Recent Developments and Perspectives in the C-Se Cross Coupling Reactions

Author(s): Diana Elizabeth Jose, U. S. Kanchana, Thomas V. Mathew*, Gopinathan Anilkumar*

Journal Name: Current Organic Chemistry

Volume 24 , Issue 11 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

The C-Se bond forming reactions are attractive synthetic strategies for biochemists and synthetic chemists alike for the synthesis of various molecules that are of biological, pharmaceutical and material interest. Therefore, the design and synthesis of organoselenium compounds currently constitute engaging fundamental problems in applied chemistry both in pharmaceutical and academic laboratories. This review discusses the recent works reported in carbon–selenium cross-coupling reactions with the emphasis on the mechanistic aspects of the reactions. The reacting species, the addition of ligands, selection of catalysts, use of suitable solvents, proper setting of reaction time, are well discussed to understand the detailed mechanism. Various simple, economical and environmentally friendly protocols are demonstrated, which ensured product stability, low toxicity, environmentally benign and excellent reactivity for the synthesis of organoselenium compounds. This review covers the scientific literature from 2010 to 2019.

Keywords: Cross-coupling, organoselenium, C-Se bond formation, diaryl selenides, catalysts, pharmaceutical.

[1]
Santos, E.D.A.D.; Hamel, D.A.; Bai, R.; Burnett, J.C.; Tozatti, C.S.S.; Bogo, D.; Perdomo, R.T.; Antunes, A.M.M.; Marques, M.M. Matos, M.D.F.C.; De Lima, D.P. Synthesis and evaluation of diaryl sulfides and diaryl selenide compounds for antitubulin and cytotoxic activity. Bioorg. Med. Chem. Lett., 2013, 23(16), 4669-4673.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.009]
[2]
Spallholz, J.E.; Shriver, B.J.; Reid, T.W. Dimethyldiselenide and methylseleninic acid generate superoxide in an in vitro chemiluminescence assay in the presence of glutathione: implications for the anticarcinogenic activity of L-selenomethionine and L-Se-methylselenocysteine. Nutr. Cancer, 2001, 40(1), 34-41.
[http://dx.doi.org/10.1207/S15327914NC401_8] [PMID: 11799920]
[3]
Constant, E. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. Plast. Reconstr. Surg., 1998, (101), 1424.
[http://dx.doi.org/10.1097/00006534-199804050-00069]
[4]
Andersson, C.M.; Hallberg, A.; Högberg, T.T. Advances in the development of pharmaceutical antioxidants. In: Advances in Drug Research; Testa, B.; Meyer, U., Eds.; Academic Press, 1996; Vol. 28, pp. 65-180.
[http://dx.doi.org/10.1016/S0065-2490(96)80004-9]
[5]
Engman, L.; Stern, D.; Frisell, H.; Vessman, K.; Berglund, M.; Andersson, C.M. Synthesis, antioxidant properties, biological activity and molecular modelling of a series of chalcogen analogues of the 5-lipoxygenase inhibitor DuP 654. Bioorg. Med. Chem., 1995, 3(9), 1255-1262.
[6]
Woods, J.A.; Hadfield, J.A.; McGown, A.T.; Fox, B.W. Bioactivity and molecular modelling of diphenylsulfides and diphenylselenides. Bioorg. Med. Chem., 1993, 1(5), 333-340.
[7]
Cao, S.; Durrani, F.A.; Rustum, Y.M. Selective modulation of the therapeutic efficacy of anticancer drugs by selenium containing compounds against human tumor xenografts. Clin. Cancer Res., 2004, 10(7), 2561-2569.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0268] [PMID: 15073137]
[8]
Alberto, E.E.; Nascimento, V.; Braga, A.L. Catalytic application of selenium and tellurium compounds as glutathione peroxidase enzyme mimetics. J. Braz. Chem. Soc., 2010, 21(11), 2032-2041.
[http://dx.doi.org/10.1590/S0103-50532010001100004]
[9]
Szczepina, M.G.; Johnston, B.D.; Yuan, Y.; Svensson, B.; Pinto, B.M. Synthesis of alkylated deoxynojirimycin and 1,5-dideoxy-1,5-iminoxylitol analogues: polar side-chain modification, sulfonium and selenonium heteroatom variants, conformational analysis, and evaluation as glycosidase inhibitors. J. Am. Chem. Soc., 2004, 126(39), 12458-12469.
[http://dx.doi.org/10.1021/ja0482076] [PMID: 15453780]
[10]
Procter, D.J. The synthesis of thiols, selenols, sulfides, selenides, sulfoxides, selenoxides, sulfones and selenones. J. Chem. Soc., Perkin Trans. 1, 2001, 2001(4), 335-354.
