Discovering the Potentials of Medicinal Mushrooms in Combating Depression – A Review

Author(s): Sze Yuen Lew, Seong Lin Teoh, Siew Huah Lim, Lee Wei Lim*, Kah Hui Wong*

Journal Name: Mini-Reviews in Medicinal Chemistry

Volume 20 , Issue 15 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Depression is the most common form of mental illness and the major cause of disability worldwide. Symptoms of depression, including feelings of intense sadness and hopelessness, may occur after a specific event or in response to a gradual decline in health and functional status, often associated with aging. Current therapies for treating these symptoms include antidepressant drugs, counseling and behavioral therapy. However, antidepressant drugs are associated with mild to severe adverse effects, which has prompted the need for better treatment options. Medicinal mushrooms are valuable sources of food and medicine and are increasingly being used as supplements or as alternative medicines in standard healthcare. Numerous studies have provided insights into the neuroprotective effects of medicinal mushrooms, which are attributed to their antioxidant, anti-neuroinflammatory, cholinesterase inhibitory and neuroprotective properties. In this review, we comprehensively examine the role of these medicinal mushrooms in the treatment of depression. However, to apply these natural products in clinical settings, the therapeutic agent needs to be properly evaluated, including the active ingredients, the presence of synergistic effects, efficient extraction methods, and stabilization of the active ingredients for delivery into the body as well as crossing the blood-brain barrier.

Keywords: Depression, pathophysiology, synthetic drug, traditional medicine, medicinal mushroom, bioactive compound.

[1]
World Health Organization.. Depression and Other Common Mental Disorders: Global Health Estimates; World Health Organization: Geneva, 2017.
[2]
Lopez, A.D.; Mathers, C.D.; Ezzati, M.; Jamison, D.T.; Murray, C.J. Global and regional burden of disease and risk factors, 2001: Systematic analysis of population health data. Lancet, 2006, 367(9524), 1747-1757.
[http://dx.doi.org/10.1016/S0140-6736(06)68770-9] [PMID: 16731270]
[3]
GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet, 2017, 390(10100), 1211-1259.
[http://dx.doi.org/10.1016/S0140-6736(17)32154-2] [PMID: 28919117]
[4]
Walker, E.R.; McGee, R.E.; Druss, B.G. Mortality in mental disorders and global disease burden implications: A systematic review and meta-analysis. JAMA Psychiatry, 2015, 72(4), 334-341.
[http://dx.doi.org/10.1001/jamapsychiatry.2014.2502] [PMID: 25671328]
[5]
Lam, R.W. Depression, 3rd ed.; Oxford University Press: Oxford, 2018.
[http://dx.doi.org/10.1093/med/9780198804147.001.0001]
[6]
Seedat, S.; Scott, K.M.; Angermeyer, M.C.; Berglund, P.; Bromet, E.J.; Brugha, T.S.; Demyttenaere, K.; de Girolamo, G.; Haro, J.M.; Jin, R.; Karam, E.G.; Kovess-Masfety, V.; Levinson, D.; Medina Mora, M.E.; Ono, Y.; Ormel, J.; Pennell, B.E.; Posada-Villa, J.; Sampson, N.A.; Williams, D.; Kessler, R.C. Cross-national associations between gender and mental disorders in the World Health Organization World Mental Health Surveys. Arch. Gen. Psychiatry, 2009, 66(7), 785-795.
[http://dx.doi.org/10.1001/archgenpsychiatry.2009.36] [PMID: 19581570]
[7]
Albert, P.R. Why is depression more prevalent in women? J. Psychiatry Neurosci., 2015, 40(4), 219-221.
[http://dx.doi.org/10.1503/jpn.150205] [PMID: 26107348]
[8]
Fajemiroye, J.O.; da Silva, D.M.; de Oliveira, D.R.; Costa, E.A. Treatment of anxiety and depression: Medicinal plants in retrospect. Fundam. Clin. Pharmacol., 2016, 30(3), 198-215.
[http://dx.doi.org/10.1111/fcp.12186] [PMID: 26851117]
[9]
National Institute of Mental Health. Transforming the Understanding and Treatment of Mental Illnesses: Depression.. nimh.nih.gov/health/topics/depression/index.shtml (Accessed December 31, 2019).
[10]
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM–5), 5th ed; American Psychiatric Association: Washington, D.C., 2013.
[11]
Standring, S. Gray’s Anatomy: The Anatomical Basis of Clinical Practice, 41st ed; Elsevier Limited: New York, 2016.
[12]
Young, B.; O’Dowd, G.; Woodford, P. Wheater’s Functional Histology: A Text and Colour Atlas, 6th ed; Elsevier: Pennsylvania, 2014.
[13]
Golden, S.H.; Wand, G.S.; Malhotra, S.; Kamel, I.; Horton, K. Reliability of hypothalamic-pituitary-adrenal axis assessment methods for use in population-based studies. Eur. J. Epidemiol., 2011, 26(7), 511-525.
