Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Review Article

Nanotechnological Improvement of Veterinary Anthelmintics

Author(s): Rodrigo Sanabria*

Volume 9, Issue 1, 2021

Published on: 24 May, 2020

Page: [5 - 14] Pages: 10

DOI: 10.2174/2211738508666200524233724

Abstract

Helminths infections are among the most important problems in animal health and husbandry. Moreover, zoonotic helminths endanger rural communities, particularly in developing countries. Helminthiasis are not only important in relation to the harmful effects of parasites; additional issues like anthelmintic resistance spread became more important over time.

As new anthelmintic development takes many years and millions of dollars of investment, some strategies are currently focused on the modification of already available drugs, in order to improve their efficacy and overcome their limitations. In this field, nanotechnology has brought a novel approach, showing advantages like the regulation of the drug’s delivery and kinetics, reaching of specific targets, and possibilities to avoid the systemic spread and side effects.

Taking this into account, the present review aims to introduce some of the current knowledge in anthelmintic improvement based on nanotechnology, and how researchers could benefit from this technology in order to overcome the drugs limitations.

Finally, some insights into potential field applications are discussed, based on the most important concerns of current anthelmintic therapy.

Keywords: Anthelmintic resistance, helminth, livestock, nanoparticles, pharmacokinetic, target, zoonotic.

Graphical Abstract
[1]
Beesley NJ, Williams DJ, Paterson S, Hodgkinson J. Fasciola hepatica demonstrates high levels of genetic diversity, a lack of population structure and high gene flow: possible implications for drug resistance. Int J Parasitol 2017; 47(1): 11-20.
[http://dx.doi.org/10.1016/j.ijpara.2016.09.007] [PMID: 27940066]
[2]
Boray JC. Liver fluke disease in sheep and cattle. Australia: Agfact - NSW Agriculture 1993; p. 16.
[3]
Esteban JG, González C, Bargues MD, et al. High fascioliasis infection in children linked to a man-made irrigation zone in Peru. Trop Med Int Health 2002; 7(4): 339-48.
[http://dx.doi.org/10.1046/j.1365-3156.2002.00870.x] [PMID: 11952950]
[4]
Thornton PK. Livestock production: Recent trends, future prospects. Philos Trans R Soc Lond B Biol Sci 2010; 365(1554): 2853-67.
[http://dx.doi.org/10.1098/rstb.2010.0134] [PMID: 20713389]
[5]
Fox NJ, Marion G, Davidson RS, White PC, Hutchings MR. Livestock helminths in a changing climate: Approaches and restrictions to meaningful predictions. Animals (Basel) 2012; 2(1): 93-107.
[http://dx.doi.org/10.3390/ani2010093] [PMID: 26486780]
[6]
Geurden T, Chartier C, Fanke J, et al. Anthelmintic resistance to ivermectin and moxidectin in gastrointestinal nematodes of cattle in Europe. Int J Parasitol Drugs Drug Resist 2015; 5(3): 163-71.
[http://dx.doi.org/10.1016/j.ijpddr.2015.08.001] [PMID: 26448902]
[7]
Lanusse C, Canton C, Virkel G, Alvarez L, Costa-Junior L, Lifschitz A. Strategies to optimize the efficacy of anthelmintic drugs in ruminants. Trends Parasitol 2018; 34(8): 664-82.
[http://dx.doi.org/10.1016/j.pt.2018.05.005] [PMID: 29960843]
[8]
Õmura S, Crump A. The life and times of ivermectin - a success story. Nat Rev Microbiol 2004; 2(12): 984-9.
[http://dx.doi.org/10.1038/nrmicro1048] [PMID: 15550944]
[9]
Lifschitz A, Sallovitz J, Imperiale F, Pis A, Jauregui Lorda J, Lanusse C. Pharmacokinetic evaluation of four ivermectin generic formulations in calves. Vet Parasitol 2004; 119(2-3): 247-57.
[http://dx.doi.org/10.1016/j.vetpar.2003.11.003] [PMID: 14746983]
[10]
Prichard R. Anthelmintic resistance. Vet Parasitol 1994; 54(1-3): 259-68.