[11]
Nogueira, C.W.; Zeni, G.; Rocha, J.B.T. Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem. Rev., 2004, 104(12), 6255-6285.
[http://dx.doi.org/10.1021/cr0406559] [PMID: 15584701]
[12]
Garud, D.R.; Koketsu, M. Synthesis of 3-selena-1-dethiacephems and selenazepines via iodocyclization. Org. Lett., 2008, 10(15), 3319-3322.
[http://dx.doi.org/10.1021/ol801010y] [PMID: 18598052]
[13]
Grange, R.L.; Ziogas, J.; Angus, J.A.; Schiesser, C.H. Selenofonsartan analogues: novel selenium-containing antihypertensive compounds. Tetrahedron Lett., 2007, 48(36), 6301-6303.
[http://dx.doi.org/10.1016/j.tetlet.2007.07.011]
[14]
Sharma, A.; Schwab, R.S.; Braga, A.L.; Barcellos, T.; Paixão, M.W. A convenient synthetic route for alkynylselenides from alkynyl bromides and diaryl diselenides employing copper(I)/imidazole as novel catalyst system. Tetrahedron Lett., 2008, 49(35), 5172-5174.
[http://dx.doi.org/10.1016/j.tetlet.2008.06.071]
[15]
Luo, J.; Cao, Q.; Cao, X.; Zhao, X. Selenide-catalyzed enantioselective synthesis of trifluoromethylthiolated tetrahydronaphthalenes by merging desymmetrization and trifluoromethylthiolation. Nat. Commun., 2018, 9(1), 1-9.
[http://dx.doi.org/10.1038/s41467-018-02955-0] [PMID: 29410415]
[16]
Liu, X.; An, R.; Zhang, X.; Luo, L.; Zhao, X. Enantioselective trifluoromethylthiolating lactonization catalyzed by an indane-based chiral sulfide. Angew. Chem. Int. Ed., 2016, 55(19), 5846-5850.
[http://dx.doi.org/10.1002/anie.201601713]
[17]
Rao, G.K.; Kumar, A.; Kumar, B.; Singh, A.K. Didocosyl selenide stabilized recyclable Pd(0) nanoparticles and coordinated palladium(II) as efficient catalysts for Suzuki-Miyaura coupling. Dalt. Trans., 2012, 2012(41), 4306-4309.
[http://dx.doi.org/10.1039/C2DT12256A]
[18]
Das, D.; Singh, P.; Singh, M.; Singh, A.K. Tetradentate selenium ligand as a building block for homodinuclear complexes of Pd(II) and Ru(II) having seven membered rings or bis-pincer coordination mode: high catalytic activity of Pd-complexes for Heck reaction. Dalt. Trans., 2010, 2010(39), 10876-10882.
[http://dx.doi.org/10.1039/C0DT00561D]
[19]
Didehban, K.; Vessally, E.; Hosseinian, A.; Edjlali, L.; Khosroshahi, E.S. Nanocatalysts for C-Se cross-coupling reactions. RSC Adv., 2018, 8(1), 291-301.
[http://dx.doi.org/10.1039/C7RA12663H]
[20]
Adams, R.; Abel, E.; Stone, F.; Wilkinson, G. Comprehensive Organometallic Chemistry II: A Review of the Literature 1982-1994, 1st ed; Oxford University Press: New York, 1995.
[21]
de Meijere, A.; Diederich, F. Metal-Catalyzed Cross-Coupling Reactions, 2nd ed; Wiley‐VCH Verlag GmbH & Co.: New Jersey, 2012.
[22]
Perin, G.; Lenardão, E.J.; Jacob, R.G.; Panatieri, R.B. Synthesis of vinyl selenides. Chem. Rev., 2009, 109(3), 1277-1301.
[http://dx.doi.org/10.1021/cr8004394] [PMID: 19222199]
[23]
Beletskaya, I.P.; Ananikov, V.P. Transition-metal-catalyzed C-S, C-Se, and C-Te bond formation via cross-coupling and atom-economic addition reactions. Chem. Rev., 2011, 111(3), 1596-1636.
[http://dx.doi.org/10.1021/cr100347k] [PMID: 21391564]
[24]
Ananikov, V.P.; Zalesskiy, S.S.; Beletskaya, I.P. Catalytic (Ni, Pd, Pt, Rh and Au) and non-catalytic reactions for atom- economic carbon-sulfur, carbon-selenium and carbon-tellurium bonds formation. Curr. Org. Synth., 2011, 8(1), 2-52.