[http://dx.doi.org/10.1007/s10654-011-9585-2] [PMID: 21533585]
[14]
Herman, J.P.; McKlveen, J.M.; Ghosal, S.; Kopp, B.; Wulsin, A.; Makinson, R.; Scheimann, J.; Myers, B. Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr. Physiol., 2016, 6(2), 603-621.
[http://dx.doi.org/10.1002/cphy.c150015] [PMID: 27065163]
[15]
Nemeroff, C.B.; Widerlöv, E.; Bissette, G.; Walléus, H.; Karlsson, I.; Eklund, K.; Kilts, C.D.; Loosen, P.T.; Vale, W. Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science, 1984, 226(4680), 1342-1344.
[http://dx.doi.org/10.1126/science.6334362] [PMID: 6334362]
[16]
Hartline, K.M.; Owens, M.J.; Nemeroff, C.B. Postmortem and cerebrospinal fluid studies of corticotropin-releasing factor in humans. Ann. N. Y. Acad. Sci., 1996, 780, 96-105.
[http://dx.doi.org/10.1111/j.1749-6632.1996.tb15114.x] [PMID: 8602742]
[17]
Raadsheer, F.C.; Hoogendijk, W.J.; Stam, F.C.; Tilders, F.J.; Swaab, D.F. Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology, 1994, 60(4), 436-444.
[http://dx.doi.org/10.1159/000126778] [PMID: 7824085]
[18]
Meynen, G.; Unmehopa, U.A.; van Heerikhuize, J.J.; Hofman, M.A.; Swaab, D.F.; Hoogendijk, W.J. Increased arginine vasopressin mRNA expression in the human hypothalamus in depression: A preliminary report. Biol. Psychiatry, 2006, 60(8), 892-895.
[http://dx.doi.org/10.1016/j.biopsych.2005.12.010] [PMID: 16499879]
[19]
Høifødt, R.S.; Waterloo, K.; Wang, C.E.A.; Eisemann, M.; Figenschau, Y.; Halvorsen, M. Cortisol levels and cognitive profile in major depression: A comparison of currently and previously depressed patients. Psychoneuroendocrinology, 2019, 99, 57-65.
[http://dx.doi.org/10.1016/j.psyneuen.2018.08.024] [PMID: 30176378]
[20]
Naveen, G.H.; Varambally, S.; Thirthalli, J.; Rao, M.; Christopher, R.; Gangadhar, B.N. Serum cortisol and BDNF in patients with major depression-effect of yoga. Int. Rev. Psychiatry, 2016, 28(3), 273-278.
[http://dx.doi.org/10.1080/09540261.2016.1175419] [PMID: 27174729]
[21]
Herman, J.P.; Tasker, J.G. Paraventricular hypothalamic mechanisms of chronic stress adaptation. Front. Endocrinol. (Lausanne), 2016, 7, 137.
[http://dx.doi.org/10.3389/fendo.2016.00137] [PMID: 27843437]
[22]
Ernst, A.; Frisén, J. Adult neurogenesis in humans- common and unique traits in mammals. PLoS Biol., 2015, 13(1) e1002045.
[http://dx.doi.org/10.1371/journal.pbio.1002045] [PMID: 25621867]
[23]
Ruiz, R.; Roque, A.; Pineda, E.; Licona-Limón, P.; José Valdéz-Alarcón, J.; Lajud, N. Early life stress accelerates age-induced effects on neurogenesis, depression, and metabolic risk. Psychoneuroendocrinology, 2018, 96, 203-211.
[http://dx.doi.org/10.1016/j.psyneuen.2018.07.012] [PMID: 30048914]
[24]
Egeland, M.; Guinaudie, C.; Du Preez, A.; Musaelyan, K.; Zunszain, P.A.; Fernandes, C.; Pariante, C.M.; Thuret, S. Depletion of adult neurogenesis using the chemotherapy drug temozolomide in mice induces behavioural and biological changes relevant to depression. Transl. Psychiatry, 2017, 7(4) e1101.
[http://dx.doi.org/10.1038/tp.2017.68] [PMID: 28440814]
[25]
Po, K.T.; Siu, A.M.; Lau, B.W.; Chan, J.N.; So, K.F.; Chan, C.C. Repeated, high-dose dextromethorphan treatment decreases neurogenesis and results in depression-like behavior in rats. Exp. Brain Res., 2015, 233(7), 2205-2214.
[http://dx.doi.org/10.1007/s00221-015-4290-0] [PMID: 25939533]
[26]
Yun, S.; Donovan, M.H.; Ross, M.N.; Richardson, D.R.; Reister, R.; Farnbauch, L.A.; Fischer, S.J.; Riethmacher, D.; Gershenfeld, H.K.; Lagace, D.C.; Eisch, A.J. Stress-induced anxiety- and depressive-like phenotype associated with transient reduction in neurogenesis in adult Nestin-CreERT2/Diphtheria toxin fragment A transgenic mice. PLoS One, 2016, 11(1) e0147256.
