Anti-inflammatory Augmentation Therapy in Obsessive-compulsive Disorder: A Review

Author(s): Hanie Ghasemi, Homa Nomani, Amirhossein Sahebkar*, Amir Hooshang Mohammadpour*

Journal Name: Letters in Drug Design & Discovery

Volume 17 , Issue 10 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Obsessive-Compulsive Disorder (OCD) is considered as a serious disabling psychiatric disorder, influencing 2-3% of the total general population, with an unknown etiology.

Methods: A comprehensive literature search in electronic databases was performed to investigate treatments targeting inflammation in patients suffering from OCD.

Results: Recent studies display that inflammation processes and the dysfunction of the immune system are likely to play a role in the pathophysiology of OCD, indicating that the disturbances in neurotransmitters such as serotonin and dopamine cannot be alone involved in the development of OCD. Therefore, it seems that medications with anti-inflammatory effects have the potential to be evaluated as a new therapeutic strategy for OCD. However, this issue can be studied closely if OCD etiological factors are thoroughly understood. The present review study aims at gathering all obtained results concerning new treatments targeting inflammation in OCD patients. Reviewing the conducted studies shows that the use of agents with anti-inflammatory properties, including some NSAIDs, Minocycline and Atorvastatin, could lead to promising and intriguing results in the treatment of OCD. Curcumin also showed good efficacy in the reduction of OCD-like behavior when it has been used in an animal model. However, there is still no definitive and conclusive evidence for any of the medications proposed.

Conclusion: More future studies are needed to investigate anti-inflammatory treatment strategies for OCD and its other subtypes such as Pediatric Acute-Onset Neuropsychiatric Syndrome (PANS), and Pediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcal infection (PANDAS).

Keywords: Obsessive-Compulsive Disorder (OCD), neuroinflammation, anti-inflammatory agent, NSAID, corticosteroids, DMARDs.

[1]
Abramowitz, J.S.; Taylor, S.; McKay, D. Obsessive-compulsive disorder. Lancet, 2009, 374(9688), 491-499.
[http://dx.doi.org/10.1016/S0140-6736(09)60240-3] [PMID: 19665647]
[2]
Albert, U.; Bergesio, C.; Pessina, E.; Maina, G.; Bogetto, F. Management of treatment resistant obsessive-compulsive disorder. Algorithms for pharmacotherapy. Panminerva Med., 2002, 44(2), 83-91.
[PMID: 12032425]
[3]
Marazziti, D.; Mucci, F.; Lombardi, A.; Falaschi, V.; Dell’Osso, L. The cytokine profile of OCD: pathophysiological insights. Int. J. Interferon Cytokine Mediat. Res., 2015, 7, 35-42.
[http://dx.doi.org/10.2147/IJICMR.S76710]
[4]
Shalbafan, M.; Mohammadinejad, P.; Shariat, S.-V.; Alavi, K.; Zeinoddini, A.; Salehi, M.; Askari, N.; Akhondzadeh, S. Celecoxib as an adjuvant to fluvoxamine in moderate to severe obsessive compulsive disorder: A double-blind, placebo-controlled, randomized trial. Pharmacopsychiatry , 2015, 48(04/05), 136-140.
[http://dx.doi.org/10.1055/s-0035-1549929]
[5]
Rodríguez, N.; Morer, A.; González-Navarro, E.A.; Serra-Pages, C.; Boloc, D.; Torres, T.; García-Cerro, S.; Mas, S.; Gassó, P.; Lázaro, L. Inflammatory dysregulation of monocytes in pediatric patients with obsessive-compulsive disorder. J. Neuroinflammation, 2017, 14(1), 261.
[http://dx.doi.org/10.1186/s12974-017-1042-z] [PMID: 29284508]
[6]
Attwells, S.; Setiawan, E.; Wilson, A.A.; Rusjan, P.M.; Mizrahi, R.; Miler, L.; Xu, C.; Richter, M.A.; Kahn, A.; Kish, S.J.; Houle, S.; Ravindran, L.; Meyer, J.H. Inflammation in the neurocircuitry of obsessive-compulsive disorder. JAMA Psychiatry, 2017, 74(8), 833-840.
