Nano-Carriers of Combination Tumor Physical Stimuli-Responsive Therapies

Author(s): Weiqiu Jin, Changzi Dong, Dengtian Yang, Ruotong Zhang, Tianshu Jiang, Daocheng Wu*

Journal Name: Current Drug Delivery

Volume 17 , Issue 7 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

With the development of nanotechnology, Tumor Physical Stimuli-Responsive Therapies (TPSRTs) have reached a new stage because of the remarkable characteristics of nanocarriers. The nanocarriers enable such therapies to overcome the drawbacks of traditional therapies, such as radiotherapy or chemotherapy. To further explore the possibility of the nanocarrier-assisted TPSRTs, scientists have combined different TPSRTs via the platform of nanocarriers into combination TPSRTs, which include Photothermal Therapy (PTT) with Magnetic Hyperthermia Therapy (MHT), PTT with Sonodynamic Therapy (SDT), MHT with Photodynamic Therapy (PDT), and PDT with PTT. To achieve such therapies, it requires to fully utilize the versatile functions of a specific nanocarrier, which depend on a pellucid understanding of the traits of those nanocarriers. This review covers the principles of different TPSRTs and their combinations, summarizes various types of combination TPSRTs nanocarriers and their therapeutic effects on tumors, and discusses the current disadvantages and future developments of these nanocarriers in the application of combination TPSRTs.

Keywords: Tumor physical stimuli-responsive therapy, nanocarrier, combination therapy, tissue, enzyme, SDT.

[1]
Chen, Q.; Ke, H.; Dai, Z.; Liu, Z. Nanoscale theranostics for physical stimulus-responsive cancer therapies. Biomaterials, 2015, 73, 214-230.
[http://dx.doi.org/10.1016/j.biomaterials.2015.09.018] [PMID: 26410788]
[2]
Chen, Y.W.; Su, Y.L.; Hu, S.H.; Chen, S.Y. Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment. adv. drug deliv. rev., 2016, 105(pt b), 190-204.
[3]
de Melo-Diogo, D.; Pais-Silva, C.; Dias, D.R.; Moreira, A.F.; Correia, I.J. Strategies to Improve cancer photothermal therapy mediated by nanomaterials. Adv. Healthc. Mater., 2017, 6(10) Epub ahead of print
[http://dx.doi.org/10.1002/adhm.201700073] [PMID: 28322514]
[4]
Cazares-Cortes, E.; Cabana, S.; Boitard, C.; Nehlig, E.; Griffete, N.; Fresnais, J.; Wilhelm, C.; Abou-Hassan, A.; Ménager, C. Recent insights in magnetic hyperthermia: from the “hot-spot” effect for local delivery to combined magneto-photo-thermia using magneto-plasmonic hybrids. Adv. Drug Deliv. Rev., 2019, 138, 233-246.
[http://dx.doi.org/10.1016/j.addr.2018.10.016] [PMID: 30414493]
[5]
Kobayashi, T. Cancer hyperthermia using magnetic nanoparticles. Biotechnol. J., 2011, 6(11), 1342-1347.
[http://dx.doi.org/10.1002/biot.201100045] [PMID: 22069094]
[6]
Shen, S.; Wu, Y.; Li, K.; Wang, Y.; Wu, J.; Zeng, Y.; Wu, D. Versatile hyaluronic acid modified AQ4N-Cu(II)-gossypol infinite coordination polymer nanoparticles: multiple tumor targeting, highly efficient synergistic chemotherapy, and real-time self-monitoring. Biomaterials, 2018, 154, 197-212.
[http://dx.doi.org/10.1016/j.biomaterials.2017.11.001] [PMID: 29128847]
[7]
Li, K.; Liu, H.; Gao, W.; Chen, M.; Zeng, Y.; Liu, J.; Xu, L.; Wu, D. Mulberry-like dual-drug complicated nanocarriers assembled with apogossypolone amphiphilic starch micelles and doxorubicin hyaluronic acid nanoparticles for tumor combination and targeted therapy. Biomaterials, 2015, 39, 131-144.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.073] [PMID: 25477180]
[8]
Cao, L.; Meziani, M.J.; Sahu, S.; Sun, Y.P. Photoluminescence properties of graphene versus other carbon nanomaterials. Acc. Chem. Res., 2013, 46(1), 171-180.