[http://dx.doi.org/10.2174/157017911794407692]
[25]
Li, Y.; Wang, H.; Li, X.; Chen, T.; Zhao, D. CuS/Fe: a novel and highly efficient catalyst system for coupling reaction of aryl halides with diaryl diselenides. Tetrahedron, 2010, 66(45), 8583-8586.
[http://dx.doi.org/10.1016/j.tet.2010.09.061]
[26]
Dandapat, A.; Korupalli, C.; Prasad, D.J.C.; Singh, R.; Sekar, G. An efficient copper (I) iodide catalyzed synthesis of diaryl selenides through CAr-Se bond formation using solvent acetonitrile as ligand. Synthesis, 2011, 2011(14), 2297-2302.
[http://dx.doi.org/10.1055/s-0030-1260078]
[27]
Chatterjee, T.B.C.; Ranu, B.C. Solvent-controlled halo-selective selenylation of aryl halides catalyzed by Cu(II) supported on Al2O3. A general protocol for the synthesis of unsymmetrical organo mono- and bis-selenides. J. Org. Chem., 2013, 78(14), 7145-7153.
[http://dx.doi.org/10.1021/jo401062k] [PMID: 23786642]
[28]
Movassagh, B.; Hosseinzadeh, Z. A highly efficient copper-catalyzed synthesis of unsymmetrical diaryl-and aryl alkyl chalcogenides from aryl iodides and diorganyl disulfides and diselenides. Synlett, 2016, 27(5), 777-781.
[http://dx.doi.org/10.1055/s-0035-1561268]
[29]
Wang, H.; Chen, S.; Liu, G.; Guan, H.; Zhong, D.; Cai, J.; Zheng, Z.; Mao, J.; Walsh, P.J. Synthesis of diaryl selenides via palladium-catalyzed debenzylative cross-coupling of aryl benzyl selenides with aryl bromides. Organometallics, 2018, 37(21), 4086-4091.
[http://dx.doi.org/10.1021/acs.organomet.8b00644]
[30]
Reddy, V.P.; Kumar, A.V.; Swapna, K.; Rao, K.R. Copper oxide nanoparticle-catalyzed coupling of diaryl diselenide with aryl halides under ligand-free conditions. Org. Lett., 2009, 11(4), 951-953.
[http://dx.doi.org/10.1021/ol802734f] [PMID: 19182886]
[31]
31. Singh, D.; Alberto, E.E.; Rodrigues, O.E.D.; Braga, A.L. Eco-friendly cross-coupling of diaryl diselenides with aryl and alkyl bromides catalyzed by CuO nanopowder in ionic liquid. Green Chem., 2009, 2009(11), 1521-1524.
[http://dx.doi.org/10.1039/b916266f]
[32]
Saha, A.; Saha, D.; Ranu, B.C. Copper nano-catalyst: sustainable phenyl-selenylation of aryl iodides and vinyl bromides in water under ligand free conditions. Org. Biomol. Chem., 2009, 7(8), 1652-1657.
[http://dx.doi.org/10.1039/b819137a] [PMID: 19343253]
[33]
Panja, S.; Maity, P.; Kundu, D.; Ranu, B.C. Iron(0) nanoparticles mediated direct conversion of aryl/heteroaryl amines to chalcogenides via in situ diazotization. Tetrahedron Lett., 2017, 58, 3441-3445.
[http://dx.doi.org/10.1016/j.tetlet.2017.07.070]
[34]
Maity, P.; Kundu, D.; Roy, R.; Ranu, B.C. A direct synthesis of selenophenes by Cu-catalyzed one-pot addition of a selenium moiety to (E,E)-1,3-dienyl bromides and subsequent nucleophilic cyclization. Org. Lett., 2014, 16(16), 4122-4125.
[http://dx.doi.org/10.1021/ol501820e] [PMID: 25060565]
[35]
Swapna, K.; Murthy, S.N.; Nageswar, Y.V.D. Magnetically separable and reusable copper ferrite nanoparticles for cross‐coupling of aryl halides with diphenyl diselenide. Eur. J. Org. Chem., 2011, 2011(10), 1940-1946.
[http://dx.doi.org/10.1002/ejoc.201001639]
[36]
Chaugule, A.A.; Tamboli, A.H.; Sheikh, F.A.; Chung, W.J.; Kim, H. Glycerol functionalized imidazolium tri-cationic room temperature ionic liquids: synthesis, properties and catalytic performance for 2-azidoalcohol synthesis from epoxide. J. Mol. Liq., 2015, 208, 314-321.
[http://dx.doi.org/10.1016/j.molliq.2015.04.058]
[37]
Chaugule, A.A.; Jadhav, A.R.; Kim, H. Polyvinyl trisulfonate ethylamine based solid acid catalyst for the efficient glycosylation of sugars under solvent free conditions. RSC Adv., 2015, 5(127), 104715-104724.