[http://dx.doi.org/10.1371/journal.pone.0147256] [PMID: 26795203]
[27]
Videbech, P.; Ravnkilde, B. Hippocampal volume and depression: A meta-analysis of MRI studies. Am. J. Psychiatry, 2004, 161(11), 1957-1966.
[http://dx.doi.org/10.1176/appi.ajp.161.11.1957] [PMID: 15514393]
[28]
Campbell, S.; Marriott, M.; Nahmias, C.; MacQueen, G.M. Lower hippocampal volume in patients suffering from depression: A meta-analysis. Am. J. Psychiatry, 2004, 161(4), 598-607.
[http://dx.doi.org/10.1176/appi.ajp.161.4.598] [PMID: 15056502]
[29]
Stockmeier, C.A.; Mahajan, G.J.; Konick, L.C.; Overholser, J.C.; Jurjus, G.J.; Meltzer, H.Y.; Uylings, H.B.; Friedman, L.; Rajkowska, G. Cellular changes in the postmortem hippocampus in major depression. Biol. Psychiatry, 2004, 56(9), 640-650.
[http://dx.doi.org/10.1016/j.biopsych.2004.08.022] [PMID: 15522247]
[30]
Czéh, B.; Lucassen, P.J. What causes the hippocampal volume decrease in depression? Are neurogenesis, glial changes and apoptosis implicated? Eur. Arch. Psychiatry Clin. Neurosci., 2007, 257(5), 250-260.
[http://dx.doi.org/10.1007/s00406-007-0728-0] [PMID: 17401728]
[31]
Goshen, I.; Kreisel, T.; Ben-Menachem-Zidon, O.; Licht, T.; Weidenfeld, J.; Ben-Hur, T.; Yirmiya, R. Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol. Psychiatry, 2008, 13(7), 717-728.
[http://dx.doi.org/10.1038/sj.mp.4002055] [PMID: 17700577]
[32]
Tang, M.M.; Lin, W.J.; Pan, Y.Q.; Guan, X.T.; Li, Y.C. Hippocampal neurogenesis dysfunction linked to depressive-like behaviors in a neuroinflammation induced model of depression. Physiol. Behav., 2016, 161, 166-173.
[http://dx.doi.org/10.1016/j.physbeh.2016.04.034] [PMID: 27106565]
[33]
Dowlati, Y.; Herrmann, N.; Swardfager, W.; Liu, H.; Sham, L.; Reim, E.K.; Lanctôt, K.L. A meta-analysis of cytokines in major depression. Biol. Psychiatry, 2010, 67(5), 446-457.
[http://dx.doi.org/10.1016/j.biopsych.2009.09.033] [PMID: 20015486]
[34]
Hill, A.S.; Sahay, A.; Hen, R. Increasing adult hippocampal neurogenesis is sufficient to reduce anxiety and depression-like behaviors. Neuropsychopharmacology, 2015, 40(10), 2368-2378.
[http://dx.doi.org/10.1038/npp.2015.85] [PMID: 25833129]
[35]
Liu, L.; Zhang, Q.; Cai, Y.; Sun, D.; He, X.; Wang, L.; Yu, D.; Li, X.; Xiong, X.; Xu, H.; Yang, Q.; Fan, X. Resveratrol counteracts lipopolysaccharide-induced depressive-like behaviors via enhanced hippocampal neurogenesis. Oncotarget, 2016, 7(35), 56045-56059.
[http://dx.doi.org/10.18632/oncotarget.11178] [PMID: 27517628]
[36]
Lim, L.W.; Prickaerts, J.; Huguet, G.; Kadar, E.; Hartung, H.; Sharp, T.; Temel, Y. Electrical stimulation alleviates depressive-like behaviors of rats: Investigation of brain targets and potential mechanisms. Transl. Psychiatry, 2015, 5(3) e535.
[http://dx.doi.org/10.1038/tp.2015.24] [PMID: 25826110]
[37]
Young, L.T. Neuroprotective effects of antidepressant and mood stabilizing drugs. J. Psychiatry Neurosci., 2002, 27(1), 8-9.
[PMID: 11836978]
[38]
Sachs, B.D.; Caron, M.G. Chronic fluoxetine increases extra-hippocampal neurogenesis in adult mice. Int. J. Neuropsychopharmacol., 2014, 18(4) pyu029.
[http://dx.doi.org/10.1093/ijnp/pyu029] [PMID: 25583694]
[39]
Anacker, C.; Zunszain, P.A.; Cattaneo, A.; Carvalho, L.A.; Garabedian, M.J.; Thuret, S.; Price, J.; Pariante, C.M. Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor. Mol. Psychiatry, 2011, 16(7), 738-750.