[http://dx.doi.org/10.1021/ar300128j] [PMID: 23092181]
[9]
Zhang, B.; Wang, H.; Shen, S.; She, X.; Shi, W.; Chen, J.; Zhang, Q.; Hu, Y.; Pang, Z.; Jiang, X. Fibrin-targeting peptide CREKA-conjugated multi-walled carbon nanotubes for self-amplified photothermal therapy of tumor. Biomaterials, 2016, 79, 46-55.
[http://dx.doi.org/10.1016/j.biomaterials.2015.11.061] [PMID: 26695116]
[10]
Pérez-Hernández, M.; Del Pino, P.; Mitchell, S.G.; Moros, M.; Stepien, G.; Pelaz, B.; Parak, W.J.; Gálvez, E.M.; Pardo, J.; de la Fuente, J.M. Dissecting the molecular mechanism of apoptosis during photothermal therapy using gold nanoprisms. ACS Nano, 2015, 9(1), 52-61.
[http://dx.doi.org/10.1021/nn505468v] [PMID: 25493329]
[11]
Cheng, Y.; Tan, X.; Wang, J.; Wang, Y.; Song, Y.; You, Q.; Sun, Q.; Liu, L.; Wang, S.; Tan, F.; Li, J.; Li, N. Polymer-based gadolinium oxide nanocomposites for FL/MR/PA imaging guided and photothermal/photodynamic combined anti-tumor therapy. J. Control. Release, 2018, 277, 77-88.
[http://dx.doi.org/10.1016/j.jconrel.2018.03.009] [PMID: 29526740]
[12]
Wang, J.; Zhu, C.; Han, J.; Han, N.; Xi, J.; Fan, L.; Guo, R. Controllable synthesis of gold nanorod/conducting polymer core/shell hybrids toward in vitro and in vivo near-infrared photothermal therapy. ACS Appl. Mater. Interfaces, 2018, 10(15), 12323-12330.
[http://dx.doi.org/10.1021/acsami.7b16784] [PMID: 29595952]
[13]
Liu, Y.; Yang, M.; Zhang, J.; Zhi, X.; Li, C.; Zhang, C.; Pan, F.; Wang, K.; Yang, Y.; Martinez de la Fuentea, J.; Cui, D. Human induced pluripotent stem cells for tumor targeted delivery of gold nanorods and enhanced photothermal therapy. ACS Nano, 2016, 10(2), 2375-2385.
[http://dx.doi.org/10.1021/acsnano.5b07172] [PMID: 26761620]
[14]
Dalal, M.; Greneche, J.M.; Satpati, B.; Ghzaiel, T.B.; Mazaleyrat, F.; Ningthoujam, R.S.; Chakrabarti, P.K. Microwave absorption and the magnetic hyperthermia applications of Li0.3Zn0.3Co0.1Fe2.3O4 nanoparticles in multiwalled carbon nanotube matrix. ACS Appl. Mater. Interfaces, 2017, 9(46), 40831-40845.
[http://dx.doi.org/10.1021/acsami.7b12091] [PMID: 29072442]
[15]
León Félix, L.; Sanz, B.; Sebastián, V.; Torres, T.E.; Sousa, M.H.; Coaquira, J.A.H.; Ibarra, M.R.; Goya, G.F. Gold-decorated magnetic nanoparticles design for hyperthermia applications and as a potential platform for their surface-functionalization. Sci. Rep., 2019, 9(1), 4185.
[http://dx.doi.org/10.1038/s41598-019-40769-2] [PMID: 30862882]
[16]
Yang, T.I.; Chang, S.H. Controlled synthesis of metallic iron nanoparticles and their magnetic hyperthermia performance in polyaniline composite nanofibers. Nanotechnology, 2017, 28(5), e055601.
