Co-Administration of Soluble Fibres and Lactobacillus casei NCDC19 Fermented Milk Prevents Adiposity and Insulin Resistance Via Modulation of Lipid Mobilization Genes in Diet-Induced Obese Mice

Author(s): Surender Jangra*, Ramesh Pothuraju, Raj K. Sharma, Gaurav Bhakri

Journal Name: Endocrine, Metabolic & Immune Disorders - Drug Targets
Formerly Current Drug Targets - Immune, Endocrine & Metabolic Disorders

Volume 20 , Issue 9 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Numerous reports explaining the beneficial health effects of soluble fibres and probiotics on lifestyle disorders have been published. However, a little information is available on coadministration of soluble fibres such as gum acacia & inulin and probiotic lactobacilli. Therefore, in the present study, we have evaluated the synergistic effects of soluble fibres and probiotic fermented milk on adiposity, insulin resistance and dyslipidemia in C57BL/6 mice fed high-fat and sucrose diet for 18 weeks.

Objective: To explore the synergistic effect of soluble fibres (gum acacia/inulin) and Lactobacillus casei NCDC19 fermented milk on adiposity, insulin resistance and lipid mobilization genes in dietinduced obese mice.

Methods: C57BL/6 mice were divided randomly into three groups (n = 9/group) according to their body weights. The HFS group was fed high-fat and sucrose diet, the HFS-GFM group was fed HFS diet incorporated with gum acacia (7%, w/w) along with L. casei NCDC19 fermented milk and HFSIFM group was fed HFS diet incorporated with inulin (7%, w/w) along with L. casei NCDC19 fermented milk.

Results: At the end of the experiment, final body weight, epididymal fat (E.fat) weight, and adipocyte size were found to be lower in groups received either gum acacia or inulin in combination with L. casei NCDC19 fermented milk (HFS-GFM or HFS-IFM). Also, fasting blood glucose, serum insulin, triglycerides, and VLDL-cholesterol levels were decreased significantly in both HFS-GFM and HFSIFM fed groups. Furthermore, relative mRNA expression of genes (cpt1, foxa2, pgc1β, and pparα) related to fatty acid oxidation enhanced significantly in the liver. In E.fat pad, expression of adiponectin was upregulated, whereas, leptin expression was reduced considerably. Also, expression of fasting-induced adipose factor enhanced significantly in the distal ileum of mice in HFS-GFM and HFS-IFM groups.

Conclusion: Overall, we demonstrate that co-administration of soluble fibres viz. gum acacia, inulin and L. casei NCDC19 fermented milk exhibited the anti-adiposity effects, improved insulin sensitivity and dyslipidemia in mice via modulation of lipid mobilization genes.

Keywords: Probiotic, soluble fibres, Lactobacillus casei NCDC19, fermented milk, insulin resistance, adiposity, gum acacia, inulin.

