivator-1α gene transfer reduces neuronal loss and amyloid-β generation by reducing β-secretase in an Alzheimer’s disease model. Proc. Natl. Acad. Sci. USA, 2016, 113(43), 12292-12297.
[http://dx.doi.org/10.1073/pnas.1606171113] [PMID: 27791018]
[103]
Rafii, M.S.; Tuszynski, M.H.; Thomas, R.G.; Barba, D.; Brewer, J.B.; Rissman, R.A.; Siffert, J.; Aisen, P.S. AAV2-NGF Study Team. Adeno-associated viral vector (serotype 2)-nerve growth factor for patients with Alzheimer Disease: A randomized clinical trial. JAMA Neurol., 2018, 75(7), 834-841.
[http://dx.doi.org/10.1001/jamaneurol.2018.0233] [PMID: 29582053]
[104]
[105]
Li, M.; Guan, Y.; Zhao, A.; Ren, J.; Qu, X. Using multifunctional peptide conjugated Au nanorods for monitoring β-amyloid aggregation and chemo-photothermal treatment of Alzheimer’s Disease. Theranostics, 2017, 7(12), 2996-3006.
[http://dx.doi.org/10.7150/thno.18459] [PMID: 28839459]
[106]
Dao, P.; Ye, F.; Liu, Y.; Du, Z.Y.; Zhang, K.; Dong, C.Z.; Meunier, B.; Chen, H. Development of Phenothiazine-based theranostic compounds that act both as inhibitors of β-amyloid aggregation and as imaging probes for amyloid plaques in Alzheimer’s Disease. ACS Chem. Neurosci., 2017, 8(4), 798-806.
[http://dx.doi.org/10.1021/acschemneuro.6b00380] [PMID: 28097868]
[107]
Li, Y.; Xu, D.; Ho, S.L.; Li, H.W.; Yang, R.; Wong, M.S. A theranostic agent for in vivo near-infrared imaging of β-amyloid species and inhibition of β-amyloid aggregation. Biomaterials, 2016, 94, 84-92.
[http://dx.doi.org/10.1016/j.biomaterials.2016.03.047] [PMID: 27107167]
[108]
Hultqvist, G.; Syvänen, S.; Fang, X.T.; Lannfelt, L.; Sehlin, D. Bivalent brain shuttle increases antibody uptake by monovalent binding to the transferrin receptor. Theranostics, 2017, 7(2), 308-318.
[http://dx.doi.org/10.7150/thno.17155] [PMID: 28042336]
[109]
Cui, Z.; Bu, W.; Fan, W.; Zhang, J.; Ni, D.; Liu, Y.; Wang, J.; Liu, J.; Yao, Z.; Shi, J. Sensitive imaging and effective capture of Cu(2+): Towards highly efficient theranostics of Alzheimer’s disease. Biomaterials, 2016, 104, 158-167.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.056] [PMID: 27454062]
[110]
Hu, B.; Dai, F.; Fan, Z.; Ma, G.; Tang, Q.; Zhang, X. Nanotheranostics: Congo Red/Rutin-MNPs with enhanced magnetic resonance imaging and H2O2-responsive therapy of Alzheimer’s Disease in APPswe/PS1dE9 transgenic mice. Adv. Mater., 2015, 27(37), 5499-5505.
[http://dx.doi.org/10.1002/adma.201502227] [PMID: 26270904]
[111]
Matea, C.T.; Mocan, T.; Tabaran, F.; Pop, T.; Mosteanu, O.; Puia, C.; Iancu, C.; Mocan, L. Quantum dots in imaging, drug delivery and sensor applications. Int. J. Nanomedicine, 2017, 12, 5421-5431.
[http://dx.doi.org/10.2147/IJN.S138624] [PMID: 28814860]
[112]
Xiao, S.; Zhou, D.; Luan, P.; Gu, B.; Feng, L.; Fan, S.; Liao, W.; Fang, W.; Yang, L.; Tao, E.; Guo, R.; Liu, J. Graphene quantum dots conjugated neuroprotective peptide improve learning and memory capability. Biomaterials, 2016, 106, 98-110.