[http://dx.doi.org/10.1001/jamapsychiatry.2017.1567] [PMID: 28636705]
[7]
Radtke, F.A.; Chapman, G.; Hall, J.; Syed, Y.A. Modulating neuroinflammation to treat neuropsychiatric disorders. BioMed Res. Intl., 2017, 2017, Article ID, 5071786.
[http://dx.doi.org/10.1155/2017/5071786]
[8]
Gray, S.M.; Bloch, M.H. Systematic review of proinflammatory cytokines in obsessive-compulsive disorder. Curr. Psychiatry Rep., 2012, 14(3), 220-228.
[http://dx.doi.org/10.1007/s11920-012-0272-0] [PMID: 22477442]
[9]
Rao, N.P.; Venkatasubramanian, G.; Ravi, V.; Kalmady, S.; Cherian, A.; Yc, J.R. Plasma cytokine abnormalities in drug-naïve, comorbidity-free obsessive-compulsive disorder. Psychiatry Res., 2015, 229(3), 949-952.
[http://dx.doi.org/10.1016/j.psychres.2015.07.009] [PMID: 26187339]
[10]
Çolak Sivri, R.; Bilgiç, A.; Kılınç, İ. Cytokine, chemokine and BDNF levels in medication-free pediatric patients with obsessive-compulsive disorder. Eur. Child Adolesc. Psychiatry, 2018, 27(8), 977-984.
[http://dx.doi.org/10.1007/s00787-017-1099-3] [PMID: 29302747]
[11]
Şimşek, Ş.; Yüksel, T.; Çim, A.; Kaya, S. Serum cytokine profiles of children with obsessive-compulsive disorder shows the evidence of autoimmunity. Int. J. Neuropsychopharmacol., 2016, 19(8), pyw027.
[http://dx.doi.org/10.1093/ijnp/pyw027] [PMID: 27207913]
[12]
Cosco, T.D.; Pillinger, T.; Emam, H.; Solmi, M.; Budhdeo, S.; Matthew Prina, A.; Maes, M.; Stein, D.J.; Stubbs, B.; Carvalho, A.F. Immune aberrations in obsessive-compulsive disorder: A systematic review and meta-analysis. Mol. Neurobiol., 2019, 56(7), 4751-4759.
[http://dx.doi.org/10.1007/s12035-018-1409-x] [PMID: 30382535]
[13]
Uyanik, V.; Tuglu, C.; Gorgulu, Y.; Kunduracilar, H.; Uyanik, M.S. Assessment of cytokine levels and hs-CRP in bipolar I disorder before and after treatment. Psychiatry Res., 2015, 228(3), 386-392.
[http://dx.doi.org/10.1016/j.psychres.2015.05.078] [PMID: 26160203]
[14]
Ekinci, A.; Ekinci, O. The relationships between low grade inflammation, demographic and clinical characteristics in patients with OCD/OKB hastalarinda dusuk dereceli inflamasyonla klinik ve sosyodemografik ozelliklerin iliskisi. Anadolu Psikiyatri Derg., 2017, 18(5), 438-446.
[15]
Luo, F.; Leckman, J.F.; Katsovich, L.; Findley, D.; Grantz, H.; Tucker, D.M.; Lombroso, P.J.; King, R.A.; Bessen, D.E. Prospective longitudinal study of children with tic disorders and/or obsessive-compulsive disorder: relationship of symptom exacerbations to newly acquired streptococcal infections. Pediatrics, 2004, 113(6), e578-e585.
[http://dx.doi.org/10.1542/peds.113.6.e578] [PMID: 15173540]
[16]
Lamothe, H.; Baleyte, J-M.; Smith, P.; Pelissolo, A.; Mallet, L. Individualized immunological data for precise classification of OCD patients. Brain Sci., 2018, 8(8), 149.
[http://dx.doi.org/10.3390/brainsci8080149] [PMID: 30096863]
[17]
Jiang, C.; Ma, X.; Qi, S.; Han, G.; Li, Y.; Liu, Y.; Liu, L. Association between TNF-α-238G/A gene polymorphism and OCD susceptibility: A meta-analysis. Medicine (Baltimore), 2018, 97(5), e9769.