[http://dx.doi.org/10.1016/0304-4017(94)90094-9] [PMID: 7846855]
[11]
Geary TG. Ivermectin 20 years on: maturation of a wonder drug. Trends Parasitol 2005; 21(11): 530-2.
[http://dx.doi.org/10.1016/j.pt.2005.08.014] [PMID: 16126457]
[12]
Waruiru RM. Efficacy of closantel, albendazole and levamisole on an ivermectin resistant strain of Haemonchus contortus in sheep. Vet Parasitol 1997; 73(1-2): 65-71.
[http://dx.doi.org/10.1016/S0304-4017(97)00065-4] [PMID: 9477493]
[13]
Robson D E, Matias DA, Bastos AG, et al. Anthelmintic efficacy of trichlorfon and blood parameters of young lambs infected with Haemonchus contortus. Vet Parasitol 2019; 272: 40-3.
[http://dx.doi.org/10.1016/j.vetpar.2019.06.015] [PMID: 31395203]
[14]
Jeyahilakan N, Karunakaran P, Mathivanan R, Karunanithi K. Observation on toxic effect of levamisole in small ruminants. Indian J Small Ruminants 2002; 8: 147-8.
[15]
Almeida FA, Garcia KC, Torgerson PR, Amarante AF. Multiple resistance to anthelmintics by Haemonchus contortus and Trichostrongylus colubriformis in sheep in Brazil. Parasitol Int 2010; 59(4): 622-5.
[http://dx.doi.org/10.1016/j.parint.2010.09.006] [PMID: 20887800]
[16]
Buss Baiak B, Lehnen C, Abdallah da Rocha R. Anthelmintic resistance in cattle: A systematic review and meta-analysis. Livest Sci 2018; 217: 127-35.
[http://dx.doi.org/10.1016/j.livsci.2018.09.022]
[17]
Jimenez Castro PD, Howell SB, Schaefer JJ, Avramenko RW, Gilleard JS, Kaplan RM. Multiple drug resistance in the canine hookworm Ancylostoma caninum: an emerging threat? Parasit Vectors 2019; 12(1): 576.
[http://dx.doi.org/10.1186/s13071-019-3828-6] [PMID: 31818311]
[18]
Furtado LFV, Medeiros CDS, Zuccherato LW, et al. First identification of the benzimidazole resistance-associated F200Y SNP in the beta-tubulin gene in Ascaris lumbricoides. PLoS One 2019; 14(10)e0224108
[http://dx.doi.org/10.1371/journal.pone.0224108 ] [PMID: 31622428] [PMID: 31622428]
[19]
DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: New estimates of R&D costs. J Health Econ 2016; 47: 20-33.
[http://dx.doi.org/10.1016/j.jhealeco.2016.01.012] [PMID: 26928437]
[20]
Bartley DJ, Devin L, Nath M, Morrison AA. Selection and characterisation of monepantel resistance in Teladorsagia circumcincta isolates. Int J Parasitol Drugs Drug Resist 2015; 5(2): 69-76.
[http://dx.doi.org/10.1016/j.ijpddr.2015.05.001] [PMID: 26042197]
[21]
Leathwick DM, Miller CM. Efficacy of oral, injectable and pour-on formulations of moxidectin against gastrointestinal nematodes in cattle in New Zealand. Vet Parasitol 2013; 191(3-4): 293-300.
[http://dx.doi.org/10.1016/j.vetpar.2012.09.020] [PMID: 23063773]
[22]
Scott I, Pomroy WE, Kenyon PR, Smith G, Adlington B, Moss A. Lack of efficacy of monepantel against Teladorsagia circumcincta and Trichostrongylus colubriformis. Vet Parasitol 2013; 198(1-2): 166-71.
[http://dx.doi.org/10.1016/j.vetpar.2013.07.037] [PMID: 23953148]
[23]
Bai DP, Lin XY, Huang YF, Zhang XF. Theranostics Aspects of Various Nanoparticles in Veterinary Medicine. Int J Mol Sci 2018; 19(11): 3299.
