The Potential Role of Serum Exosomes in Preeclampsia

Author(s): Xuelin Gao, Lulu Shao, Xinying Ge, Long Zhang, Dexin Chen, Rongxia He*

Journal Name: Current Drug Metabolism

Volume 21 , Issue 5 , 2020

Become EABM
Become Reviewer

Abstract:

Preeclampsia is a serious pregnancy-specific disease that affects about 5%-8% of pregnant women and is the main reason for the increase in maternal and perinatal mortality. Due to unknown etiology, preeclampsia is still the main cause of increased mortality in maternal and perinatal infants, which is mainly manifested by new hypertension after 20 weeks of pregnancy. As the pathogenesis has not been fully elucidated, early diagnosis and full treatment are lacking. Exosomes secreted from the placenta to the peripheral circulation may be involved in the pathogenesis of preeclampsia and can be detected from the plasma of pregnant women after 6 weeks of pregnancy. Related studies have shown that the levels of exosomes in preeclampsia have changed, and the protein and miRNA expression profiles are also different. Therefore, monitoring changes in plasma exosomes and expression profiles may provide new ideas and new perspectives for the prediction, diagnosis and treatment of preeclampsia.

Keywords: Exosomes, preeclampsia, pregnancy-specific disease, miRNA, protein, immune regulation.