[38]
Chaugule, A.A.; Tamboli, A.; Kim, H. Efficient fixation and conversion of CO2 into dimethyl carbonate catalyzed by an imidazolium containing tricationic ionic liquid/super base system. RSC Adv., 2016, 6(48), 42279-42287.
[39]
Chaugule, A.A.; Tamboli, A.H.; Kim, H. Ionic liquid as a catalyst for utilization of carbon dioxide to production of linear and cyclic carbonate. Fuel, 2017, 200, 316-332.
[http://dx.doi.org/10.1016/j.fuel.2017.03.077]
[40]
Chaugule, A.A.; Pawar, A.A.; Tamboli, A.H.; Bandal, H.A.; Chung, W.J.; Kim, H. Ionic liquid based Cu2S@C catalyst for effective coupling of diaryl diselenide with aryl halides under ligand-free conditions. Chem. Eng. J., 2018, 351, 490-497.
[http://dx.doi.org/10.1016/j.cej.2018.06.081]
[41]
Taniguchi, N. Convenient synthesis of unsymmetrical organochalcogenides using organoboronic acids with dichalcogenides via cleavage of the S-S, Se-Se, or Te-Te bond by a copper catalyst. J. Org. Chem., 2007, 72(4), 1241-1245.
[http://dx.doi.org/10.1021/jo062131+] [PMID: 17288374]
[42]
Zhang, L.; Zhang, G.; Zhang, M.; Cheng, J. Cu(OTf)2-mediated Chan-Lam reaction of carboxylic acids to access phenolic esters. J. Org. Chem., 2010, 75(21), 7472-7474.
[http://dx.doi.org/10.1021/jo101558s] [PMID: 20942492]
[43]
Singh, B.K.; Appukkuttan, P.; Claerhout, S.; Parmar, V.S.; Van der Eycken, E. Copper(II)-mediated cross-coupling of arylboronic acids and 2(1H)-pyrazinones facilitated by microwave irradiation with simultaneous cooling. Org. Lett., 2006, 8(9), 1863-1866.
[http://dx.doi.org/10.1021/ol060422z] [PMID: 16623570]
[44]
Li, J.; Bénard, S.; Neuville, L. Copper catalyzed N-arylation of amidines with aryl boronic acids and one-pot synthesis of benzimidazoles by a Chan–Lam–Evans N-arylation and C-H activation/C-N bond forming process. Org. Lett., 2012, 14, 5980-5983.
[http://dx.doi.org/10.1021/ol3028847]
[45]
Raghuvanshi, D.S.; Gupta, A.K.; Singh, K.N. Nickel-mediated N-arylation with arylboronic acids: an avenue to Chan-Lam coupling. Org. Lett., 2012, 14(17), 4326-4329.
[http://dx.doi.org/10.1021/ol3021836] [PMID: 22928959]
[46]
Chan, D.G.; Winternheimer, D.J.; Merlic, C.A. Enol silyl ethers via copper(II)-catalyzed C-O bond formation. Org. Lett., 2011, 13(10), 2778-2781.
[http://dx.doi.org/10.1021/ol2009297] [PMID: 21510621]
[47]
Xu, J.; Luo, D.F.; Xiao, B.; Liu, Z.J.; Gong, T.J.; Fu, Y.; Liu, L. Copper-catalyzed trifluoromethylation of aryl boronic acids using a CF3+ reagent. Chem. Commun. (Camb.), 2011, 47(14), 4300-4302.
[http://dx.doi.org/10.1039/c1cc10359h] [PMID: 21380454]
[48]
Dai, J.J.; Liu, J.H.; Luo, D.F.; Liu, L. Pd-catalysed decarboxylative Suzuki reactions and orthogonal Cu-based O-arylation of aromatic carboxylic acids. Chem. Commun. (Camb.), 2011, 47(2), 677-679.
[http://dx.doi.org/10.1039/C0CC04104A] [PMID: 21103597]
[49]
Prokopcová, H.; Kappe, C.O. The Liebeskind-Srogl C-C cross‐coupling reaction. Angew. Chem. Int. Ed., 2009, 48, 2276-2286.
[http://dx.doi.org/10.1002/anie.200802842]
[50]
Wang, M.; Ren, X.; Wang, L. Iron‐catalyzed ligand‐free carbon‐selenium (or tellurium) coupling of arylboronic acids with diselenides and ditellurides. Adv. Synth. Catal., 2009, 351, 1586-1594.