[1]
Abutair, A.S.; Naser, I.A.; Hamed, A.T. Soluble fibers from psyllium improve glycemic response and body weight among diabetes type 2 patients (randomized control trial). Nutr. J., 2016, 15(1), 86.
[http://dx.doi.org/10.1186/s12937-016-0207-4] [PMID: 27733151]
[2]
Chen, C.; Zeng, Y.; Xu, J.; Zheng, H.; Liu, J.; Fan, R.; Zhu, W.; Yuan, L.; Qin, Y.; Chen, S.; Zhou, Y.; Wu, Y.; Wan, J.; Mi, M.; Wang, J. Therapeutic effects of soluble dietary fiber consumption on type 2 diabetes mellitus. Exp. Ther. Med., 2016, 12(2), 1232-1242.
[http://dx.doi.org/10.3892/etm.2016.3377] [PMID: 27446349]
[3]
Keogh, G.F.; Cooper, G.J.; Mulvey, T.B.; McArdle, B.H.; Coles, G.D.; Monro, J.A.; Poppitt, S.D. Randomized controlled crossover study of the effect of a highly β-glucan-enriched barley on cardiovascular disease risk factors in mildly hypercholesterolemic men. Am. J. Clin. Nutr., 2003, 78(4), 711-718.
[http://dx.doi.org/10.1093/ajcn/78.4.711] [PMID: 14522728]
[4]
Rocha, R.; Cotrim, H.P.; Siqueira, A.C.; Floriano, S. Non alcoholic fatty liver disease: treatment with soluble fibres. Arq. Gastroenterol., 2007, 44(4), 350-352.
[http://dx.doi.org/10.1590/S0004-28032007000400013] [PMID: 18317656]
[5]
Adam, C.L.; Thomson, L.M.; Williams, P.A.; Ross, A.W. Soluble fermentable dietary fibre (pectin) decreases caloric intake, adiposity and lipidaemia in high-fat diet-induced obese rats. PLoS One, 2015, 10(10), e0140392
[http://dx.doi.org/10.1371/journal.pone.0140392] [PMID: 26447990]
[6]
Choi, J.S.; Kim, H.; Jung, M.H.; Hong, S.; Song, J. Consumption of barley β-glucan ameliorates fatty liver and insulin resistance in mice fed a high-fat diet. Mol. Nutr. Food Res., 2010, 54(7), 1004-1013.
[http://dx.doi.org/10.1002/mnfr.200900127] [PMID: 20112296]
[7]
Gunness, P.; Gidley, M.J. Mechanisms underlying the cholesterol-lowering properties of soluble dietary fibre polysaccharides. Food Funct., 2010, 1(2), 149-155.
[http://dx.doi.org/10.1039/c0fo00080a] [PMID: 21776465]
[8]
Katada, K.; Naito, Y.; Takagi, T.; Mizushima, K.; Higashimura, Y.; Okayama, T.; Yoshida, N.; Kamada, K.; Uchiyama, K.; Takeshi, I.; Handa, O.; Konishi, H.; Yagi, N.; Ichikawa, H.; Yasukawa, Z.; Tokunaga, M.; Okubo, T.; Juneja, L.R.; Itoh, Y. Su1467 partially hydrolyzed guar gum (phgg) attenuates nonalcoholic steatohepatitis (nash) in mice through the gut-liver axis. Gastroenterol., 2014, 146, S-477.
[http://dx.doi.org/10.1016/S0016-5085(14)61710-8]
[9]
Calame, W.; Weseler, A.R.; Viebke, C.; Flynn, C.; Siemensma, A.D. Gum arabic establishes prebiotic functionality in healthy human volunteers in a dose-dependent manner. Br. J. Nutr., 2008, 100(6), 1269-1275.
[http://dx.doi.org/10.1017/S0007114508981447] [PMID: 18466655]
[10]
Kolida, S.; Tuohy, K.; Gibson, G.R. Prebiotic effects of inulin and oligofructose. Br. J. Nutr., 2002, 87(Suppl. 2), S193-S197.
[http://dx.doi.org/10.1079/BJN/2002537] [PMID: 12088518]
[11]
Alexander, C.; Swanson, K.S.; Fahey, G.C.; Garleb, K.A. Perspective: physiologic importance of short-chain fatty acids from nondigestible carbohydrate fermentation. Adv. Nutr., 2019, 10(4), 576-589.
[http://dx.doi.org/10.1093/advances/nmz004] [PMID: 31305907]
[12]