[http://dx.doi.org/10.1097/MD.0000000000009769] [PMID: 29384866]
[18]
Hounie, A.G.; Cappi, C.; Cordeiro, Q.; Sampaio, A.S.; Moraes, I.; Rosário, M.C.; Palácios, S.A.; Goldberg, A.C.; Vallada, H.P.; Machado-Lima, A.; Nakano, E.; Kalil, J.; Pauls, D.; Pereira, C.A.; Guilherme, L.; Miguel, E.C. TNF-alpha polymorphisms are associated with obsessive-compulsive disorder. Neurosci. Lett., 2008, 442(2), 86-90.
[http://dx.doi.org/10.1016/j.neulet.2008.07.022] [PMID: 18639610]
[19]
Renna, M.E.; O’Toole, M.S.; Spaeth, P.E.; Lekander, M.; Mennin, D.S. The association between anxiety, traumatic stress, and obsessive-compulsive disorders and chronic inflammation: A systematic review and meta-analysis. Depress. Anxiety, 2018, 35(11), 1081-1094.
[http://dx.doi.org/10.1002/da.22790] [PMID: 30199144]
[20]
Stein, D.J.; Fineberg, N.A.; Bienvenu, O.J.; Denys, D.; Lochner, C.; Nestadt, G.; Leckman, J.F.; Rauch, S.L.; Phillips, K.A. Should OCD be classified as an anxiety disorder in DSM-V? Depress. Anxiety, 2010, 27(6), 495-506.
[http://dx.doi.org/10.1002/da.20699] [PMID: 20533366]
[21]
Murphy, M.L.; Pichichero, M.E. Prospective identification and treatment of children with pediatric autoimmune neuropsychiatric disorder associated with group A streptococcal infection (PANDAS). Arch. Pediatr. Adolesc. Med., 2002, 156(4), 356-361.
[http://dx.doi.org/10.1001/archpedi.156.4.356] [PMID: 11929370]
[22]
Swedo, S.; Leckman, J.; Rose, N. From research subgroup to clinical syndrome: Modifying the PANDAS criteria to describe PANS (pediatric acute-onset neuropsychiatric syndrome). Pediatr. Therap., 2012, 2(2), 113.
[http://dx.doi.org/10.4172/2161-0665.1000113]
[23]
Swedo, S.E.; Leonard, H.L.; Rapoport, J.L. The pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection (PANDAS) subgroup: Separating fact from fiction. Pediatrics, 2004, 113(4), 907-911.
[http://dx.doi.org/10.1542/peds.113.4.907] [PMID: 15060242]
[24]
Brown, K.; Farmer, C.; Farhadian, B.; Hernandez, J.; Thienemann, M.; Frankovich, J. Pediatric acute-onset neuropsychiatric syndrome response to oral corticosteroid bursts: An observational study of patients in an academic community-based PANS clinic. J. Child Adolesc. Psychopharmacol., 2017, 27(7), 629-639.
[http://dx.doi.org/10.1089/cap.2016.0139] [PMID: 28714753]
[25]
Mitchell, R.H.; Goldstein, B.I. Inflammation in children and adolescents with neuropsychiatric disorders: A systematic review. J. Am. Acad. Child Adolesc. Psychiatry, 2014, 53(3), 274-296.
[http://dx.doi.org/10.1016/j.jaac.2013.11.013] [PMID: 24565356]
[26]
Dean, O.M.; Data-Franco, J.; Giorlando, F.; Berk, M. Minocycline: Therapeutic potential in psychiatry. CNS Drugs, 2012, 26(5), 391-401.
[http://dx.doi.org/10.2165/11632000-000000000-00000] [PMID: 22486246]
[27]
Choi, S-H.; Aid, S.; Bosetti, F. The distinct roles of cyclooxygenase-1 and -2 in neuroinflammation: Implications for translational research. Trends Pharmacol. Sci., 2009, 30(4), 174-181.
[http://dx.doi.org/10.1016/j.tips.2009.01.002] [PMID: 19269697]
[28]
Laine, L. In The gastrointestinal effects of nonselective NSAIDs and COX-2-selective inhibitors, Seminars in arthritis and rheumatism; Elsevier, 2002, pp. 25-32.
[29]
Solomon, D.H.; Husni, M.E.; Libby, P.A.; Yeomans, N.D.; Lincoff, A.M.; Lϋscher, T.F.; Menon, V.; Brennan, D.M.; Wisniewski, L.M.; Nissen, S.E. The risk of major NSAID toxicity with celecoxib, ibuprofen, or naproxen: a secondary analysis of the PRECISION trial. American J. Med., , 2017, 130(12), 1415-1422. e4.