[http://dx.doi.org/10.3390/ijms19113299] [PMID: 30352960]
[24]
Youssef FS, El-Banna HA, Elzorba HY, Galal AM. Application of some nanoparticles in the field of veterinary medicine. Int J Vet Sci Med 2019; 7(1): 78-93.
[http://dx.doi.org/10.1080/23144599.2019.1691379] [PMID: 32010725]
[25]
Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano 2009; 3(1): 16-20.
[http://dx.doi.org/10.1021/nn900002m] [PMID: 19206243]
[26]
Zhou HC, Long JR, Yaghi OM. Introduction to metal-organic frameworks. Chem Rev 2012; 112(2): 673-4.
[http://dx.doi.org/10.1021/cr300014x] [PMID: 22280456]
[27]
Yadav H, Almokdad A, Shaluf S, Debe M. Polymer-based nanomaterials for drug-delivery carriers In: Shyam S Mohapatra, SR, Thomas S, edsNanocarriers for Drug Delivery. Amsterdam: Elsevier 2018; pp. 531-56.
[28]
Desale S, Zhang J, Bronich T. Syntetic polymer-based nanomaterials. In: Zheng-Rong L, Sakuma S, Eds. Nanomaterials in pharmacology, New York: Springer. 2016; pp. 1-26.
[http://dx.doi.org/10.1007/978-1-4939-3121-7_1]
[29]
Ali M, Afzal M, Verma M, et al. Therapeutic efficacy of poly (lactic-co-glycolic acid) nanoparticles encapsulated ivermectin (nano-ivermectin) against brugian filariasis in experimental rodent model. Parasitol Res 2014; 113(2): 681-91.
[http://dx.doi.org/10.1007/s00436-013-3696-5] [PMID: 24366812]
[30]
Castro SG, Sanchez Bruni SF, Urbizu LP, et al. Enhanced dissolution and systemic availability of albendazole formulated as solid dispersions. Pharm Dev Technol 2013; 18(2): 434-42.
[http://dx.doi.org/10.3109/10837450.2012.693509] [PMID: 22670782]
[31]
Pensel PE, Castro S, Allemandi D, Bruni SS, Palma SD, Elissondo MC. Enhanced chemoprophylactic and clinical efficacy of albendazole formulated as solid dispersions in experimental cystic echinococcosis. Vet Parasitol 2014; 203(1-2): 80-6.
[http://dx.doi.org/10.1016/j.vetpar.2014.01.027] [PMID: 24572043]
[32]
Farhadi M, Haniloo A, Rostamizadeh K, Faghihzadeh S. Efficiency of flubendazole-loaded mPEG-PCL nanoparticles: A promising formulation against the protoscoleces and cysts of Echinococcus granulosus. Acta Trop 2018; 187: 190-200.
[http://dx.doi.org/10.1016/j.actatropica.2018.08.010] [PMID: 30098942]
[33]
George A, Shah PA, Shrivastav PS. Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int J Pharm 2019; 561: 244-64.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.011] [PMID: 30851391]
[34]
Hu L, Sun Y, Wu Y. Advances in chitosan-based drug delivery vehicles. Nanoscale 2013; 5(8): 3103-11.
[http://dx.doi.org/10.1039/c3nr00338h] [PMID: 23515527]
[35]
Li P, Yang Z, Wang Y, et al. Microencapsulation of coupled folate and chitosan nanoparticles for targeted delivery of combination drugs to colon. J Microencapsul 2015; 32(1): 40-5.
[http://dx.doi.org/10.3109/02652048.2014.944947] [PMID: 25198909]
[36]
Wang Y, Li P, Chen L, Gao W, Zeng F, Kong LX. Targeted delivery of 5-fluorouracil to HT-29 cells using high efficient folic acidconjugated nanoparticles. Drug Deliv 2015; 22(2): 191-8.