Rebello, C.J.; O’Neil, C.E.; Greenway, F.L. Dietary fiber and satiety: the effects of oats on satiety. Nutr. Rev., 2016, 74(2), 131-147.
[http://dx.doi.org/10.1093/nutrit/nuv063] [PMID: 26724486]
[13]
Cani, P.D.; Possemiers, S.; Van de Wiele, T.; Guiot, Y.; Everard, A.; Rottier, O.; Geurts, L.; Naslain, D.; Neyrinck, A.; Lambert, D.M.; Muccioli, G.G.; Delzenne, N.M. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut, 2009, 58(8), 1091-1103.
[http://dx.doi.org/10.1136/gut.2008.165886] [PMID: 19240062]
[14]
Fåk, F.; Jakobsdottir, G.; Kulcinskaja, E.; Marungruang, N.; Matziouridou, C.; Nilsson, U.; Stålbrand, H.; Nyman, M. The physico-chemical properties of dietary fibre determine metabolic responses, short-chain Fatty Acid profiles and gut microbiota composition in rats fed low- and high-fat diets. PLoS One, 2015, 10(5), e0127252
[http://dx.doi.org/10.1371/journal.pone.0127252] [PMID: 25973610]
[15]
Pothuraju, R.; Rachagani, S.; Junker, W.M.; Chaudhary, S.; Saraswathi, V.; Kaur, S.; Batra, S.K. Pancreatic cancer associated with obesity and diabetes: an alternative approach for its targeting. J. Exp. Clin. Cancer Res., 2018, 37(1), 319.
[http://dx.doi.org/10.1186/s13046-018-0963-4] [PMID: 30567565]
[16]
Wu, C-C.; Weng, W-L.; Lai, W-L.; Tsai, H-P.; Liu, W-H.; Lee, M-H.; Tsai, Y-C. Effect of Lactobacillus plantarum strain K21 on high-fat diet-fed obese mice. Evid. Based Complement. Alternat. Med., 2015., 2015391767
[http://dx.doi.org/10.1155/2015/391767] [PMID: 25802537]
[17]
Jangra, S.; Sharma, R.K.; Pothuraju, R.; Bhakri, G. Milk fermented with Lactobacillus casei NCDC19 improves high fat and sucrose diet alters gene expression in obese mice. Int. Dairy J., 2019, 90, 15-22.
[http://dx.doi.org/10.1016/j.idairyj.2018.11.002]
[18]
Rather, S.A.; Pothuraju, R.; Sharma, R.K.; De, S.; Mir, N.A.; Jangra, S. Anti-obesity effect of feeding probiotic dahi containing Lactobacillus casei NCDC 19 in high fat diet-induced obese mice. Int. J. Dairy Technol., 2014, 67, 504-509.
[http://dx.doi.org/10.1111/1471-0307.12154]
[19]
Lim, S-M.; Jeong, J-J.; Woo, K.H.; Han, M.J.; Kim, D-H. Lactobacillus sakei OK67 ameliorates high-fat diet-induced blood glucose intolerance and obesity in mice by inhibiting gut microbiota lipopolysaccharide production and inducing colon tight junction protein expression. Nutr. Res., 2016, 36(4), 337-348.
[http://dx.doi.org/10.1016/j.nutres.2015.12.001] [PMID: 27001279]
[20]
Yadav, H.; Lee, J-H.; Lloyd, J.; Walter, P.; Rane, S.G. Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. J. Biol. Chem., 2013, 288(35), 25088-25097.
[http://dx.doi.org/10.1074/jbc.M113.452516] [PMID: 23836895]
[21]
Ji, Y.; Chung, Y.M.; Park, S.; Jeong, D.; Kim, B.; Holzapfel, W.H. Dose-dependent and strain-dependent anti-obesity effects of Lactobacillus sakei in a diet induced obese murine model. PeerJ, 2019, 7, e6651-e6651.
[http://dx.doi.org/10.7717/peerj.6651] [PMID: 30923658]
[22]
Markowiak, P.; Śliżewska, K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 2017, 9(9), 1021.
[http://dx.doi.org/10.3390/nu9091021] [PMID: 28914794]
[23]
Jangra, S. K, R.S.; Sharma, R.K.; Pothuraju, R.; Mohanty, A.K. Ameliorative effect of fermentable fibres on adiposity and insulin resistance in C57BL/6 mice fed a high-fat and sucrose diet. Food Funct., 2019, 10(6), 3696-3705.