[http://dx.doi.org/10.1088/1361-6528/28/5/055601] [PMID: 28008893]
[17]
Jabalera, Y.; Fernández-Vivas, A.; Iglesias, G.R.; Delgado, A.V.; Jimenez-Lopez, C. Magnetoliposomes of mixed biomimetic and inorganic magnetic nanoparticles as enhanced hyperthermia agents. Colloids Surf. B Biointerfaces, 2019, 183, 110435.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110435] [PMID: 31430636]
[18]
Starsich, F.H.L.; Eberhardt, C.; Boss, A.; Hirt, A.M.; Pratsinis, S.E. Coercivity determines magnetic particle heating. Adv. Healthc. Mater., 2018, 7(19), e1800287.
[http://dx.doi.org/10.1002/adhm.201800287] [PMID: 30088699]
[19]
Shi, J.; Ma, R.; Wang, L.; Zhang, J.; Liu, R.; Li, L.; Liu, Y.; Hou, L.; Yu, X.; Gao, J.; Zhang, Z. The application of hyaluronic acid-derivatized carbon nanotubes in hematoporphyrin monomethyl ether-based photodynamic therapy for in vivo and in vitro cancer treatment. Int. J. Nanomed., 2013, 8, 2361-2373.
[http://dx.doi.org/10.2147/IJN.S45407] [PMID: 23843694]
[20]
Düzgüneş, N.; Piskorz, J.; Skupin-Mrugalska, P.; Goslinski, T.; Mielcarek, J.; Konopka, K. Photodynamic therapy of cancer with liposomal photosensitizers. Ther. Deliv., 2018, 9(11), 823-832.
[http://dx.doi.org/10.4155/tde-2018-0050] [PMID: 30444459]
[21]
Xue, X.; Lindstrom, A.; Li, Y. Porphyrin-based nanomedicines for cancer treatment. Bioconjug. Chem., 2019, 30(6), 1585-1603.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00231] [PMID: 31023011]
[22]
Sun, W.; Shi, T.; Luo, L.; Chen, X.; Lv, P.; Lv, Y.; Zhuang, Y.; Zhu, J.; Liu, G.; Chen, X.; Chen, H. Monodisperse and uniform mesoporous silicate nanosensitizers achieve low-dose x-ray-induced deep-penetrating photodynamic therapy. Adv. Mater., 2019, 31(16), e1808024.
[http://dx.doi.org/10.1002/adma.201808024] [PMID: 30848541]
[23]
Wang, C.J.; Li, W. Preparation and sonodynamic antitumor effect of protohemin-conjugated multiwalled carbon nanotubes functionalized with carboxylic group. Preparation and sonodynamic antitumor effect of protohemin-conjugated multiwalled carbon nanotubes functionalized with carboxylic group. Drug Dev. Res., 2016, 77(3), 152-158.
[http://dx.doi.org/10.1002/ddr.21303] [PMID: 27029561]
[24]
Zhang, P.; Ren, Z.; Chen, Z.; Zhu, J.; Liang, J.; Liao, R.; Wen, J. Iron oxide nanoparticles as nanocarriers to improve chlorine 6-based sonosensitivity in sonodynamic therapy. Drug Des. Devel. Ther., 2018, 12, 4207-4216.
[http://dx.doi.org/10.2147/DDDT.S184679] [PMID: 30573951]
[25]
Sazgarnia, A.; Shanei, A.; Meibodi, N.T.; Eshghi, H.; Nassirli, H. A novel nanosonosensitizer for sonodynamic therapy: in vivo study on a colon tumor model. J. Ultrasound Med., 2011, 30(10), 1321-1329.
[http://dx.doi.org/10.7863/jum.2011.30.10.1321] [PMID: 21968482]
[26]
Yildirim, A.; Shi, D.; Roy, S.; Blum, N.T.; Chattaraj, R.; Cha, J.N.; Goodwin, A.P. Nanoparticle-mediated acoustic cavitation enables high intensity focused ultrasound ablation without tissue heating. ACS Appl. Mater. Interfaces, 2018, 10(43), 36786-36795.