[http://dx.doi.org/10.3109/10717544.2013.875603] [PMID: 24437926]
[37]
Rahbar M, Morsali A, Bozorgmehr M, Beyrambadi A. Quantum chemical studies of chitosan nanoparticles as effective drug delivery systems for 5-fluorouracil anticancer drug. J Mol Liq 2020; 302112495
[http://dx.doi.org/10.1016/j.molliq.2020.112495]]
[38]
Ribeiro WL, Macedo IT, dos Santos JM, et al. Activity of chitosan-encapsulated Eucalyptus staigeriana essential oil on Haemonchus contortus. Exp Parasitol 2013; 135(1): 24-9.
[http://dx.doi.org/10.1016/j.exppara.2013.05.014] [PMID: 23748159]
[39]
de Aquino Mesquita M , E Silva Júnior JB, Panassol AM, et al. Anthelmintic activity of Eucalyptus staigeriana encapsulated oil on sheep gastrointestinal nematodes. Parasitol Res 2013; 112(9): 3161-5.
[http://dx.doi.org/10.1007/s00436-013-3492-2] [PMID: 23783400]
[40]
Priotti J, Codina AV, Leonardi D, Vasconi MD, Hinrichsen LI, Lamas MC. Albendazole microcrystal formulations based on chitosan and cellulose derivatives: physicochemical characterization and in vitro parasiticidal activity in Trichinella spiralis adult worms. AAPS PharmSciTech 2017; 18(4): 947-56.
[http://dx.doi.org/10.1208/s12249-016-0659-z] [PMID: 27882479]
[41]
Ceballos L, Krolewiecki A, Juárez M, et al. Assessment of serum pharmacokinetics and urinary excretion of albendazole and its metabolites in human volunteers. PLoS Negl Trop Dis 2018; 12(1)e0005945
[http://dx.doi.org/10.1371/journal.pntd.0005945] [PMID: 29346367]
[42]
Boray JC, Jackson R, Strong MB. Chemoprophylaxis of fascioliasis with triclabendazole. N Z Vet J 1985; 33(11): 182-5.
[http://dx.doi.org/10.1080/00480169.1985.35224] [PMID: 16031109]
[43]
Moll L, Gaasenbeek CP, Vellema P, Borgsteede FH. Resistance of Fasciola hepatica against triclabendazole in cattle and sheep in The Netherlands. Vet Parasitol 2000; 91(1-2): 153-8.
[http://dx.doi.org/10.1016/S0304-4017(00)00267-3] [PMID: 10889368]
[44]
Kelley JM, Elliott TP, Beddoe T, Anderson G, Skuce P, Spithill TW. Current threat of triclabendazole resistance in Fasciola hepatica. Trends Parasitol 2016; 32(6): 458-69.
[http://dx.doi.org/10.1016/j.pt.2016.03.002] [PMID: 27049013]
[45]
Real D, Hoffmann S, Leonardi D, Salomon C, Goycoolea FM. Chitosan-based nanodelivery systems applied to the development of novel triclabendazole formulations. PLoS One 2018; 13(12)e0207625
[http://dx.doi.org/10.1371/journal.pone.0207625] [PMID: 30540811]
[46]
Wissing SA, Kayser O, Müller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 2004; 56(9): 1257-72.
[http://dx.doi.org/10.1016/j.addr.2003.12.002] [PMID: 15109768]
[47]
Müller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 2002; 242(1-2): 121-8.
[http://dx.doi.org/10.1016/S0378-5173(02)00180-1] [PMID: 12176234]
[48]
Vemuri S, Rhodes CT. Preparation and characterization of liposomes as therapeutic delivery systems: A review. Pharm Acta Helv 1995; 70(2): 95-111.
[http://dx.doi.org/10.1016/0031-6865(95)00010-7] [PMID: 7651973]
[49]
Wen H, New RR, Muhmut M, et al. Pharmacology and efficacy of liposome-entrapped albendazole in experimental secondary alveolar echinococcosis and effect of co-administration with cimetidine. Parasitology 1996; 113(Pt 2): 111-21.