[http://dx.doi.org/10.1039/C8FO02578A] [PMID: 31168538]
[24]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)). Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[25]
Emanuela, F.; Grazia, M.; Marco, R.; Maria Paola, L.; Giorgio, F.; Marco, B. Inflammation as a link between obesity and metabolic syndrome. J. Nutr. Metab., 2012., 2012476380
[http://dx.doi.org/10.1155/2012/476380] [PMID: 22523672]
[26]
Ley, R.E.; Bäckhed, F.; Turnbaugh, P.; Lozupone, C.A.; Knight, R.D.; Gordon, J.I. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA, 2005, 102(31), 11070-11075.
[http://dx.doi.org/10.1073/pnas.0504978102] [PMID: 16033867]
[27]
Cani, P.D.; Bibiloni, R.; Knauf, C.; Waget, A.; Neyrinck, A.M.; Delzenne, N.M.; Burcelin, R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes, 2008, 57(6), 1470-1481.
[http://dx.doi.org/10.2337/db07-1403] [PMID: 18305141]
[28]
Pothuraju, R.; Sharma, R.K. Interplay of gut microbiota, probiotics in obesity: a review. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(3), 212-220.
[http://dx.doi.org/10.2174/1871530318666180131092203] [PMID: 29384067]
[29]
Kim, J.J.; Sears, D.D. TLR4 and insulin resistance. Gastroenterol. Res. Pract., 2010, 2010, 11.
[http://dx.doi.org/10.1155/2010/212563] [PMID: 20814545]
[30]
He, M.; Shi, B. Gut microbiota as a potential target of metabolic syndrome: the role of probiotics and prebiotics. Cell Biosci., 2017, 7, 54.
[http://dx.doi.org/10.1186/s13578-017-0183-1] [PMID: 29090088]
[31]
Pothuraju, R.; Sharma, R.K.; Chagalamarri, J.; Jangra, S.; Kumar Kavadi, P. A systematic review of gymnema sylvestre in obesity and diabetes management. J. Sci. Food Agric., 2014, 94(5), 834-840.
[http://dx.doi.org/10.1002/jsfa.6458] [PMID: 24166097]
[32]
Pothuraju, R.; Sharma, R.K.; Onteru, S.K.; Singh, S.; Hussain, S.A. Hypoglycemic and hypolipidemic effects of aloe vera extract preparations: a review. Phytother. Res., 2016, 30(2), 200-207.
[http://dx.doi.org/10.1002/ptr.5532] [PMID: 26666199]
[33]
Myers, M.G., Jr; Leibel, R.L.; Seeley, R.J.; Schwartz, M.W. Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol. Metab., 2010, 21(11), 643-651.
[http://dx.doi.org/10.1016/j.tem.2010.08.002] [PMID: 20846876]
[34]
Achari, A.E.; Jain, S.K. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int. J. Mol. Sci., 2017, 18(6), E1321
[http://dx.doi.org/10.3390/ijms18061321] [PMID: 28635626]
[35]
Mandard, S.; Zandbergen, F.; van Straten, E.; Wahli, W.; Kuipers, F.; Müller, M.; Kersten, S. The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity. J. Biol. Chem., 2006, 281(2), 934-944.
[http://dx.doi.org/10.1074/jbc.M506519200] [PMID: 16272564]
[36]
Aronsson, L.; Huang, Y.; Parini, P.; Korach-André, M.; Håkansson, J.; Gustafsson, J-Å.; Pettersson, S.; Arulampalam, V.; Rafter, J. Decreased fat storage by Lactobacillus paracasei is associated with increased levels of angiopoietin-like 4 protein (ANGPTL4). PLoS One, 2010, 5(9), e13087
[http://dx.doi.org/10.1371/journal.pone.0013087] [PMID: 20927337]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 9
Year: 2020
Published on: 05 November, 2020
Page: [1543 - 1551]
Pages: 9
DOI: 10.2174/1871530320666200526123621
Price: $65

Article Metrics

PDF: 18
HTML: 2