[http://dx.doi.org/10.1021/acsami.8b15368] [PMID: 30339360]
[27]
Hu, X.; Tang, Y.; Hu, Y.; Lu, F.; Lu, X.; Wang, Y.; Li, J.; Li, Y.; Ji, Y.; Wang, W.; Ye, D.; Fan, Q.; Huang, W. Gadolinium-chelated conjugated polymer-based nanotheranostics for photoacoustic/magnetic resonance/NIR-II fluorescence imaging-guided cancer photothermal therapy. Theranostics, 2019, 9(14), 4168-4181.
[http://dx.doi.org/10.7150/thno.34390] [PMID: 31281539]
[28]
Robinson, J.T.; Tabakman, S.M.; Liang, Y.; Wang, H.; Casalongue, H.S.; Vinh, D.; Dai, H. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc., 2011, 133(17), 6825-6831.
[http://dx.doi.org/10.1021/ja2010175] [PMID: 21476500]
[29]
Elhissi, A.M.; Ahmed, W.; Hassan, I.U.; Dhanak, V.R.; D’Emanuele, A. Carbon nanotubes in cancer therapy and drug delivery. J. Drug Deliv., 2012, 2012, 837327.
[http://dx.doi.org/10.1155/2012/837327] [PMID: 22028974]
[30]
Thanh, N.T.K. Magnetic nanoparticles: from fabrication to clinical applications: theory to therapy, chemistry to clinic, bench to bedside; CRC Press: Boca Raton, London, NewYork, 2012.
[31]
Gordon, R.T.; Hines, J.R.; Gordon, D. Intracellular hyperthermia. A biophysical approach to cancer treatment via intracellular temperature and biophysical alterations. Med. Hypotheses, 1979, 5(1), 83-102.
[http://dx.doi.org/10.1016/0306-9877(79)90063-X] [PMID: 459972]
[32]
Sharifabad, M.E.; Mercer, T.; Sen, T. Drug-loaded liposome-capped mesoporous core-shell magnetic nanoparticles for cellular toxicity study. Nanomedicine , 2016, 11(21), 2757-2767.
[http://dx.doi.org/10.2217/nnm-2016-0248] [PMID: 27759497]
[33]
Nudelman, H.; Perez Gonzalez, T.; Kolushiva, S.; Widdrat, M.; Reichel, V.; Peigneux, A.; Davidov, G.; Bitton, R.; Faivre, D.; Jimenez-Lopez, C.; Zarivach, R. The importance of the helical structure of a MamC-derived magnetite-interacting peptide for its function in magnetite formation. Acta Crystallogr. D Struct. Biol., 2018, 74(Pt 1), 10-20.
[http://dx.doi.org/10.1107/S2059798317017491] [PMID: 29372895]
[34]
Nudelman, H.; Valverde-Tercedor, C.; Kolusheva, S.; Perez Gonzalez, T.; Widdrat, M.; Grimberg, N.; Levi, H.; Nelkenbaum, O.; Davidov, G.; Faivre, D.; Jimenez-Lopez, C.; Zarivach, R. Structure-function studies of the magnetite-biomineralizing magnetosome-associated protein MamC. J. Struct. Biol., 2016, 194(3), 244-252.
[http://dx.doi.org/10.1016/j.jsb.2016.03.001] [PMID: 26970040]
[35]
Liu, G.; Gao, J.; Ai, H.; Chen, X. Applications and potential toxicity of magnetic iron oxide nanoparticles. Small, 2013, 9(9-10), 1533-1545.
[http://dx.doi.org/10.1002/smll.201201531] [PMID: 23019129]
[36]
Lucky, S.S.; Soo, K.C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev., 2015, 115(4), 1990-2042.