[http://dx.doi.org/10.1017/S003118200006635X] [PMID: 8760312]
[50]
Frezza TF, Gremião MP, Zanotti-Magalhães EM, Magalhães LA, de Souza AL, Allegretti SM. Liposomal-praziquantel: Efficacy against Schistosoma mansoni in a preclinical assay. Acta Trop 2013; 128(1): 70-5.
[http://dx.doi.org/10.1016/j.actatropica.2013.06.011] [PMID: 23811113]
[51]
Owais M, Misra-Bhattacharya S, Haq W, Gupta CM. Immunomodulator tuftsin augments antifilarial activity of diethylcarbamazine against experimental Brugian filariasis. J Drug Target 2003; 11(4): 247-51.
[http://dx.doi.org/10.1080/10611860310001620707] [PMID: 14578113]
[52]
Xie S, Pan B, Shi B, et al. Solid lipid nanoparticle suspension enhanced the therapeutic efficacy of praziquantel against tapeworm. Int J Nanomedicine 2011; 6: 2367-74.
[PMID: 22072873]
[53]
Ahmadpour E, Godrati-Azar Z, Spotin A, et al. Nanostructured lipid carriers of ivermectin as a novel drug delivery system in hydatidosis. Parasit Vectors 2019; 12(1): 469.
[http://dx.doi.org/10.1186/s13071-019-3719-x] [PMID: 31601244]
[54]
Gamboa GV, Palma SD, Lifschitz A, et al. Ivermectin-loaded lipid nanocapsules: toward the development of a new antiparasitic delivery system for veterinary applications. Parasitol Res 2016; 115(5): 1945-53.
[http://dx.doi.org/10.1007/s00436-016-4937-1] [PMID: 26852126]
[55]
Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev 2005; 57(15): 2215-37.
[http://dx.doi.org/10.1016/j.addr.2005.09.019] [PMID: 16297497]
[56]
Szymanski P, Markowicz M, Mikiciuk-Olasik E. Nanotechnology in pharmaceutical and biomedical applications: Dendrimers. Nano 2011; 06: 509-39.
[http://dx.doi.org/10.1142/S1793292011002871]
[57]
Klajnert B, Bryszewska M. Dendrimers: properties and applications. Acta Biochim Pol 2001; 48(1): 199-208.
[http://dx.doi.org/10.18388/abp.2001_5127] [PMID: 11440170]
[58]
Garg T, Singh O, Arora S, Murthy R. Dendrimer: a novel scaffold for drug delivery 2011.
[59]
Tripathy S, Das M. Dendrimers and their applications as novel drug delivery carriers. J Appl Pharm Sci 2013; 3: 142-9.
[60]
Fernández L, Sigal E, Otero L, Silber J, Santo M. Solubility improvement of an anthelmintic benzimidazole carbamate by association with dendrimers. Braz J Chem Eng 2011; 28: 679-89.
[http://dx.doi.org/10.1590/S0104-66322011000400013]
[61]
Mansuri S, Kesharwani P, Tekade RK, Jain NK. Lyophilized mucoadhesive-dendrimer enclosed matrix tablet for extended oral delivery of albendazole. Eur J Pharm Biopharm 2016; 102: 202-13.
[http://dx.doi.org/10.1016/j.ejpb.2015.10.015] [PMID: 26563727]
[62]
Devarakonda B, Hill RA, Liebenberg W, Brits M, de Villiers MM. Comparison of the aqueous solubilization of practically insoluble niclosamide by polyamidoamine (PAMAM) dendrimers and cyclodextrins. Int J Pharm 2005; 304(1-2): 193-209.
[http://dx.doi.org/10.1016/j.ijpharm.2005.07.023] [PMID: 16198076]
[63]
Aderibigbe BA. Metal-based nanoparticles for the treatment of infectious diseases. Molecules 2017; 22(8): 1370.
[http://dx.doi.org/10.3390/molecules22081370] [PMID: 28820471]
[64]
Hang X, Peng H, Song H, Qi Z, Miao X, Xu W. Antiviral activity of cuprous oxide nanoparticles against Hepatitis C Virus in vitro. J Virol Methods 2015; 222: 150-7.