[http://dx.doi.org/10.1038/mp.2011.26] [PMID: 21483429]
[40]
Borsini, A.; Alboni, S.; Horowitz, M.A.; Tojo, L.M.; Cannazza, G.; Su, K.P.; Pariante, C.M.; Zunszain, P.A. Rescue of IL-1β-induced reduction of human neurogenesis by omega-3 fatty acids and antidepressants. Brain Behav. Immun., 2017, 65, 230-238.
[http://dx.doi.org/10.1016/j.bbi.2017.05.006] [PMID: 28529072]
[41]
Patten, S.B.; Kennedy, S.H.; Lam, R.W.; O’Donovan, C.; Filteau, M.J.; Parikh, S.V.; Ravindran, A.V. Canadian Network for Mood and Anxiety Treatments (CANMAT) clinical guidelines for the management of major depressive disorder in adults. I. Classification, burden and principles of management. J. Affect. Disord., 2009, 117(Suppl. 1), S5-S14.
[http://dx.doi.org/10.1016/j.jad.2009.06.044] [PMID: 19674796]
[42]
Cleare, A.; Pariante, C.M.; Young, A.H.; Anderson, I.M.; Christmas, D.; Cowen, P.J.; Dickens, C.; Ferrier, I.N.; Geddes, J.; Gilbody, S.; Haddad, P.M.; Katona, C.; Lewis, G.; Malizia, A.; McAllister-Williams, R.H.; Ramchandani, P.; Scott, J.; Taylor, D.; Uher, R. Members of the Consensus Meeting. Evidence-based guidelines for treating depressive disorders with antidepressants: A revision of the 2008 British Association for Psychopharmacology guidelines. J. Psychopharmacol. (Oxford), 2015, 29(5), 459-525.
[http://dx.doi.org/10.1177/0269881115581093] [PMID: 25969470]
[43]
Pampallona, S.; Bollini, P.; Tibaldi, G.; Kupelnick, B.; Munizza, C. Combined pharmacotherapy and psychological treatment for depression: A systematic review. Arch. Gen. Psychiatry, 2004, 61(7), 714-719.
[http://dx.doi.org/10.1001/archpsyc.61.7.714] [PMID: 15237083]
[44]
Cuijpers, P.; van Straten, A.; Warmerdam, L.; Andersson, G. Psychotherapy versus the combination of psychotherapy and pharmacotherapy in the treatment of depression: A meta-analysis. Depress. Anxiety, 2009, 26(3), 279-288.
[http://dx.doi.org/10.1002/da.20519] [PMID: 19031487]
[45]
Malhi, G.S.; Bassett, D.; Boyce, P.; Bryant, R.; Fitzgerald, P.B.; Fritz, K.; Hopwood, M.; Lyndon, B.; Mulder, R.; Murray, G.; Porter, R.; Singh, A.B. Royal Australian and New Zealand College of Psychiatrists clinical practice guidelines for mood disorders. Aust. N. Z. J. Psychiatry, 2015, 49(12), 1087-1206.
[http://dx.doi.org/10.1177/0004867415617657] [PMID: 26643054]
[46]
Kennedy, S.H.; Lam, R.W.; McIntyre, R.S.; Tourjman, S.V.; Bhat, V.; Blier, P.; Hasnain, M.; Jollant, F.; Levitt, A.J.; MacQueen, G.M.; McInerney, S.J.; McIntosh, D.; Milev, R.V.; Müller, D.J.; Parikh, S.V.; Pearson, N.L.; Ravindran, A.V.; Uher, R. CANMAT Depression Work Group. Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 clinical guidelines for the management of adults with major depressive disorder: Section 3. Pharmacological treatments. Can. J. Psychiatry, 2016, 61(9), 540-560.
[http://dx.doi.org/10.1177/0706743716659417] [PMID: 27486148]
[47]
WHO Traditional Medicine Strategy: 2014-2023; World Health Organization:. Geneva, 2013.
[48]
Normile, D. Asian medicine. The new face of traditional Chinese medicine. Science, 2003, 299(5604), 188-190.
[http://dx.doi.org/10.1126/science.299.5604.188] [PMID: 12522228]
[49]
Zhou, X.; Chen, S.; Liu, B.; Zhang, R.; Wang, Y.; Li, P.; Guo, Y.; Zhang, H.; Gao, Z.; Yan, X. Development of traditional Chinese medicine clinical data warehouse for medical knowledge discovery and decision support. Artif. Intell. Med., 2010, 48(2-3), 139-152.
[http://dx.doi.org/10.1016/j.artmed.2009.07.012] [PMID: 20122820]
[50]
Yuan, R.; Lin, Y. Traditional Chinese medicine: An approach to scientific proof and clinical validation. Pharmacol. Ther., 2000, 86(2), 191-198.
[http://dx.doi.org/10.1016/S0163-7258(00)00039-5] [PMID: 10799714]
[51]
Bauer, M.; Severus, E.; Möller, H.J.; Young, A.H. Disorders, WFSBP Task Force on Unipolar Depressive Disorders. Pharmacological treatment of unipolar depressive disorders: Summary of WFSBP guidelines. Int. J. Psychiatry Clin. Pract., 2017, 21(3), 166-176.