[http://dx.doi.org/10.1002/adsc.200900095]
[51]
Li, Y.; Wang, H.; Li, X.; Chen, T.; Zhao, D. CuS/Fe: a novel and highly efficient catalyst system for coupling reaction of aryl halides with diaryl diselenides. Tetrahedron, 2010, 66, 8583-8586.
[http://dx.doi.org/10.1016/j.tet.2010.09.061]
[52]
Alves, D.; Santos, C.G.; Paixão, M.W.; Soares, L.C.; Souza, D.; Rodrigues, O.E.D.; Braga, A.L. CuO nanoparticles: an efficient and recyclable catalyst for cross-coupling reactions of organic diselenides with aryl boronic acids. Tetrahedron Lett., 2009, 50, 6635-6638.
[http://dx.doi.org/10.1016/j.tetlet.2009.09.052]
[53]
Ricordi, V.G.; Freitas, C.S.; Perin, G.; Lenardão, E.J.; Jacob, R.G.; Savegnago, L.; Alves, D. Glycerol as a recyclable solvent for copper-catalyzed cross-coupling reactions of diaryl diselenides with aryl boronic acids. Green Chem., 2012, 14, 1030-1034.
[http://dx.doi.org/10.1039/c2gc16427b]
[54]
Zheng, B.; Gong, Y.; Xu, H.J. Copper-catalyzed C-Se coupling of diphenyl diselenide with arylboronic acids at room temperature. Tetrahedron, 2013, 69, 5342-5347.
[http://dx.doi.org/10.1016/j.tet.2013.04.124]
[55]
Roy, S.; Chatterjee, T.; Banerjee, B.; Salam, N.; Bhaumik, A.; Islam, S.M. Cu (II) anchored nitrogen-rich covalent imine network (Cu II-CIN-1): an efficient and recyclable heterogeneous catalyst for the synthesis of organoselenides from aryl boronic acids in a green solvent. RSC Adv., 2014, 4, 46075-46083.
[56]
Kumar, A.; Kumar, S. A convenient and efficient copper-catalyzed synthesis of unsymmetrical and symmetrical diaryl chalcogenides from arylboronic acids in ethanol at room temperature. Tetrahedron, 2014, 70, 1763-1772.
[http://dx.doi.org/10.1016/j.tet.2014.01.030]
[57]
Roy, S.; Chatterjee, T.; Islam, S.M. Solvent selective phenyl selenylation and phenyl tellurylation of aryl boronic acids catalyzed by Cu(II) grafted functionalized polystyrene. Tetrahedron Lett., 2015, 56, 779-783.
[http://dx.doi.org/10.1016/j.tetlet.2014.12.055]
[58]
Zhao, H.; Jiang, Y.; Chen, Q.; Cai, M. A highly efficient and reusable MCM-41-immobilized bipyridine copper(I) catalyst for the C-Se coupling of organoboronic acids with diaryl diselenides. New J. Chem., 2015, 39, 2106-2115.
[http://dx.doi.org/10.1039/C4NJ01687D]
[59]
Saba, S.; Rafique, J.; Braga, A.L. Synthesis of unsymmetrical diorganyl chalcogenides under greener conditions: use of an iodine/DMSO system, solvent‐ and metal‐free approach. Adv. Synth. Catal., 2015, 357, 1446-1452.
[http://dx.doi.org/10.1002/adsc.201500024]
[60]
Goldani, B.; Ricordi, V.G.; Seus, N.; Lenardão, E.J.; Schumacher, R.F.; Alves, D. Silver-catalyzed synthesis of diaryl selenides by reaction of diaryl diselenides with aryl boronic acids. J. Org. Chem., 2016, 81(22), 11472-11476.
[http://dx.doi.org/10.1021/acs.joc.6b02108] [PMID: 27731643]
[61]
Sahani, A.J.; Jayaram, R.V.; Burange, A.S. C-Se cross-coupling of arylboronic acids and diphenyldiselenides over non precious transition metal (Fe, Cu and Ni) complexes. Mol. Catal., 2018, 450, 14-18.
[http://dx.doi.org/10.1016/j.mcat.2018.02.028]
[62]
Sanni, S.B.; Behm, H.J.; Beurskens, P.T.; van Albada, G.A.; Reedijk, J.; Addison, A. Copper(II) and zinc(II) co-ordination compounds of tridentate bis(benzimidazole)pyridine ligands. Crystal and molecular structures of bis[2,6-bis(1′-methylbenzimidazol-2′-yl)pyridine]copper(II) diperchlorate monohydrate and (acetonitrile)[2,6-bis(benzimidazol-2′-yl)pyridine](perchlorato)copper(II) perchlorate. J. Chem. Soc. Dalt. Trans., 1988, 1988(6), 1429-1435.