[http://dx.doi.org/10.1016/j.biomaterials.2016.08.021] [PMID: 27552320]
[113]
Bungart, B.L.; Dong, L.; Sobek, D.; Sun, G.Y.; Yao, G.; Lee, J.C. Nanoparticle-emitted light attenuates amyloid-β-induced superoxide and inflammation in astrocytes. Nanomedicine (Lond.), 2014, 10(1), 15-17.
[http://dx.doi.org/10.1016/j.nano.2013.10.007] [PMID: 24200521]
[114]
Mars, A.; Hamami, M.; Bechnak, L.; Patra, D.; Raouafi, N. Curcumin-graphene quantum dots for dual mode sensing platform: Electrochemical and fluorescence detection of APOe4, responsible of Alzheimer’s disease. Anal. Chim. Acta, 2018, 1036, 141-146.
[http://dx.doi.org/10.1016/j.aca.2018.06.075] [PMID: 30253824]
[115]
Morales-Narváez, E.; Montón, H.; Fomicheva, A.; Merkoçi, A. Signal enhancement in antibody microarrays using quantum dots nanocrystals: application to potential Alzheimer’s disease biomarker screening. Anal. Chem., 2012, 84(15), 6821-6827.
[http://dx.doi.org/10.1021/ac301369e] [PMID: 22732018]
[116]
Medina-Sánchez, M.; Miserere, S.; Morales-Narváez, E.; Merkoçi, A. On-chip magneto-immunoassay for Alzheimer’s biomarker electrochemical detection by using quantum dots as labels. Biosens. Bioelectron., 2014, 54, 279-284.
[http://dx.doi.org/10.1016/j.bios.2013.10.069] [PMID: 24287417]
[117]
Demattos, R.B.; Lu, J.; Tang, Y.; Racke, M.M.; Delong, C.A.; Tzaferis, J.A.; Hole, J.T.; Forster, B.M.; McDonnell, P.C.; Liu, F.; Kinley, R.D.; Jordan, W.H.; Hutton, M.L. A plaque-specific antibody clears existing β-amyloid plaques in Alzheimer’s disease mice. Neuron, 2012, 76(5), 908-920.
[http://dx.doi.org/10.1016/j.neuron.2012.10.029] [PMID: 23217740]
[118]
Panza, F.; Lozupone, M.; Seripa, D.; Imbimbo, B.P. Amyloid-β immunotherapy for Alzheimer disease: Is it now a long shot? Ann. Neurol., 2019, 85(3), 303-315.
[http://dx.doi.org/10.1002/ana.25410] [PMID: 30635926]
[119]
Schenk, D. Amyloid-β immunotherapy for Alzheimer’s disease: the end of the beginning. Nat. Rev. Neurosci., 2002, 3(10), 824-828.
[http://dx.doi.org/10.1038/nrn938] [PMID: 12360327]
[120]
van Dyck, C.H. Anti-Amyloid-β monoclonal antibodies for Alzheimer’s Disease: Pitfalls and promise. Biol. Psychiatry, 2018, 83(4), 311-319.
[http://dx.doi.org/10.1016/j.biopsych.2017.08.010] [PMID: 28967385]
[121]
Sumner, I.L.; Edwards, R.A.; Asuni, A.A.; Teeling, J.L. Antibody engineering for optimized immunotherapy in Alzheimer’s Disease. Front. Neurosci., 2018, 12, 254.
[http://dx.doi.org/10.3389/fnins.2018.00254] [PMID: 29740272]
[122]
Rajasekhar, K.; Mehta, K.; Govindaraju, T. Hybrid multifunctional modulators inhibit multifaceted aβ toxicity and prevent mitochondrial damage. ACS Chem. Neurosci., 2018, 9(6), 1432-1440.
[http://dx.doi.org/10.1021/acschemneuro.8b00033] [PMID: 29557650]
[123]
Hom, R.K.; Fang, L.Y.; Mamo, S.; Tung, J.S.; Guinn, A.C.; Walker, D.E.; Davis, D.L.; Gailunas, A.F.; Thorsett, E.D.; Sinha, S.; Knops, J.E.; Jewett, N.E.; Anderson, J.P.; John, V. Design and synthesis of statine-based inhibitors of human –secretase. J. Med. Chem., 2003, 46, 1799-1802.