[http://dx.doi.org/10.1021/cr5004198] [PMID: 25602130]
[37]
Cai, Y.; Liang, P.; Tang, Q.; Yang, X.; Si, W.; Huang, W.; Zhang, Q.; Dong, X. Diketopyrrolopyrrole-triphenylamine organic nanoparticles as multifunctional reagents for photoacoustic imaging-guided photodynamic/photothermal synergistic tumor therapy. ACS Nano, 2017, 11(1), 1054-1063.
[http://dx.doi.org/10.1021/acsnano.6b07927] [PMID: 28033465]
[38]
Allison, R.R.; Sibata, C.H. Oncologic photodynamic therapy photosensitizers: a clinical review. Photodiagn. Photodyn. Ther., 2010, 7(2), 61-75.
[http://dx.doi.org/10.1016/j.pdpdt.2010.02.001] [PMID: 20510301]
[39]
Yan, F.; Wu, H.; Liu, H.; Deng, Z.; Liu, H.; Duan, W.; Liu, X.; Zheng, H. Molecular imaging-guided photothermal/photodynamic therapy against tumor by iRGD-modified indocyanine green nanoparticles. J. Control. Release, 2016, 224, 217-228.
[http://dx.doi.org/10.1016/j.jconrel.2015.12.050] [PMID: 26739551]
[40]
Yang, G.; Xu, L.; Chao, Y.; Xu, J.; Sun, X.; Wu, Y.; Peng, R.; Liu, Z. Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat. Commun., 2017, 8(1), 902.
[http://dx.doi.org/10.1038/s41467-017-01050-0] [PMID: 29026068]
[41]
Hou, L.; Yuan, Y.; Ren, J.; Zhang, Y.; Wang, Y.; Shan, X.; Liu, Q.; Zhang, Z. In vitro and in vivo comparative study of the phototherapy anticancer activity of hyaluronic acid-modified single-walled carbon nanotubes, graphene oxide, and fullerene. J. Nanopart. Res., 2017, 19(8), 286.
[http://dx.doi.org/10.1007/s11051-017-3977-5]
[42]
Tang, F.; Li, L.; Chen, D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv. Mater., 2012, 24(12), 1504-1534.
[http://dx.doi.org/10.1002/adma.201104763] [PMID: 22378538]
[43]
Huang, P.; Qian, X.; Chen, Y.; Yu, L.; Lin, H.; Wang, L.; Zhu, Y.; Shi, J. Metalloporphyrin-encapsulated biodegradable nanosystems for highly efficient magnetic resonance imaging-guided sonodynamic cancer therapy. J. Am. Chem. Soc., 2017, 139(3), 1275-1284.
[http://dx.doi.org/10.1021/jacs.6b11846] [PMID: 28024395]
[44]
Chen, J.; Luo, H.; Liu, Y.; Zhang, W.; Li, H.; Luo, T.; Zhang, K.; Zhao, Y.; Liu, J. Oxygen-Self-Produced nanoplatform for relieving hypoxia and breaking resistance to sonodynamic treatment of pancreatic cancer. ACS Nano, 2017, 11(12), 12849-12862.
[http://dx.doi.org/10.1021/acsnano.7b08225] [PMID: 29236476]
[45]
Yan, S.; Lu, M.; Ding, X.; Chen, F.; He, X.; Xu, C.; Zhou, H.; Wang, Q.; Hao, L.; Zou, J. HematoPorphyrin monomethyl ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic High Intensity Focused Ultrasound (HIFU) therapy. Sci. Rep., 2016, 6, 31833.
[http://dx.doi.org/10.1038/srep31833] [PMID: 27535093]
[46]
Aghaie, T.; Jazayeri, M.H.; Manian, M.; Khani, L.; Erfani, M.; Rezayi, M.; Ferns, G.A.; Avan, A. Gold nanoparticle and polyethylene glycol in neural regeneration in the treatment of neurodegenerative diseases. J. Cell. Biochem., 2019, 120(3), 2749-2755.