[http://dx.doi.org/10.1016/j.amjmed.2017.06.028]
[30]
Malekpour, F.; Shalbafan, M.; Donboli, S.; Shirazi, E.; Moridia, M. The role of celecoxib in treatment of psychiatric disoedres: A review article. Neurol. Psychol., 2018, 6, 1.
[31]
Abbasi, S-H.; Hosseini, F.; Modabbernia, A.; Ashrafi, M.; Akhondzadeh, S. Effect of celecoxib add-on treatment on symptoms and serum IL-6 concentrations in patients with major depressive disorder: Randomized double-blind placebo-controlled study. J. Affect. Disord., 2012, 141(2-3), 308-314.
[http://dx.doi.org/10.1016/j.jad.2012.03.033] [PMID: 22516310]
[32]
Akhondzadeh, S.; Tabatabaee, M.; Amini, H.; Ahmadi Abhari, S.A.; Abbasi, S.H.; Behnam, B. Celecoxib as adjunctive therapy in schizophrenia: A double-blind, randomized and placebo-controlled trial. Schizophr. Res., 2007, 90(1-3), 179-185.
[http://dx.doi.org/10.1016/j.schres.2006.11.016] [PMID: 17208413]
[33]
Kaizaki, A.; Tien, L-T.; Pang, Y.; Cai, Z.; Tanaka, S.; Numazawa, S.; Bhatt, A.J.; Fan, L-W. Celecoxib reduces brain dopaminergic neuronaldysfunction, and improves sensorimotor behavioral performance in neonatal rats exposed to systemic lipopolysaccharide. J. Neuroinflammation, 2013, 10(1), 45.
[http://dx.doi.org/10.1186/1742-2094-10-45] [PMID: 23561827]
[34]
Garabadu, D.; Kumar, V. Celecoxib potentiates the antianxiety and anticompulsive-like activity of fluoxetine against chronic unpredictable mild stress in experimental animals. Behav. Pharmacol., , 2019, 30(2 and 3-Spec Issue), 251-259.
[http://dx.doi.org/10.1097/FBP.0000000000000468 ] [PMID: 30724800]
[35]
Sayyah, M.; Boostani, H.; Pakseresht, S.; Malayeri, A. A preliminary randomized double-blind clinical trial on the efficacy of celecoxib as an adjunct in the treatment of obsessive-compulsive disorder. Psychiatry Res., 2011, 189(3), 403-406.
[http://dx.doi.org/10.1016/j.psychres.2011.01.019] [PMID: 21329988]
[36]
Oken, R.J. Obsessive-compulsive disorder: A neuronal membrane phospholipid hypothesis and concomitant therapeutic strategy. Med. Hypotheses, 2001, 56(4), 413-415.
[http://dx.doi.org/10.1054/mehy.2000.1147] [PMID: 11339839]
[37]
Garrido-Mesa, N.; Zarzuelo, A.; Gálvez, J. Minocycline: far beyond an antibiotic. Br. J. Pharmacol., 2013, 169(2), 337-352.
[http://dx.doi.org/10.1111/bph.12139] [PMID: 23441623]
[38]
Kielian, T.; Esen, N.; Liu, S.; Phulwani, N.K.; Syed, M.M.; Phillips, N.; Nishina, K.; Cheung, A.L.; Schwartzman, J.D.; Ruhe, J.J. Minocycline modulates neuroinflammation independently of its antimicrobial activity in Staphylococcus aureus-induced brain abscess. Am. J. Pathol., 2007, 171(4), 1199-1214.
[http://dx.doi.org/10.2353/ajpath.2007.070231] [PMID: 17717149]
[39]
Miyaoka, T. Minocycline for schizophrenia: A critical review. Open J. Psychiatr., 2012, 2(04), 399.
[http://dx.doi.org/10.4236/ojpsych.2012.224056]
[40]
Lai, A.Y.; Todd, K.G. Hypoxia-activated microglial mediators of neuronal survival are differentially regulated by tetracyclines. Glia, 2006, 53(8), 809-816.