[http://dx.doi.org/10.1021/jm025619l] [PMID: 12723942]
[124]
Goyal, D.; Shuaib, S.; Mann, S.; Goyal, B. Rationally designed peptides and peptidomimetics as inhibitors of amyloid-β (Aβ) Aggregation: Potential therapeutics of Alzheimer’s Disease. ACS Comb. Sci., 2017, 19(2), 55-80.
[http://dx.doi.org/10.1021/acscombsci.6b00116] [PMID: 28045249]
[125]
Budimir, A. Metal ions, Alzheimer’s disease and chelation therapy. Acta Pharm., 2011, 61(1), 1-14.
[http://dx.doi.org/10.2478/v10007-011-0006-6] [PMID: 21406339]
[126]
Robert, A.; Liu, Y.; Nguyen, M.; Meunier, B. Regulation of copper and iron homeostasis by metal chelators: a possible chemotherapy for Alzheimer’s disease. Acc. Chem. Res., 2015, 48(5), 1332-1339.
[http://dx.doi.org/10.1021/acs.accounts.5b00119] [PMID: 25946460]
[127]
Wong, C.B.; Kobayashi, Y.; Xiao, J-Z. Probiotics for preventing cognitive impairment in Alzheimer’s Disease. Gut Microbiota - Brain Axis; Evrensel, A.; Ünsalver, B.O.Neuroscience; , 2018, pp. 85-104.
[128]
Abraham, D.; Feher, J.; Scuderi, G.L.; Szabo, D.; Dobolyi, A.; Cservenak, M.; Juhasz, J.; Ligeti, B.; Pongor, S.; Gomez-Cabrera, M.C.; Vina, J.; Higuchi, M.; Suzuki, K.; Boldogh, I.; Radak, Z. Exercise and probiotics attenuate the development of Alzheimer’s disease in transgenic mice: Role of microbiome. Exp. Gerontol., 2019, 115, 122-131.
[http://dx.doi.org/10.1016/j.exger.2018.12.005] [PMID: 30529024]
[129]
Leblhuber, F.; Steiner, K.; Schuetz, B.; Fuchs, D.; Gostner, J.M. Probiotic supplementation in patients with Alzheimer’s Dementia - An explorative intervention study. Curr. Alzheimer Res., 2018, 15(12), 1106-1113.
[http://dx.doi.org/10.2174/1389200219666180813144834] [PMID: 30101706]
[130]
Lopez-de-Ipiña, K.; Alonso, J.B.; Solé-Casals, J.; Barroso, N.; Henriquez, P.; Faundez-Zanuy, M.; Travieso, C.; Ecay-Torres, M.; Martinez-Lage, P.; Egiraun, H. On Automatic diagnosis of alzheimer’s disease based on spontaneous speech analysis and emotional temperature. Cognit. Comput., 2015, 7, 44-55.
[http://dx.doi.org/10.1007/s12559-013-9229-9]
[131]
Jarrold, W.; Peintner, B.; Wilkins, D.; Vergryi, D.; Richey, C.; Gorno-Tempini, M.L.; Ogar, J. Aided diagnosis of dementia type through computer-based analysis of spontaneous speech, 2014.27, 37..
[http://dx.doi.org/10.3115/v1/W14-3204]
[132]
Orimaye, S.O.; Wong, J.S-M.; Golden, K.J. Learning predictive linguistic features for Alzheimer’s disease and related dementia using verbal utterances; Association for Computational Linguistics, 2014, pp. 78-87.
[http://dx.doi.org/10.3115/v1/W14-3210]
[133]
König, A.; Satt, A.; Sorin, A.; Hoory, R.; Toledo-Ronen, O.; Derreumaux, A.; Manera, V.; Verhey, F.; Aalten, P.; Robert, P.H.; David, R. Automatic speech analysis for the assessment of patients with predementia and Alzheimer’s disease. Alzheimers Dement. (Amst.), 2015, 1(1), 112-124. [Amst]
[http://dx.doi.org/10.1016/j.dadm.2014.11.012] [PMID: 27239498]
[134]
Fraser, K.C.; Meltzer, J.A.; Rudzicz, F. Linguistic features identify Alzheimer’s Disease in narrative speech. J. Alzheimers Dis., 2016, 49(2), 407-422.