[http://dx.doi.org/10.1002/jcb.27415] [PMID: 30485477]
[47]
He, Y.; Hua, W.H.; Low, M.C.; Tsai, Y.H.; Cai, C.J.; Chiang, H.C.; Yu, J.H.; Hsiao, J.H.; Tseng, P.H.; Kiang, Y.W.; Yang, C.C.; Zhang, Z. Exocytosis of gold nanoparticle and photosensitizer from cancer cells and their effects on photodynamic and photothermal processes. Nanotechnology, 2018, 29(23), 235101.
[http://dx.doi.org/10.1088/1361-6528/aab933] [PMID: 29570098]
[48]
Dube, E.; Oluwole, D.O.; Nwaji, N.; Nyokong, T. Glycosylated zinc phthalocyanine-gold nanoparticle conjugates for photodynamic therapy: effect of nanoparticle shape. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 203, 85-95.
[http://dx.doi.org/10.1016/j.saa.2018.05.081] [PMID: 29860172]
[49]
Pan, X.; Bai, L.; Wang, H.; Wu, Q.; Wang, H.; Liu, S.; Xu, B.; Shi, X.; Liu, H. Metal-organic-framework-derived carbon nanostructure augmented sonodynamic cancer therapy. Adv. Mater., 2018, 30(23), e1800180.
[http://dx.doi.org/10.1002/adma.201800180] [PMID: 29672956]
[50]
Yumita, N.; Sasaki, K.; Umemura, S.; Nishigaki, R. Sonodynamically induced antitumor effect of a gallium-porphyrin complex, ATX-70. Jpn. J. Cancer Res., 1996, 87(3), 310-316.
[http://dx.doi.org/10.1111/j.1349-7006.1996.tb00222.x] [PMID: 8613435]
[51]
Feyh, J.; Gutmann, R.; Leunig, A.; Jäger, L.; Reiser, M.; Saxton, R.E.; Castro, D.J.; Kastenbauer, E. MRI-guided Laser Interstitial Thermal Therapy (LITT) of head and neck tumors: progress with a new method. J. Clin. Laser Med. Surg., 1996, 14(6), 361-366.
[http://dx.doi.org/10.1089/clm.1996.14.361] [PMID: 9467326]
[52]
Lu, Q.; Dai, X.; Zhang, P.; Tan, X.; Zhong, Y.; Yao, C.; Song, M.; Song, G.; Zhang, Z.; Peng, G.; Guo, Z.; Ge, Y.; Zhang, K.; Li, Y. Fe3O4@Au composite magnetic nanoparticles modified with cetuximab for targeted magneto-photothermal therapy of glioma cells. Int. J. Nanomed., 2018, 13, 2491-2505.
[http://dx.doi.org/10.2147/IJN.S157935] [PMID: 29719396]
[53]
Gao, F.; He, G.; Yin, H.; Chen, J.; Liu, Y.; Lan, C.; Zhang, S.; Yang, B. Titania-coated 2D gold nanoplates as nanoagents for synergistic photothermal/sonodynamic therapy in the second near-infrared window. Nanoscale, 2019, 11(5), 2374-2384.
[http://dx.doi.org/10.1039/C8NR07188H] [PMID: 30667014]
[54]
Oliveira, D.M.; Lacava, Z.G.; Lima, E.C.; Morais, P.C.; Tedesco, A.C. Zinc phthalocyanine/magnetic fluid complex: a promising dual nanostructured system for cancer treatment. J. Nanosci. Nanotechnol., 2006, 6(8), 2432-2437.
[http://dx.doi.org/10.1166/jnn.2006.512] [PMID: 17037852]
[55]
Bolfarini, G.C.; Siqueira-Moura, M.P.; Demets, G.J.; Morais, P.C.; Tedesco, A.C. In vitro evaluation of combined hyperthermia and photodynamic effects using magneto liposomes loaded with cucurbituril zinc phthalocyanine complex on melanoma. J. Photochem. Photobiol. B, 2012, 115, 1-4.