[http://dx.doi.org/10.1002/glia.20335] [PMID: 16541436]
[41]
Pittenger, C.; Krystal, J.H.; Coric, V. Glutamate-modulating drugs as novel pharmacotherapeutic agents in the treatment of obsessive-compulsive disorder. NeuroRx, 2006, 3(1), 69-81.
[http://dx.doi.org/10.1016/j.nurx.2005.12.006] [PMID: 16490414]
[42]
Esalatmanesh, S.; Abrishami, Z.; Zeinoddini, A.; Rahiminejad, F.; Sadeghi, M.; Najarzadegan, M.R.; Shalbafan, M.R.; Akhondzadeh, S. Minocycline combination therapy with fluvoxamine in moderate-to-severe obsessive-compulsive disorder: A placebo-controlled, double-blind, randomized trial. Psychiatry Clin. Neurosci., 2016, 70(11), 517-526.
[http://dx.doi.org/10.1111/pcn.12430] [PMID: 27488081]
[43]
Rodriguez, C.I.; Bender, J., Jr; Marcus, S.M.; Snape, M.; Rynn, M.; Simpson, H.B. Minocycline augmentation of pharmacotherapy in obsessive-compulsive disorder: An open-label trial. J. Clin. Psychiatry, 2010, 71(9), 1247-1249.
[http://dx.doi.org/10.4088/JCP.09l05805blu] [PMID: 20923629]
[44]
Sahebkar, A.; Watts, G.F. New therapies targeting apoB metabolism for high-risk patients with inherited dyslipidaemias: What can the clinician expect? Cardiovasc. Drugs Ther., 2013, 27(6), 559-567.
[http://dx.doi.org/10.1007/s10557-013-6479-4] [PMID: 23913122]
[45]
Banach, M.; Aronow, W.S.; Serban, C.; Sahabkar, A.; Rysz, J.; Voroneanu, L.; Covic, A. Lipids, blood pressure and kidney update 2014. Pharmacol. Res., 2015, 95-96, 111-125.
[http://dx.doi.org/10.1016/j.phrs.2015.03.009] [PMID: 25819754]
[46]
Taylor, F.; Huffman, M.D.; Macedo, A.F.; Moore, T.H.; Burke, M.; Davey Smith, G.; Ward, K.; Ebrahim, S. Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst. Rev., 2013, (1), CD004816.
[http://dx.doi.org/10.1002/14651858.CD004816.pub5] [PMID: 23440795]
[47]
Koskinas, K.C.; Siontis, G.C.M.; Piccolo, R.; Mavridis, D.; Räber, L.; Mach, F.; Windecker, S. Effect of statins and non-statin LDL-lowering medications on cardiovascular outcomes in secondary prevention: a meta-analysis of randomized trials. Eur. Heart J., 2018, 39(14), 1172-1180.
[http://dx.doi.org/10.1093/eurheartj/ehx566] [PMID: 29069377]
[48]
Stone, N.J. Statins in secondary prevention: Intensity matters. J. Am. Coll. Cardiol., 2017, 69(22), 2707-2709.
[http://dx.doi.org/10.1016/j.jacc.2017.04.018] [PMID: 28571634]
[49]
Chruściel, P.; Sahebkar, A.; Rembek-Wieliczko, M.; Serban, M.C.; Ursoniu, S.; Mikhailidis, D.P.; Jones, S.R.; Mosteoru, S.; Blaha, M.J.; Martin, S.S.; Rysz, J.; Toth, P.P.; Lip, G.Y.H.; Pencina, M.J.; Ray, K.K.; Banach, M. Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group. Impact of statin therapy on plasma adiponectin concentrations: A systematic review and meta-analysis of 43 randomized controlled trial arms. Atherosclerosis, 2016, 253, 194-208.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.07.897] [PMID: 27498397]
[50]
Parizadeh, S.M.R.; Azarpazhooh, M.R.; Moohebati, M.; Nematy, M.; Ghayour-Mobarhan, M.; Tavallaie, S.; Rahsepar, A.A.; Amini, M.; Sahebkar, A.; Mohammadi, M.; Ferns, G.A.A. Simvastatin therapy reduces prooxidant-antioxidant balance: Results of a placebo-controlled cross-over trial. Lipids, 2011, 46(4), 333-340.