[http://dx.doi.org/10.3233/JAD-150520] [PMID: 26484921]
[135]
Al-Hameed, S.; Benaissa, M.; Christensen, H. Simple and robust audio-based detection of biomarkers for Alzheimer’s disease proceeding of the 7th workshop on speech and language processing for Assistive Technologies (SLPAT), San Francisco, USA, 201, pp. 32-36..
[136]
How Will Artificial Intelligence Impact Alzheimer’s Research. https://labiotech.eu/features/artificial-intelligence-alzheimer
[137]
Predicting Alzheimer’s disease with artificial intelligence., https://globalnews.ca/news/4594878/alzheimers-disease-artificial-intelligence-ai/
[138]
Ding, Y.; Sohn, J.H.; Kawczynski, M.G.; Trivedi, H.; Harnish, R.; Jenkins, N.W.; Lituiev, D.; Copeland, T.P.; Aboian, M.S.; Mari Aparici, C.; Behr, S.C.; Flavell, R.R.; Huang, S.Y.; Zalocusky, K.A.; Nardo, L.; Seo, Y.; Hawkins, R.A.; Hernandez Pampaloni, M.; Hadley, D.; Franc, B.L. A Deep learning model to predict a diagnosis of Alzheimer Disease by using 18F-FDG PET of the brain. Radiology, 2019, 290(2), 456-464.
[http://dx.doi.org/10.1148/radiol.2018180958] [PMID: 30398430]
[139]
Radiological Society of North America Artificial intelligence predicts Alzheimer's years before diagnosis, 181106104249 htm.sciencedaily.com/.
[140]
De Brito Sanchez, R.; de Barros, L.; Rodrigues, S.C.M.; Fernandes, J.C.L.; Bondioli, A.C.V.; de Campos Mundin, H.A.; de Sousa, V.D.S.; da Silva, L.H.B.O. Artificial Intelligence to Detect Alzheimer’s in Magnetic Resonances, IFMBE Proceedings of the XXVI Brazilian Congress on Biomedical Engineering; Costa-Felix, R.; Machado, J.; Alvarenga, A. (eds), Singapore, Int. Psychogeriatr., 2019, 7(2), 59-63.
[141]
Graham, S.A.; Depp, C.A. Artificial intelligence and risk prediction in geriatric mental health: what happens next? Int. Psychogeriatr., 2019, 31(7), 921-923.
[http://dx.doi.org/10.1017/S1041610219000954]
[142]
Rahmanian, M.; Mosalanejad, L.; Abdolallahifard, S. An Alzheimer’s Intelligence Care System (AICS) to assist Alzheimer’s Patients : Design and development of application. J. Res. Med. Dental. Sci, 2018, 6(6), 9-15.
[143]
Albright, J. Forecasting the progression of Alzheimer’s disease using neural networks and a novel preprocessing algorithm. Alzheimers Dement. (N. Y.), 2019, 5, 483-491.
[http://dx.doi.org/10.1016/j.trci.2019.07.001] [PMID: 31650004]
[144]
Gurevich, P.; Stuke, H.; Kastrup, A.; Stuke, H.; Hildebrandt, H. Neuropsychological testing and machine learning distinguish Alzheimer’s disease from other causes for cognitive impairment. Front. Aging Neurosci., 2017, 9, 114.
[http://dx.doi.org/10.3389/fnagi.2017.00114] [PMID: 28487650]
[145]
Farooq, A.; Anwar, S.M.; Awais, M.; Alnowami, M. Proceedings of the IEEE International Smart Cities Conference, Wuxi, China2017, pp. 1-4.
[146]
Maoz, U.; Linstead, E. Brain imaging and artificial intelligence. Casting Light on the Dark Side of Brain Imaging; Raz, A.; Thibault, R.T; Elsevier, 2019, pp. 99-103.
[http://dx.doi.org/10.1016/B978-0-12-816179-1.00017-7]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 18
ISSUE: 11
Year: 2020
Published on: 28 May, 2020
Page: [1106 - 1125]
Pages: 20
DOI: 10.2174/1570159X18666200528142429
Price: $65

Article Metrics

PDF: 34
HTML: 2