[http://dx.doi.org/10.1016/j.jphotobiol.2012.05.009] [PMID: 22854225]
[56]
Sun, L.; Li, Q.; Zhang, L.; Chai, H.; Yu, L.; Xu, Z.; Kang, Y.; Xue, P. Stimuli responsive PEGylated bismuth selenide hollow nanocapsules for fluorescence/CT imaging and light-driven multimodal tumor therapy. Biomater. Sci., 2019, 7(7), 3025-3040.
[http://dx.doi.org/10.1039/C9BM00351G] [PMID: 31115395]
[57]
Gandhi, S.; Roy, I. Methylene blue loaded, silica coated cobalt ferrite nanoparticles with potential for combination therapy. Mater. Res. Express, 2019, 6(7), e074005.
[http://dx.doi.org/10.1088/2053-1591/ab187a]
[58]
Sahu, A.; Choi, W.I.; Lee, J.H.; Tae, G. Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy. Biomaterials, 2013, 34(26), 6239-6248.
[http://dx.doi.org/10.1016/j.biomaterials.2013.04.066] [PMID: 23706688]
[59]
Kalluru, P.; Vankayala, R.; Chiang, C.S.; Hwang, K.C. Nano-graphene oxide-mediated In vivo fluorescence imaging and bimodal photodynamic and photothermal destruction of tumors. Biomaterials, 2016, 95, 1-10.
[http://dx.doi.org/10.1016/j.biomaterials.2016.04.006] [PMID: 27108401]
[60]
Marangon, I.; Ménard-Moyon, C.; Silva, A.K.A.; Bianco, A.; Luciani, N.; Gazeau, F. Synergic mechanisms of photothermal and photodynamic therapies mediated by photosensitizer/carbon nanotube complexes. Carbon, 2016, 97, 110-123.
[http://dx.doi.org/10.1016/j.carbon.2015.08.023]
[61]
Kah, J.C.; Wan, R.C.; Wong, K.Y.; Mhaisalkar, S.; Sheppard, C.J.; Olivo, M. Combinatorial treatment of photothermal therapy using gold nanoshells with conventional photodynamic therapy to improve treatment efficacy: an in vitro study. Lasers Surg. Med., 2008, 40(8), 584-589.
[http://dx.doi.org/10.1002/lsm.20674] [PMID: 18798290]
[62]
Jang, B.; Park, J.Y.; Tung, C.H.; Kim, I.H.; Choi, Y. Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano, 2011, 5(2), 1086-1094.
[http://dx.doi.org/10.1021/nn102722z] [PMID: 21244012]
[63]
Yu, M.; Guo, F.; Wang, J.; Tan, F.; Li, N. Photosensitizer-loaded pH-responsive hollow gold nanospheres for single light-induced photothermal/photodynamic therapy. ACS Appl. Mater. Interfaces, 2015, 7(32), 17592-17597.
[http://dx.doi.org/10.1021/acsami.5b05763] [PMID: 26248033]
[64]
Tang, P.; Liu, Y.; Liu, Y.; Meng, H.; Liu, Z.; Li, K.; Wu, D. Thermochromism-induced temperature self-regulation and alternating photothermal nanohelix clusters for synergistic tumor chemo/photothermal therapy. Biomaterials, 2019, 188, 12-23.
[http://dx.doi.org/10.1016/j.biomaterials.2018.10.008] [PMID: 30317112]
[65]
Gorgizadeh, M.; Azarpira, N.; Lotfi, M.; Daneshvar, F.; Salehi, F.; Sattarahmady, N. Sonodynamic cancer therapy by a nickel ferrite/carbon nanocomposite on melanoma tumor: in vitro and in vivo studies. Photodiagn. Photodyn. Ther., 2019, 27, 27-33.
[http://dx.doi.org/10.1016/j.pdpdt.2019.05.023] [PMID: 31116998]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 7
Year: 2020
Published on: 15 September, 2020
Page: [577 - 587]
Pages: 11
DOI: 10.2174/1567201817666200525004225
Price: $65

Article Metrics

PDF: 36
HTML: 3