[http://dx.doi.org/10.1016/j.jviromet.2015.06.010] [PMID: 26116793]
[65]
Rashid MM, Ferdous J, Banik S, Islam MR, Uddin AH, Robel FN. Anthelmintic activity of silver-extract nanoparticles synthesized from the combination of silver nanoparticles and M. charantia fruit extract. BMC Complement Altern Med 2016; 16: 242.
[http://dx.doi.org/10.1186/s12906-016-1219-5] [PMID: 27457362]
[66]
Choi SR, Britigan BE, Narayanasamy P. Ga (III) nanoparticles inhibit growth of both Mycobacterium tuberculosis and HIV and release of interleukin-6 (IL-6) and IL-8 in coinfected macrophages. Antimicrob Agents Chemother 2017; 61(4): e02505-16.
[http://dx.doi.org/10.1128/AAC.02505-16] [PMID: 28167548]
[67]
Tikariha S, Singh S, Banerjee S, Vidyarthi A. Biosynthesis of gold nanoparticles, scope and applications: a review. Int J Pharm Res 2012; 3: 1603-15.
[68]
Kar PK, Murmu S, Saha S, Tandon V, Acharya K. Anthelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus, Nigrospora oryzae. PLoS One 2014; 9(1)e84693
[http://dx.doi.org/10.1371/journal.pone.0084693] [PMID: 24465424]
[69]
Khan YA, Singh BR, Ullah R, Shoeb M, Naqvi AH, Abidi SM. Anthelmintic effect of biocompatible zinc oxide nanoparticles (ZnO NPs) on Gigantocotyle explanatum, a neglected parasite of indian water buffalo. PLoS One 2015; 10(7)e0133086
[http://dx.doi.org/10.1371/journal.pone.0133086] [PMID: 26177503]
[70]
Rehman A, Ullah R, Uddin I, Zia I, Rehman L, Abidi SMA. In vitro anthelmintic effect of biologically synthesized silver nanoparticles on liver amphistome, Gigantocotyle explanatum. Exp Parasitol 2019; 198: 95-104.
[http://dx.doi.org/10.1016/j.exppara.2019.02.005] [PMID: 30769019]
[71]
Rolfe PF, Boray JC. Chemotherapy of paramphistomosis in sheep. Aust Vet J 1988; 65(5): 148-50.
[http://dx.doi.org/10.1111/j.1751-0813.1988.tb14443.x] [PMID: 3401161]
[72]
Sanabria R, Moreno L, Alvarez L, Lanusse C, Romero J. Efficacy of oxyclozanide against adult Paramphistomum leydeni in naturally infected sheep. Vet Parasitol 2014; 206(3-4): 277-81.
[http://dx.doi.org/10.1016/j.vetpar.2014.09.022] [PMID: 25458118]
[73]
Dorostkar R, Ghalavand M, Nazarizadeh A, Tat M, Hasemzadeh M. Anthelmintic effects of zinc oxide and iron oxide nanoparticles against Toxocara vitulorum. Int Nano Lett 2017; 7: 157.
[http://dx.doi.org/10.1007/s40089-016-0198-3]
[74]
Dayan AD. Albendazole, mebendazole and praziquantel. Review of non-clinical toxicity and pharmacokinetics. Acta Trop 2003; 86(2-3): 141-59.
[http://dx.doi.org/10.1016/S0001-706X(03)00031-7] [PMID: 12745134]
[75]
Cioli D, Pica-Mattoccia L. Praziquantel. Parasitol Res 2003; 90(Suppl. 1): S3-9.
[http://dx.doi.org/10.1007/s00436-002-0751-z] [PMID: 12811543]
[76]
Meteleva E, Chistyachenko Y, Suntsova L, et al. Disodium salt of glycyrrhizic acid – A novel supramolecular delivery system for anthelmintic drug praziquantel. J Drug Deliv Sci Tec 2019.
[http://dx.doi.org/10.1016/j.jddst.2019.01.014]
[77]
Vinarov Z, Gancheva G, Katev V, Tcholakova SS. Albendazole solution formulation via vesicle-to-micelle transition of phospholipid-surfactant aggregates. Drug Dev Ind Pharm 2018; 44(7): 1130-8.