[http://dx.doi.org/10.1039/DT9880001429]
[63]
Kianfar, A.L.I.H.; Abroshan, I. Spectrophotometric study of complexation between some Salen type Schiff bases and dimethyltin(IV) dichloride. Chem. Sci. Trans., 2013, 2, 17-24.
[http://dx.doi.org/10.7598/cst2013.211]
[64]
Thomas, A.B.; Nanda, R.K.; Kothapalli, L.P.; Deshpande, A.D. Synthesis and Antimicrobial Activity of N-[2-(aryl/substituted aryl)-4-oxo-1,3-thiazolidin-3-yl]pyridine-4-carboxamide. J. Korean Chem. Soc., 2011, (55), 960-968.
[http://dx.doi.org/10.5012/jkcs.2011.55.6.960]
[65]
Kabalka, G.W.; Venkataiah, B. Preparation of (Z)- and (E)-vinyl selenides utilizing vinylboronic acids and vinylboronic esters in ionic liquids. Tetrahedron Lett., 2002, 43, 3703-3705.
[http://dx.doi.org/10.1016/S0040-4039(02)00610-X]
[66]
Bhadra, S.; Saha, A.; Ranu, B.C. Al (2)O(3)-supported Cu-Catalyzed Electrophilic Substitution by PhSeBr in Organoboranes, Organosilanes, and Organostannanes. A protocol for the synthesis of unsymmetrical diaryl and alkyl aryl selenides. J. Org. Chem., 2010, 75(14), 4864-4867.
[http://dx.doi.org/10.1021/jo100755g] [PMID: 20560558]
[67]
Freitas, C.S.; Barcellos, A.M.; Ricordi, V.G.; Pena, J.M.; Perin, G.; Jacob, R.G.; Lenardão, E.G.; Alves, D. Synthesis of diaryl selenides using electrophilic selenium species and nucleophilic boron reagents in ionic liquids. Green Chem., 2011, 13, 2931-2938.
[http://dx.doi.org/10.1039/c1gc15725f]
[68]
Condon, S.; Pichon, C.; Davi, M. Preparation and synthetic applications of trivalent arylbismuth compounds as arylating reagents. A review. Org. Prep. Proced. Int., 2014, 46, 89-131.
[http://dx.doi.org/10.1080/00304948.2014.884369]
[69]
Elliott, G.I.; Konopelski, J.P. Arylation with organolead and organobismuth reagents. Tetrahedron, 2001, 27(57), 5683-5705.
[http://dx.doi.org/10.1016/S0040-4020(01)00385-4]
[70]
Arnauld, T.; Barton, H.R.; Norman, J.F. New and facile synthesis of symmetrical and unsymmetrical diaryl chalcogenides using trivalent organobismuth derivatives. J. Org. Chem., 1999, 64, 3722-3725.
[http://dx.doi.org/10.1021/jo982093x] [PMID: 11674504]
[71]
Kobiki, Y.; Kawaguchi, S.I.; Ohe, T.; Ogawa, A. Photoinduced synthesis of unsymmetrical diaryl selenides from triarylbismuthines and diaryl diselenides. Beilstein J. Org. Chem., 2013, 9, 1141-1147.
[http://dx.doi.org/10.3762/bjoc.9.127] [PMID: 23843906]
[72]
Matsumura, M.; Shibata, K.; Ozeki, S.; Yamada, M.; Murata, Y.; Kakusawa, N.; Yasuike, S. Synthesis of unsymmetrical diaryl selenides: copper-catalyzed Se-arylation of diaryl diselenides with triarylbismuthanes. Synthesis, 2016, 48, 730-736.
[http://dx.doi.org/10.1055/s-0035-1561280]
[73]
Matsumura, M.; Kumagai, H.; Murata, Y.; Kakusawa, N.; Yasuike, S. Simple and efficient copper-catalyzed synthesis of symmetrical diaryl selenides from triarylbismuthanes and selenium under aerobic conditions. J. Organomet. Chem., 2016, 807, 11-16.
[http://dx.doi.org/10.1016/j.jorganchem.2016.02.006]
[74]
Taniguchi, N. Mono- or dichalcogenation of aryl iodide with sulfur or selenium by copper catalyst and aluminum. Synlett, 2005, 2005(2), 1687-1690.
[http://dx.doi.org/10.1055/s-2005-871545]
[75]
Singh, D.; Deobald, A.M.; Camargo, L.R.; Tabarelli, G.; Rodrigues, O.E.; Braga, A.L. An efficient one-pot synthesis of symmetrical diselenides or ditellurides from halides with CuO nanopowder/Se0 or Te0/base. Org. Lett., 2010, 12(15), 3288-3291.