[http://dx.doi.org/10.1080/13651501.2017.1306082] [PMID: 28367707]
[52]
Su, D.; Li, L. Trends in the use of complementary and alternative medicine in the United States: 2002-2007. J. Health Care Poor Underserved, 2011, 22(1), 296-310.
[PMID: 21317523]
[53]
Abuduli, M.; Sharifa Ezat, W.P.; Aljunid, S. Role of traditional and complementary medicine in universal coverage. Malays. J. Public Health Med., 2011, 11, 1-5.
[54]
Kessler, R.C.; Soukup, J.; Davis, R.B.; Foster, D.F.; Wilkey, S.A.; Van Rompay, M.I.; Eisenberg, D.M. The use of complementary and alternative therapies to treat anxiety and depression in the United States. Am. J. Psychiatry, 2001, 158(2), 289-294.
[http://dx.doi.org/10.1176/appi.ajp.158.2.289] [PMID: 11156813]
[55]
Putteeraj, M.; Lim, W.L.; Teoh, S.L.; Yahaya, M.F. Flavonoids and its neuroprotective effects on brain ischemia and neurodegenerative diseases. Curr. Drug Targets, 2018, 19(14), 1710-1720.
[http://dx.doi.org/10.2174/1389450119666180326125252] [PMID: 29577854]
[56]
Hausenblas, H.A.; Saha, D.; Dubyak, P.J.; Anton, S.D. Saffron (Crocus sativus L.) and major depressive disorder: A meta-analysis of randomized clinical trials. J. Integr. Med., 2013, 11(6), 377-383.
[http://dx.doi.org/10.3736/jintegrmed2013056] [PMID: 24299602]
[57]
Ng, Q.X.; Venkatanarayanan, N.; Ho, C.Y. Clinical use of Hypericum perforatum (St John’s wort) in depression: A meta-analysis. J. Affect. Disord., 2017, 210, 211-221.
[http://dx.doi.org/10.1016/j.jad.2016.12.048] [PMID: 28064110]
[58]
Capra, J.C.; Cunha, M.P.; Machado, D.G.; Zomkowski, A.D.; Mendes, B.G.; Santos, A.R.; Pizzolatti, M.G.; Rodrigues, A.L. Antidepressant-like effect of scopoletin, a coumarin isolated from Polygala sabulosa (Polygalaceae) in mice: Evidence for the involvement of monoaminergic systems. Eur. J. Pharmacol., 2010, 643(2-3), 232-238.
[http://dx.doi.org/10.1016/j.ejphar.2010.06.043] [PMID: 20599906]
[59]
Can, A.; Dao, D.T.; Terrillion, C.E.; Piantadosi, S.C.; Bhat, S.; Gould, T.D. The tail suspension test. J. Vis. Exp., 2012, 59, e3769.
[http://dx.doi.org/10.3791/3769] [PMID: 22315011]
[60]
Yankelevitch-Yahav, R.; Franko, M.; Huly, A.; Doron, R. The forced swim test as a model of depressive-like behavior. J. Vis. Exp., 2015, 97, e52587.
[http://dx.doi.org/10.3791/52587] [PMID: 25867960]
[61]
Porsolt, R.D.; Brossard, G.; Hautbois, C.; Roux, S. Rodent models of depression: Forced swimming and tail suspension behavioral despair tests in rats and mice. Curr. Protoc. Neurosci., 2001, Chapter 8, Unit 8.10A. 191-202.
[http://dx.doi.org/10.1002/0471142301.ns0810as14]
[62]
Wong, K.H.; Ng, C.C.; Kanagasabapathy, G.; Yow, Y.Y.; Sabaratnam, V. An overview of culinary and medicinal mushrooms in neurodegeneration and neurotrauma research. Int. J. Med. Mushrooms, 2017, 19(3), 191-202.
[http://dx.doi.org/10.1615/IntJMedMushrooms.v19.i3.10] [PMID: 28605334]
[63]
Roupas, P.; Keogh, J.; Noakes, M.; Margetts, C.; Taylor, P. Mushrooms and agaritine: A mini-review. J. Funct. Foods, 2010, 2, 91-98.
[http://dx.doi.org/10.1016/j.jff.2010.04.003]
[64]
Hassan, A.I.; Ghoneim, M.A.M.; Ibrahim, R.Y.M. Therapeutic role of glucogalactan polysaccharide extracted from Agaricus bisporus on trimethyltin chloride induced neuropathy in rats. Afr. J. Biotechnol., 2015, 14, 2052-2065.
[http://dx.doi.org/10.5897/AJB2015.14501]
[65]
Lisiecka, J.; Sobieralski, K.; Siwulski, M.; Jasińska, A. Almond mushroom Agaricus brasiliensis (Wasser et al.) - properties and culture conditions. Acta Sci. Pol. Hortorum Cultus, 2013, 12, 27-40.