[http://dx.doi.org/10.1080/03639045.2018.1438461] [PMID: 29412014]
[78]
El-Feky GS, Mohamed WS, Nasr HE, El-Lakkany NM, Seif El-Din SH, Botros SS. Praziquantel in a clay nanoformulation shows more bioavailability and higher efficacy against murine Schistosoma mansoni infection. Antimicrob Agents Chemother 2015; 59(6): 3501-8.
[http://dx.doi.org/10.1128/AAC.04875-14] [PMID: 25845870]
[79]
Koradia K, Parikh R, Koraida H. Albendazole nanocrystals: Optimization, spectroscopic, thermal and anthelmintic studies. J Drug Deliv Sci Technol 2018; 43: 369-78.
[http://dx.doi.org/10.1016/j.jddst.2017.11.003]
[80]
Mohanty N, Palai T, Prusty B, Mohapatra J. An overview of nanomedicine in veterinary science. Vet Res (Faisalabad) 2014; 2: 90-5.
[81]
Shakir M, Faraz M, Shoeb Khan M, Al-Resayes S. The photocatalytic, in vitro anthelmintic activity of biomolecule-inspired CDS nanoparticles. C R Chim 2015; 18: 966-78.
[http://dx.doi.org/10.1016/j.crci.2015.07.009]
[82]
Bahadar H, Maqbool F, Niaz K, Abdollahi M. Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 2016; 20(1): 1-11.
[PMID: 26286636]
[83]
Griffitt RJ, Hyndman K, Denslow ND, Barber DS. Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol Sci 2009; 107(2): 404-15.
[http://dx.doi.org/10.1093/toxsci/kfn256] [PMID: 19073994]
[84]
Yao Y, Zang Y, Qu J, Tang M, Zhang T. The toxicity of metallic nanoparticles on liver: the subcellular damages, mechanisms, and outcomes. Int J Nanomedicine 2019; 14: 8787-804.
[http://dx.doi.org/10.2147/IJN.S212907] [PMID: 31806972]
[85]
Liu F, Chang X, Tian M, et al. Nano NiO induced liver toxicity via activating the NF-κB signaling pathway in rats. Toxicol Res (Camb) 2017; 6(2): 242-50.
[http://dx.doi.org/10.1039/C6TX00444J] [PMID: 30090495]
[86]
Magaye RR, Yue X, Zou B, et al. Acute toxicity of nickel nanoparticles in rats after intravenous injection. Int J Nanomedicine 2014; 9: 1393-402.
[PMID: 24648736]
[87]
Suker DK, Jasim FA. Liver histopathological alteration after repeated intra-tracheal instillation of titanium dioxide in male rats. Gastroenterol Hepatol Bed Bench 2018; 11(2): 159-68.
[PMID: 29910858]
[88]
Bartneck M, Ritz T, Keul HA, et al. Peptide-functionalized gold nanorods increase liver injury in hepatitis. ACS Nano 2012; 6(10): 8767-77.
[http://dx.doi.org/10.1021/nn302502u] [PMID: 22994679]
[89]
Auffan M, Rose J, Wiesner MR, Bottero JY. Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ Pollut 2009; 157(4): 1127-33.
[http://dx.doi.org/10.1016/j.envpol.2008.10.002] [PMID: 19013699]
[90]
Derfus AM, Chan WCW, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 2004; 4(1): 11-8.
[http://dx.doi.org/10.1021/nl0347334] [PMID: 28890669]
[91]
Poland CA, Duffin R, Kinloch I, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 2008; 3(7): 423-8.
[http://dx.doi.org/10.1038/nnano.2008.111] [PMID: 18654567]
[92]
Cho M, Cho WS, Choi M, et al. The impact of size on tissue distribution and elimination by single intravenous injection of silica nanoparticles. Toxicol Lett 2009; 189(3): 177-83.
[http://dx.doi.org/10.1016/j.toxlet.2009.04.017] [PMID: 19397964]
[93]
Cho WS, Choi M, Han BS, et al. Inflammatory mediators induced by intratracheal instillation of ultrafine amorphous silica particles. Toxicol Lett 2007; 175(1-3): 24-33.