[1]
Ospina-Prieto, S.; Chaiwangyen, W.; Herrmann, J.; Groten, T.; Schleussner, E.; Markert, U.R.; Morales-Prieto, D.M. MicroRNA-141 is upregulated in preeclamptic placentae and regulates trophoblast invasion and intercellular communication. Transl. Res., 2016, 172, 61-72.
[http://dx.doi.org/10.1016/j.trsl.2016.02.012] [PMID: 27012474]
[2]
Lai, A.; Elfeky, O.; Rice, G.E.; Salomon, C. Optimized specific isolation of placenta-derived exosomes from maternal circulation. Methods Mol. Biol., 2018, 1710, 131-138.
[http://dx.doi.org/10.1007/978-1-4939-7498-6_10] [PMID: 29196999]
[3]
Salomon, C.; Guanzon, D.; Scholz-Romero, K.; Longo, S.; Correa, P.; Illanes, S.E.; Rice, G.E. Placental exosomes as early biomarker of preeclampsia: potential role of exosomal micrornas across gestation. J. Clin. Endocrinol. Metab., 2017, 102(9), 3182-3194.
[http://dx.doi.org/10.1210/jc.2017-00672] [PMID: 28531338]
[4]
Chang, X.; Yao, J.; He, Q.; Liu, M.; Duan, T.; Wang, K. Exosomes from women with preeclampsia induced vascular dysfunction by delivering sflt (soluble fms-like tyrosine kinase)-1 and seng (soluble endoglin) to endothelial cells. Hypertension, 2018, 72(6), 1381-1390.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.118.11706] [PMID: 30571229]
[5]
Burnett, L.A.; Nowak, R.A. Exosomes mediate embryo and maternal interactions at implantation and during pregnancy. Front. Biosci. (Schol. Ed.), 2016, 8, 79-96.
[http://dx.doi.org/10.2741/s448] [PMID: 26709898]
[6]
Keller, S.; Ridinger, J.; Anne-Kathleen, R.; Johannes, J.W.G.; Altevogt, P. Body fluid derived exosomes as a novel template for clinical diagnostics. J. Transl. Med., 2011, 9, 86.
[http://dx.doi.org/10.1186/1479-5876-9-86]
[7]
Vlassov, A.V.; Magdaleno, S.; Setterquist, R.; Conrad, R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim. Biophys. Acta, 2012, 1820(7), 940-948.
[http://dx.doi.org/10.1016/j.bbagen.2012.03.017] [PMID: 22503788]
[8]
Altevogt, P.; Bretz, N.P.; Ridinger, J.; Utikal, J.; Umansky, V. Novel insights into exosome-induced, tumor-associated inflammation and immunomodulation. Semin. Cancer Biol., 2014, 28, 51-57.
[http://dx.doi.org/10.1016/j.semcancer.2014.04.008] [PMID: 24769223]
[9]
Pillay, P.; Vatish, M.; Duarte, R.; Moodley, J.; Mackraj, I. Exosomal microRNA profiling in early and late onset preeclamptic pregnant women reflects pathophysiology. Int. J. Nanomedicine, 2019, 14, 5637-5657.
[http://dx.doi.org/10.2147/IJN.S208865] [PMID: 31413567]
[10]
Burger, D.; Schock, S.; Thompson, C.S.; Montezano, A.C.; Hakim, A.M.; Touyz, R.M. Microparticles: biomarkers and beyond. Clin. Sci. (Lond.), 2013, 124(7), 423-441.
[http://dx.doi.org/10.1042/CS20120309] [PMID: 23249271]
[11]
Salomon, C.; Yee, S.W.; Mitchell, M.D.; Rice, G.E. The possible role of extravillous trophoblast-derived exosomes on the uterine spiral arterial remodeling under both normal and pathological conditions. BioMed Res. Int., 2014, 2014, 693157.
[http://dx.doi.org/10.1155/2014/693157] [PMID: 25302305]
[12]
Chiarello, D.I.; Salsoso, R.; Toledo, F.; Mate, A.; Vázquez, C.M.; Sobrevia, L. Foetoplacental communication via extracellular vesicles in normal pregnancy and preeclampsia. Mol. Aspects Med., 2018, 60, 69-80.
[http://dx.doi.org/10.1016/j.mam.2017.12.002] [PMID: 29222068]
[13]
Morgan, T.K. Cell- and size-specific analysis of placental extracellular vesicles in maternal plasma and pre-eclampsia. Transl. Res., 2018, 201, 40-48.
[http://dx.doi.org/10.1016/j.trsl.2018.08.004] [PMID: 30176238]
[14]
Biró, O.; Fóthi, Á.; Alasztics, B.; Nagy, B.; Orbán, T.I.; Rigó, J., Jr Circulating exosomal and Argonaute-bound microRNAs in preeclampsia. Gene, 2019, 692, 138-144.
[http://dx.doi.org/10.1016/j.gene.2019.01.012] [PMID: 30659946]
[15]
Konečná, B.; Lauková, L.; Vlková, B. Immune activation by nucleic acids: A role in pregnancy complications. Scand. J. Immunol., 2018, 87(4) e12651.
[http://dx.doi.org/10.1111/sji.12651] [PMID: 29479732]
[16]
Sandrim, V.C.; Luizon, M.R.; Palei, A.C.; Tanus-Santos, J.E.; Cavalli, R.C. Circulating microRNA expression profiles in pre-eclampsia: evidence of increased miR-885-5p levels. BJOG, 2016, 123(13), 2120-2128.
[http://dx.doi.org/10.1111/1471-0528.13903] [PMID: 26853698]
[17]
Sammar, M.; Dragovic, R.; Meiri, H.; Vatish, M.; Sharabi-Nov, A.; Sargent, I.; Redman, C.; Tannetta, D. Reduced placental protein 13 (PP13) in placental derived syncytiotrophoblast extracellular vesicles in preeclampsia - A novel tool to study the impaired cargo transmission of the placenta to the maternal organs. Placenta, 2018, 66, 17-25.
[http://dx.doi.org/10.1016/j.placenta.2018.04.013] [PMID: 29884298]
[18]
Gilani, S.I.; Weissgerber, T.L.; Garovic, V.D.; Jayachandran, M. Preeclampsia and extracellular vesicles. Curr. Hypertens. Rep., 2016, 18(9), 68.
[http://dx.doi.org/10.1007/s11906-016-0678-x] [PMID: 27590522]
[19]
Biró, O.; Alasztics, B.; Molvarec, A.; Joó, J.; Nagy, B.; Rigó, J., Jr Various levels of circulating exosomal total-miRNA and miR-210 hypoxamiR in different forms of pregnancy hypertension. Pregnancy Hypertens., 2017, 10, 207-212.