[66]
Zhang, C.; Gao, X.; Sun, Y.; Sun, X.; Wu, Y.; Liu, Y.; Yu, H.; Cui, G. Anxiolytic effects of royal sun medicinal mushroom, Agaricus brasiliensis (higher basidiomycetes) on ischemia-induced anxiety in rats. Int. J. Med. Mushrooms, 2015, 17(1), 1-10.
[http://dx.doi.org/10.1615/IntJMedMushrooms.v17.i1.10] [PMID: 25746401]
[67]
Walf, A.A.; Frye, C.A. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat. Protoc., 2007, 2(2), 322-328.
[http://dx.doi.org/10.1038/nprot.2007.44] [PMID: 17406592]
[68]
Martel, J.; Ko, Y.F.; Liau, J.C.; Lee, C.S.; Ojcius, D.M.; Lai, H.C.; Young, J.D. Myths and realities surrounding the mysterious caterpillar fungus. Trends Biotechnol., 2017, 35(11), 1017-1021.
[http://dx.doi.org/10.1016/j.tibtech.2017.06.011] [PMID: 29055355]
[69]
Koh, J.H.; Kim, K.M.; Kim, J.M.; Song, J.C.; Suh, H.J. Antifatigue and antistress effect of the hot-water fraction from mycelia of Cordyceps sinensis. Biol. Pharm. Bull., 2003, 26(5), 691-694.
[http://dx.doi.org/10.1248/bpb.26.691] [PMID: 12736514]
[70]
Nishizawa, K.; Torii, K.; Kawasaki, A.; Katada, M.; Ito, M.; Terashita, K.; Aiso, S.; Matsuoka, M. Antidepressant-like effect of Cordyceps sinensis in the mouse tail suspension test. Biol. Pharm. Bull., 2007, 30(9), 1758-1762.
[http://dx.doi.org/10.1248/bpb.30.1758] [PMID: 17827735]
[71]
Guo, J.; Li, C.; Wang, J.; Liu, Y.; Zhang, J. Vanadium-enriched Cordyceps sinensis, a contemporary treatment approach to both diabetes and depression in rats. Evid. Based Complement. Alternat. Med., 2011, 2011, 450316.
[http://dx.doi.org/10.1093/ecam/neq058] [PMID: 21799679]
[72]
Schroeder, H.A. A sensible look at air pollution by metals. Arch. Environ. Health, 1970, 21(6), 798-806.
[http://dx.doi.org/10.1080/00039896.1970.10667334] [PMID: 4921698]
[73]
Byrne, A.R.K.; Kosta, L. Vanadium in foods and in human body fluids and tissues. Sci. Total Environ., 1978, 10(1), 17-30.
[http://dx.doi.org/10.1016/0048-9697(78)90046-3] [PMID: 684404]
[74]
Gil, J.; Miralpeix, M.; Carreras, J.; Bartrons, R. Insulin-like effects of vanadate on glucokinase activity and fructose 2,6-bisphosphate levels in the liver of diabetic rats. J. Biol. Chem., 1988, 263(4), 1868-1871.
[PMID: 2828354]
[75]
Han, C.; Cui, B.; Wang, Y. Vanadium uptake by biomass of Coprinus comatus and their effect on hyperglycemic mice. Biol. Trace Elem. Res., 2008, 124(1), 35-39.
[http://dx.doi.org/10.1007/s12011-008-8120-0] [PMID: 18347758]
[76]
Tuli, H.S.; Kashyap, D.; Sharma, A.K. Cordycepin: A Cordyceps Metabolite with Promising Therapeutic Potential. In: Fungal Metabolites. Reference Series in Phytochemistry; Mérillon, J.M.; Ramawat, K.G., Eds.; Springer: Cham, 2017; pp. 761-782.
[http://dx.doi.org/10.1007/978-3-319-25001-4_2]
[77]
Tianzhu, Z.; Shihai, Y.; Juan, D. Antidepressant-like effects of cordycepin in a mice model of chronic unpredictable mild stress. Evid. Based Complement. Alternat. Med., 2014, 2014, 438506.
[http://dx.doi.org/10.1155/2014/438506] [PMID: 25587342]
[78]
Li, B.; Hou, Y.; Zhu, M.; Bao, H.; Nie, J.; Zhang, G.Y.; Shan, L.; Yao, Y.; Du, K.; Yang, H.; Li, M.; Zheng, B.; Xu, X.; Xiao, C.; Du, J. 3′-Deoxyadenosine (cordycepin) produces a rapid and robust antidepressant effect via enhancing prefrontal AMPA receptor signaling pathway. Int. J. Neuropsychopharmacol., 2016, 19(4) pyv112.
[http://dx.doi.org/10.1093/ijnp/pyv112] [PMID: 26443809]
[79]
Yang, S. The Divine Farmer’s Materia Medica: A Translation of the Shen Nong Ben Cao Jing, 1st ed; Blue Poppy Press: Colorado, 1998.