[http://dx.doi.org/10.1016/j.toxlet.2007.09.008] [PMID: 17981407]
[94]
Prichard R, Ménez C, Lespine A. Moxidectin and the avermectins: Consanguinity but not identity. Int J Parasitol Drugs Drug Resist 2012; 2: 134-53.
[http://dx.doi.org/10.1016/j.ijpddr.2012.04.001] [PMID: 24533275]
[95]
Lloberas M, Alvarez L, Entrocasso C, Virkel G, Lanusse C, Lifschitz A. Measurement of ivermectin concentrations in target worms and host gastrointestinal tissues: influence of the route of administration on the activity against resistant Haemonchus contortus in lambs. Exp Parasitol 2012; 131(3): 304-9.
[http://dx.doi.org/10.1016/j.exppara.2012.04.014] [PMID: 22575734]
[96]
Fazzio L, Moreno L, Galvan W, et al. Pharmacokinetic profile and anthelmintic efficacy of moxidectin administered by different doses and routes to feedlot calves. Vet Parasitol 2019; 266: 73-9.
[http://dx.doi.org/10.1016/j.vetpar.2018.12.016] [PMID: 30736951]
[97]
Leathwick DM, Miller CM, Sauermann CW, et al. The efficacy and plasma profiles of abamectin plus levamisole combination anthelmintics administered as oral and pour-on formulations to cattle. Vet Parasitol 2016; 227: 85-92.
[http://dx.doi.org/10.1016/j.vetpar.2016.07.031] [PMID: 27523943]
[98]
Zhang L, Radovic-Moreno AF, Alexis F, et al. Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle-aptamer bioconjugates. ChemMedChem 2007; 2(9): 1268-71.
[http://dx.doi.org/10.1002/cmdc.200700121] [PMID: 17600796]
[99]
Huang F, You M, Chen T, Zhu G, Liang H, Tan W. Self-assembled hybrid nanoparticles for targeted co-delivery of two drugs into cancer cells. Chem Commun (Camb) 2014; 50(23): 3103-5.
[http://dx.doi.org/10.1039/c3cc49003c] [PMID: 24516863]
[100]
Skalko-Basnet N. Biologics: the role of delivery systems in improved therapy. Biologics 2014; 8: 107-14.
[http://dx.doi.org/10.2147/BTT.S38387] [PMID: 24672225]
[101]
Jiao Z, Chen Y, Wan Y, Zhang H, Jiao Z. Anticancer efficacy enhancement and attenuation of side effects of doxorubicin with titanium dioxide nanoparticles. Int J Nanomed 6: 2321.
[102]
Singh B, Varikuti S, Halsey G, Volpedo G, Hamza OM, Satoskar AR. Host-directed therapies for parasitic diseases. Future Med Chem 2019; 11(15): 1999-2018.
[http://dx.doi.org/10.4155/fmc-2018-0439] [PMID: 31390889]
[103]
Macedo MS, Faquim-Mauro E, Ferreira AP, Abrahamsohn IA. Immunomodulation induced by Ascaris suum extract in mice: effect of anti-interleukin-4 and anti-interleukin-10 antibodies. Scand J Immunol 1998; 47(1): 10-8.
[http://dx.doi.org/10.1046/j.1365-3083.1998.00251.x] [PMID: 9467652]
[104]
Oyinloye B, Adenowo F, Gxaba N, Kappo A. The promise of antimicrobial peptides for treatment of human schistosomiasis. Curr Drug Targets 2014; 15(9): 852-9.
[http://dx.doi.org/10.2174/1389450115666140807154810] [PMID: 25101908]
[105]
Nowacek A, Kosloski LM, Gendelman HE. Neurodegenerative disorders and nanoformulated drug development. Nanomedicine (Lond) 2009; 4(5): 541-55.
[http://dx.doi.org/10.2217/nnm.09.37 ] [PMID: 19572820]

© 2024 Bentham Science Publishers | Privacy Policy