[http://dx.doi.org/10.1016/j.preghy.2017.09.002] [PMID: 29153681]
[20]
Jia, R.; Li, J.; Rui, C.; Ji, H.; Ding, H.; Lu, Y.; De, W.; Sun, L. Comparative proteomic profile of the human umbilical cord blood exosomes between normal and preeclampsia pregnancies with high-resolution mass spectrometry. Cell. Physiol. Biochem., 2015, 36(6), 2299-2306.
[http://dx.doi.org/10.1159/000430193] [PMID: 26279434]
[21]
Vargas, A.; Zhou, S.; Éthier-Chiasson, M.; Flipo, D.; Lafond, J.; Gilbert, C.; Barbeau, B. Syncytin proteins incorporated in placenta exosomes are important for cell uptake and show variation in abundance in serum exosomes from patients with preeclampsia. FASEB J., 2014, 28(8), 3703-3719.
[http://dx.doi.org/10.1096/fj.13-239053] [PMID: 24812088]
[22]
Ermini, L.; Ausman, J.; Melland-Smith, M.; Yeganeh, B.; Rolfo, A.; Litvack, M.L.; Todros, T.; Letarte, M.; Post, M.; Caniggia, I. A single sphingomyelin species promotes exosomal release of endoglin into the maternal circulation in preeclampsia. Sci. Rep., 2017, 7(1), 12172.
[http://dx.doi.org/10.1038/s41598-017-12491-4] [PMID: 28939895]
[23]
Lifton, R.P.; Gharavi, A.G.; Geller, D.S. Molecular mechanisms of human hypertension. Cell, 2001, 104(4), 545-556.
[http://dx.doi.org/10.1016/S0092-8674(01)00241-0] [PMID: 11239411]
[24]
Hu, C.C.; Katerelos, M.; Choy, S.W.; Crossthwaite, A.; Walker, S.P.; Pell, G.; Lee, M.; Cook, N.; Mount, P.F.; Paizis, K.; Power, D.A. Pre-eclampsia is associated with altered expression of the renal sodium transporters NKCC2, NCC and ENaC in urinary extracellular vesicles. PLoS One, 2018, 13(9) e0204514
[http://dx.doi.org/10.1371/journal.pone.0204514] [PMID: 30248150]
[25]
Navajas, R.; Corrales, F.J.; Paradela, A. Serum exosome isolation by size-exclusion chromatography for the discovery and validation of preeclampsia-associated biomarkers. Methods Mol. Biol., 2019, 1959, 39-50.
[http://dx.doi.org/10.1007/978-1-4939-9164-8_3] [PMID: 30852814]
[26]
Lokossou, A.G.; Toudic, C.; Barbeau, B. Implication of human endogenous retrovirus envelope proteins in placental functions. Viruses, 2014, 6(11), 4609-4627.
[http://dx.doi.org/10.3390/v6114609] [PMID: 25421890]
[27]
Göhner, C.; Plösch, T.; Faas, M.M. Immune-modulatory effects of syncytiotrophoblast extracellular vesicles in pregnancy and preeclampsia. Placenta, 2017, 60(Suppl. 1), S41-S51.
[http://dx.doi.org/10.1016/j.placenta.2017.06.004] [PMID: 28647398]
[28]
Pillay, P.; Moodley, K.; Vatish, M.; Moodley, J.; Duarte, R.; Mackraj, I. Exosomal Th1/Th2 cytokines in preeclampsia and HIV-positive preeclamptic women on highly active anti-retroviral therapy. Cytokine, 2020, 125, 154795
[http://dx.doi.org/10.1016/j.cyto.2019.154795] [PMID: 31398625]
[29]
Hahn, S.; Giaglis, S.; Buser, A.; Hoesli, I.; Lapaire, O.; Hasler, P. Cell-free nucleic acids in (maternal) blood: any relevance to (reproductive) immunologists? J. Reprod. Immunol., 2014, 104-105, 26-31.
[http://dx.doi.org/10.1016/j.jri.2014.03.007] [PMID: 24815811]
[30]
Pillay, P.; Maharaj, N.; Moodley, J.; Mackraj, I. Placental exosomes and pre-eclampsia: Maternal circulating levels in normal pregnancies and, early and late onset pre-eclamptic pregnancies. Placenta, 2016, 46, 18-25.
[http://dx.doi.org/10.1016/j.placenta.2016.08.078] [PMID: 27697217]
[31]
Chaparro, A.; Gaedechens, D.; Ramírez, V.; Zuñiga, E.; Kusanovic, J.P.; Inostroza, C.; Varas-Godoy, M.; Silva, K.; Salomon, C.; Rice, G.; Illanes, S.E. Placental biomarkers and angiogenic factors in oral fluids of patients with preeclampsia. Prenat. Diagn., 2016, 36(5), 476-482.
[http://dx.doi.org/10.1002/pd.4811] [PMID: 26988336]
[32]
Shen, L.; Li, Y.; Li, R.; Diao, Z.; Yany, M.; Wu, M.; Sun, H.; Yan, G.; Hu, Y. Placenta‑associated serum exosomal miR‑155 derived from patients with preeclampsia inhibits eNOS expression in human umbilical vein endothelial cells. Int. J. Mol. Med., 2018, 41(3), 1731-1739.
[http://dx.doi.org/10.3892/ijmm.2018.3367] [PMID: 29328396]
[33]
Ding, J.; Huang, F.; Wu, G.; Han, T.; Xu, F.; Weng, D.; Wu, C.; Zhang, X.; Yao, Y.; Zhu, X. MiR-519d-3p suppresses invasion and migration of trophoblast cells via targeting MMP-2. PLoS One, 2015, 10(3) e0120321
[http://dx.doi.org/10.1371/journal.pone.0120321] [PMID: 25803859]
[34]
Bounds, K.R.; Chiasson, V.L.; Pan, L.J.; Gupta, S.; Chatterjee, P. MicroRNAs: new players in the pathobiology of preeclampsia. Front. Cardiovasc. Med., 2017, 4, 60.
[http://dx.doi.org/10.3389/fcvm.2017.00060] [PMID: 28993808]
[35]
Belting, M.; Christianson, H.C. Role of exosomes and microvesicles in hypoxia-associated tumour development and cardiovascular disease. J. Intern. Med., 2015, 278(3), 251-263.
[http://dx.doi.org/10.1111/joim.12393] [PMID: 26153525]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 5
Year: 2020
Published on: 29 July, 2020
Page: [352 - 356]
Pages: 5
DOI: 10.2174/1389200221666200525152441
Price: $65

Article Metrics

PDF: 28
HTML: 1
EPUB: 1