[80]
Matsuzaki, H.; Shimizu, Y.; Iwata, N.; Kamiuchi, S.; Suzuki, F.; Iizuka, H.; Hibino, Y.; Okazaki, M. Antidepressant-like effects of a water-soluble extract from the culture medium of Ganoderma lucidum mycelia in rats. BMC Complement. Altern. Med., 2013, 13, 370.
[http://dx.doi.org/10.1186/1472-6882-13-370] [PMID: 24369991]
[81]
Socala, K.; Nieoczym, D.; Grzywnowicz, K.; Stefaniuk, D.; Wlaz, P. Evaluation of anticonvulsant, antidepressant-, and anxiolytic-like effects of an aqueous extract from cultured mycelia of the lingzhi or reishi medicinal mushroom Ganoderma lucidum (higher Basidiomycetes) in mice. Int. J. Med. Mushrooms, 2015, 17(3), 209-218.
[http://dx.doi.org/10.1615/IntJMedMushrooms.v17.i3.10] [PMID: 25954905]
[82]
Bao, H.; Ran, P.; Zhu, M.; Sun, L.; Li, B.; Hou, Y.; Nie, J.; Shan, L.; Li, H.; Zheng, S.; Xu, X.; Xiao, C.; Du, J. The prefrontal dectin-1/AMPA receptor signaling pathway mediates the robust and prolonged antidepressant effect of proteo-β-glucan from Maitake. Sci. Rep., 2016, 6, 28395.
[http://dx.doi.org/10.1038/srep28395] [PMID: 27329257]
[83]
Bao, H.; Ran, P.; Sun, L.; Hu, W.; Li, H.; Xiao, C.; Zhu, K.; Du, J. Griflola frondosa (GF) produces significant antidepressant effects involving AMPA receptor activation in mice. Pharm. Biol., 2017, 55(1), 299-305.
[http://dx.doi.org/10.1080/13880209.2016.1235590] [PMID: 27937670]
[84]
Wong, K.H.; Naidu, M.; Pamela David, R.; Abdulla, M.A.; Kuppusamy, U.R. Functional recovery enhancement following injury to rodent peroneal nerve by Lion’s mane mushroom, Hericium erinaceus (Bull.: Fr.) Pers. (Aphyllophoromycetideae). Int. J. Med. Mushrooms, 2009, 11, 225-236.
[http://dx.doi.org/10.1615/IntJMedMushr.v11.i3.20]
[85]
Mizuno, T. Bioactive substances in Hericium erinaceus (Bull.: Fr.) Pers. (Yamabushitake), and its medicinal utilization. Int. J. Med. Mushrooms, 1999, 1, 105-119.
[http://dx.doi.org/10.1615/IntJMedMushrooms.v1.i2.10]
[86]
Ryu, S.; Kim, H.G.; Kim, J.Y.; Kim, S.Y.; Cho, K.O. Hericium erinaceus extract reduces anxiety and depressive behaviors by promoting hippocampal neurogenesis in the adult mouse brain. J. Med. Food, 2018, 21(2), 174-180.
[http://dx.doi.org/10.1089/jmf.2017.4006] [PMID: 29091526]
[87]
Yao, W.; Zhang, J.C.; Dong, C.; Zhuang, C.; Hirota, S.; Inanaga, K.; Hashimoto, K. Effects of amycenone on serum levels of tumor necrosis factor-α, interleukin-10, and depression-like behavior in mice after lipopolysaccharide administration. Pharmacol. Biochem. Behav., 2015, 136, 7-12.
[http://dx.doi.org/10.1016/j.pbb.2015.06.012] [PMID: 26150007]
[88]
Chiu, C.H.; Chyau, C.C.; Chen, C.C. Erinacine A-enriched Hericium erinaceus mycelium produces antidepressant-like effects through modulating BDNF/PI3K/Akt/GSK-3β signaling in mice. Int. J. Mol. Sci., 2018, 19, 341.
[http://dx.doi.org/10.3390/ijms19020341]
[89]
Phan, C.W.; Lee, G.S.; Hong, S.L.; Wong, Y.T.; Brkljača, R.; Urban, S.; Abd Malek, S.N.; Sabaratnam, V. Hericium erinaceus (Bull.: Fr) Pers. cultivated under tropical conditions: Isolation of hericenones and demonstration of NGF-mediated neurite outgrowth in PC12 cells via MEK/ERK and PI3K-Akt signaling pathways. Food Funct., 2014, 5(12), 3160-3169.
[http://dx.doi.org/10.1039/C4FO00452C] [PMID: 25288148]
[90]
Nagano, M.; Shimizu, K.; Kondo, R.; Hayashi, C.; Sato, D.; Kitagawa, K.; Ohnuki, K. Reduction of depression and anxiety by 4 weeks Hericium erinaceus intake. Biomed. Res., 2010, 31(4), 231-237.