[http://dx.doi.org/10.1021/ol100558b]
[76]
Kassaee, M.; Motamedi, E.; Movassagh, B.; Poursadeghi, S. Iron-catalyzed formation of C-Se and C-Te bonds through cross coupling of aryl halides with Se(0) and Te(0)/Nano-Fe3O4@GO. Synthesis, 2013, 45, 2337-2342.
[http://dx.doi.org/10.1055/s-0033-1338488]
[77]
Kuuloja, N.; Tois, J.; Kylmälä, T.; Franzén, R.; Hämäläinen, A. A novel and efficient synthesis of 3-aminomethyl-N-tosyl-indazoles. Tetrahedron, 2010, 66, 8854-8861.
[http://dx.doi.org/10.3998/ark.5550190.0013.814]
[78]
Li, Y.; Nie, C.; Wang, H.; Li, X.; Verpoort, F.; Duan, C. A highly efficient method for the copper‐catalyzed selective synthesis of diaryl chalcogenides from easily available chalcogen sources. Eur. J. Org. Chem., 2011, 7331-7338.
[http://dx.doi.org/10.1002/ejoc.201101121]
[79]
Taniguchi, N. Copper-catalyzed chalcogenation of aryl iodides via reduction of chalcogen elements by aluminum or magnesium. Tetrahedron, 2012, 68, 10510-10515.
[http://dx.doi.org/10.1016/j.tet.2012.09.019]
[80]
Zhang, S.; Karra, K.; Heintz, C.; Kleckler, E.; Jin, J. Microwave-assisted Cu2O-catalyzed one-pot synthesis of symmetrical diaryl selenides from elemental selenium. Tetrahedron Lett., 2013, 54, 4753-4755.
[http://dx.doi.org/10.1016/j.tetlet.2013.06.117]
[81]
Li, Z.; Ke, F.; Deng, H.; Xu, H.; Xiang, H.; Zhou, X. Synthesis of disulfides and diselenides by copper-catalyzed coupling reactions in water. Org. Biomol. Chem., 2013, 11(18), 2943-2946.
[http://dx.doi.org/10.1039/c3ob40464a] [PMID: 23538860]
[82]
Min, L.; Wu, G.; Liu, M.; Gao, W.; Ding, J.; Chen, J.; Huang, X.; Wu, H. Copper-catalyzed oxirane-opening reaction with aryl iodides and Se powder. J. Org. Chem., 2016, 81(17), 7584-7590.
[http://dx.doi.org/10.1021/acs.joc.6b01274] [PMID: 27490248]
[83]
Reddy, V.P.; Kumar, A.V.; Rao, K.R. Unexpected C-Se cross-coupling reaction: copper oxide catalyzed synthesis of symmetrical diaryl selenides via cascade reaction of selenourea with aryl halides/boronic acids. J. Org. Chem., 2010, 75(24), 8720-8723.
[http://dx.doi.org/10.1021/jo102017g] [PMID: 21090802]
[84]
Ramana, T.; Punniyamurthy, T. Copper‐catalyzed domino one‐pot synthesis of 2‐(arylselanyl)arylcyanamides. Eur. J. Org. Chem., 2011, 2011(25), 4757-4759.
[85]
Kumar, A.V.; Reddy, V.P.; Reddy, C.S.; Rao, K.R. Potassium selenocyanate as an efficient selenium source in C-Se cross-coupling catalyzed by copper iodide in water. Tetrahedron Lett., 2011, 52, 3978-3981.
[http://dx.doi.org/10.1016/j.tetlet.2011.05.068]
[86]
Gujadhur, R.K.; Venkataraman, D. A general method for the formation of diaryl selenides using copper(I) catalysts. Tetrahedron Lett., 2003, 44, 81-84.
[http://dx.doi.org/10.1016/S0040-4039(02)02480-2]
[87]
Grenader, K.; Schüpbach, B.; Peters, A.; Kümmel, O.; Halter, O.; Terfort, A. Catalytic C-Se bond formation under very mild conditions for the two‐step, one‐pot synthesis of aryl selenoacetates. Adv. Synth. Catal., 2012, 354, 2653-2658.
[http://dx.doi.org/10.1002/adsc.201200486]
[88]
Senol, E.; Scattolin, T.; Schoenebeck, F. Selenolation of aryl iodides and bromides enabled by a Bench-Stable PdI dimer. Chemistry, 2019, 25(40), 9419-9422.
[http://dx.doi.org/10.1002/chem.201900951] [PMID: 30913326]
[89]
Mandal, A.; Sahoo, H.; Baidya, M. Copper-catalyzed 8-aminoquinoline-directed selenylation of arene and heteroarene C-H bonds. Org. Lett., 2016, 18(13), 3202-3205.