[http://dx.doi.org/10.2220/biomedres.31.231] [PMID: 20834180]
[91]
Inanaga, K. Marked improvement of neurocognitive impairment after treatment with compounds from Hericium einaceum: A case study of recurrent depressive disorder. Pers. Med. Universe, 2014, 3, 46-78.
[http://dx.doi.org/10.1016/j.pmu.2014.02.004]
[92]
Okamura, H.; Anno, N.; Tsuda, A.; Inokuchi, T.; Uchimura, D.; Inanaga, K. The effects of Hericium erinaceus (Amyloban® 3399) on sleep quality and subjective well-being among female undergraduate students: A pilot study. Pers. Med. Universe, 2015, 4, 76-78.
[http://dx.doi.org/10.1016/j.pmu.2015.03.006]
[93]
Vigna, L.; Morelli, F.; Agnelli, G.M.; Napolitano, F.; Ratto, D.; Occhinegro, A.; Di Iorio, C.; Savino, E.; Girometta, C.; Brandalise, F.; Rossi, P. Hericium erinaceus improves mood and sleep disorders in patients affected by overweight or obesity: Could circulating pro-BDNF and BDNF be potential biomarkers? Evid. Based Complement. Alternat. Med., 2019, 2019, 7861297.
[http://dx.doi.org/10.1155/2019/7861297] [PMID: 31118969]
[94]
Wasser, S.P. Medicinal mushroom science: History, current status, future trends, and unsolved problems. Int. J. Med. Mushrooms, 2010, 12, 1-16.
[http://dx.doi.org/10.1615/IntJMedMushr.v12.i1.10]
[95]
Chihara, G.; Maeda, Y.; Hamuro, J.; Sasaki, T.; Fukuoka, F. Inhibition of mouse sarcoma 180 by polysaccharides from Lentinus edodes (Berk.) sing. Nature, 1969, 222(5194), 687-688.
[http://dx.doi.org/10.1038/222687a0] [PMID: 5768289]
[96]
Bao, H.; Sun, L.; Zhu, Y.; Ran, P.; Hu, W.; Zhu, K.; Li, B.; Hou, Y.; Nie, J.; Gao, T.; Shan, L.; Du, K.; Zheng, S.; Zheng, B.; Xiao, C.; Du, J. Lentinan produces a robust antidepressant-like effect via enhancing the prefrontal Dectin-1/AMPA receptor signaling pathway. Behav. Brain Res., 2017, 317, 263-271.
[http://dx.doi.org/10.1016/j.bbr.2016.09.062] [PMID: 27693847]
[97]
Lee, Y-L.; Huang, G-W.; Liang, Z-C.; Mau, J-L. Antioxidant properties of three extracts from Pleurotus citrinopileatus. Lebensm. Wiss. Technol., 2007, 40, 823-833.
[http://dx.doi.org/10.1016/j.lwt.2006.04.002]
[98]
Nguyen, T.H.; Nagasaka, R.; Ohshima, T. The Natural Antioxidant Ergothioneine: Resources, Chemical Characterization, and Applications. In: Lipid Oxidation: Challenges in Food Systems; Logan, A.; Nienaber, U.; Pan, X., Eds.; AOCS Press: Illinois, 2013; pp. 381-415.
[http://dx.doi.org/10.1016/B978-0-9830791-6-3.50015-1]
[99]
Nakamichi, N.; Nakayama, K.; Ishimoto, T.; Masuo, Y.; Wakayama, T.; Sekiguchi, H.; Sutoh, K.; Usumi, K.; Iseki, S.; Kato, Y. Food-derived hydrophilic antioxidant ergothioneine is distributed to the brain and exerts antidepressant effect in mice. Brain Behav., 2016, 6(6) e00477.
[http://dx.doi.org/10.1002/brb3.477] [PMID: 27134772]
[100]
Chong, P.S.; Fung, M.L.; Wong, K.H.; Lim, L.W. Therapeutic potential of Hericium erinaceus for depressive disorder. Int. J. Mol. Sci., 2019, 21(1), 163.
[http://dx.doi.org/10.3390/ijms21010163] [PMID: 31881712]
[101]
Lee, G.; Bae, H. Therapeutic effects of phytochemicals and medicinal herbs on depression. BioMed Res. Int., 2017, 2017, 6596241.
[http://dx.doi.org/10.1155/2017/6596241] [PMID: 28503571]
[102]
Roupas, P.; Keogh, J.; Noakes, M.; Margetts, C.; Taylor, P. The role of edible mushrooms in health: Evaluation of the evidence. J. Funct. Foods, 2012, 4, 687-709.
[http://dx.doi.org/10.1016/j.jff.2012.05.003]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 15
Year: 2020
Published on: 15 October, 2020
Page: [1518 - 1531]
Pages: 14
DOI: 10.2174/1389557520666200526125534
Price: $65

Article Metrics

PDF: 31
HTML: 1