[http://dx.doi.org/10.1021/acs.orglett.6b01420] [PMID: 27309343]
[90]
Arockiam, P.B.; Bruneau, C.; Dixneuf, P.H. Ruthenium(II)-catalyzed C-H bond activation and functionalization. Chem. Rev., 2012, 112(11), 5879-5918.
[http://dx.doi.org/10.1021/cr300153j] [PMID: 22934619]
[91]
Yi, C.L.; Liu, T.J.; Cheng, J.H.; Lee, C.F. A general procedure for the regioselective synthesis of aryl thioethers and aryl selenides through C-H activation of arenes. Eur. J. Org. Chem., 2013, 2013(18), 3910-3918.
[http://dx.doi.org/10.1002/ejoc.201300248]
[92]
Prasad, D.; Balkrishna, S.J.; Kumar, A.; Bhakuni, B.S.; Shrimali, K.; Biswas, S.; Kumar, S. Transition-metal-free synthesis of unsymmetrical diaryl chalcogenides from arenes and diaryl dichalcogenides. J. Org. Chem., 2013, 78(4), 1434-1443.
[http://dx.doi.org/10.1021/jo302480j] [PMID: 23327334]
[93]
Nishiyama, Y.; Tokunaga, K.; Sonoda, N. New synthetic method of diorganyl selenides: palladium-catalyzed reaction of PhSeSnBu3 with aryl and alkyl halides. Org. Lett., 1999, 1(11), 1725-1727.
[http://dx.doi.org/ 10.1021/ol990233z]
[94]
Beletskaya, I.P.; Sigeev, A.S.; Peregudov, A.S.; Petrovskii, P.V. New approaches to the synthesis of unsymmetrical diaryl selenides. J. Organomet. Chem., 2000, 605, 96-101.
[http://dx.doi.org/10.1016/S0022-328X(00)00265-5]
[95]
Toledo, F.T.; Comasseto, J.V.; Raminelli, C. Selenostannylation of arynes produced by silylaryl triflates under mild reaction conditions. Braz. J. Chem. Soc., 2010, 21, 2164-2168.
[http://dx.doi.org/10.1590/S0103-50532010001100019]
[96]
Zhao, H.; Hao, W.; Cai, M. Palladium-catalyzed cross-coupling of PhSeSnBu3 with aryl and alkyl halides in ionic liquids: a practical synthetic method of diorganyl selenides. New J. Chem., 2011, 35, 2661-2665.
[http://dx.doi.org/10.1039/c1nj20514e]
[97]
Sahani, A.J.; Burange, A.S.; Narasimhan, S.; Jayaram, R.V. Cross‐coupling reactions of aryltriethoxysilanes and diaryldiselenides ‐ a new route for the synthesis of diarylselenides. ChemistrySelect, 2018, 3, 12291-12296.
[http://dx.doi.org/10.1002/slct.201802442]
[98]
Font, M.; Parella, T.; Costas, M.; Ribas, X. Catalytic C-S, C-Se, and C-P cross-coupling reactions mediated by a CuI/CuIII redox cycle. Organometallics, 2012, 31, 7976-7982.
[http://dx.doi.org/10.1021/om3006323]
[99]
Mukherjee, N.; Kundu, D.; Ranu, B.C. Copper‐silver dual catalyzed decyanative C-Se cross‐coupling. Adv. Synth. Catal., 2017, 359, 329-338.
[http://dx.doi.org/10.1002/adsc.201600933]
[100]
Vyhivskyi, O.; Dlin, E.A.; Finko, A.V.; Stepanova, S.P.; Ivanenkov, Y.A.; Skvortsov, D.A.; Mironov, A.V.; Zyk, N.V.; Majouga, A.G.; Beloglazkina, E.K. Copper-promoted C-Se cross-coupling of 2-selenohydantoins with arylboronic acids in an open flask. ACS Comb. Sci., 2019, 21(6), 456-464.
[http://dx.doi.org/10.1021/acscombsci.9b00021] [PMID: 31009196]
[101]
Gao, X.; Tang, L.; Huang, L.; Huang, Z.S.; Ma, Y.; Wu, G. Oxidative aminoarylselenation of maleimides via copper-catalyzed four-component cross coupling. Org. Lett., 2019, 21(3), 745-748.
[http://dx.doi.org/10.1021/acs.orglett.8b03980] [PMID: 30638019]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 24
ISSUE: 11
Year: 2020
Published on: 10 September, 2020
Page: [1230 - 1262]
Pages: 33
DOI: 10.2174/1385272824999200528130131
Price: $58

Article Metrics

PDF: 29
HTML: 2