[http://dx.doi.org/10.1007/s11745-010-3517-x] [PMID: 21207250]
[51]
Sahebkar, A.; Kotani, K.; Serban, C.; Ursoniu, S.; Mikhailidis, D.P.; Jones, S.R.; Ray, K.K.; Blaha, M.J.; Rysz, J.; Toth, P.P.; Muntner, P.; Lip, G.Y.H.; Banach, M. Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group. Statin therapy reduces plasma endothelin-1 concentrations: A meta-analysis of 15 randomized controlled trials. Atherosclerosis, 2015, 241(2), 433-442.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.05.022] [PMID: 26074317]
[52]
Sahebkar, A.; Serban, C.; Mikhailidis, D.P.; Undas, A.; Lip, G.Y.H.; Muntner, P.; Bittner, V.; Ray, K.K.; Watts, G.F.; Hovingh, G.K.; Rysz, J.; Kastelein, J.J.P.; Banach, M. Lipid and blood pressure meta-analysis collaboration (lbpmc) group. Association between statin use and plasma D-dimer levels. A systematic review and meta-analysis of randomised controlled trials. Thromb. Haemost., 2015, 114(3), 546-557.
[PMID: 26017749]
[53]
Sahebkar, A.; Serban, C.; Ursoniu, S.; Mikhailidis, D.P.; Undas, A.; Lip, G.Y.H.; Bittner, V.; Ray, K.; Watts, G.F.; Hovingh, G.K.; Rysz, J.; Kastelein, J.J.P.; Banach, M. Lipid and blood pressure meta-analysis collaboration (LBPMC) group. The impact of statin therapy on plasma levels of von Willebrand factor antigen. Systematic review and meta-analysis of randomised placebo-controlled trials. Thromb. Haemost., 2016, 115(3), 520-532.
[http://dx.doi.org/10.1160/th15-08-0620] [PMID: 26632869]
[54]
Rezaie-Majd, A.; Maca, T.; Bucek, R.A.; Valent, P.; Müller, M.R.; Husslein, P.; Kashanipour, A.; Minar, E.; Baghestanian, M. Simvastatin reduces expression of cytokines interleukin-6, interleukin-8, and monocyte chemoattractant protein-1 in circulating monocytes from hypercholesterolemic patients. Arterioscler. Thromb. Vasc. Biol., 2002, 22(7), 1194-1199.
[http://dx.doi.org/10.1161/01.ATV.0000022694.16328.CC] [PMID: 12117737]
[55]
Akouchekian, S.; Omranifard, V.; Moshfegh, P.; Maracy, M.R.; Almasi, A. The effect of atorvastatin on obsessive-compulsive symptoms of refractory obsessive-compulsive disorder (add-on therapy). Adv. Biomed. Res., 2018, 7, 90.
[PMID: 29930930]
[56]
Wang, Q.; Zengin, A.; Deng, C.; Li, Y.; Newell, K.A.; Yang, G-Y.; Lu, Y.; Wilder-Smith, E.P.; Zhao, H.; Huang, X-F. High dose of simvastatin induces hyperlocomotive and anxiolytic-like activities: The association with the up-regulation of NMDA receptor binding in the rat brain. Exp. Neurol., 2009, 216(1), 132-138.
[http://dx.doi.org/10.1016/j.expneurol.2008.11.016] [PMID: 19100736]
[57]
Rahim, F.; Sayyah, M. Effects of atorvastatin on treatment-resistant obsessive-compulsive disorder: A double-blind randomized trial. Psychiatr. Pol., 2018, 52(4), 719-729.
[http://dx.doi.org/10.12740/PP/OnlineFirst/69422] [PMID: 30368541]
[58]
Abdollahi, E.; Momtazi, A.A.; Johnston, T.P.; Sahebkar, A. Therapeutic effects of curcumin in inflammatory and immune-mediated diseases: A nature-made jack-of-all-trades? J. Cell. Physiol., 2018, 233(2), 830-848.
[http://dx.doi.org/10.1002/jcp.25778] [PMID: 28059453]
[59]
Iranshahi, M.; Sahebkar, A.; Hosseini, S.T.; Takasaki, M.; Konoshima, T.; Tokuda, H. Cancer chemopreventive activity of diversin from Ferula diversivittata in vitro and in vivo. Phytomedicine, 2010, 17(3-4), 269-273.
[http://dx.doi.org/10.1016/j.phymed.2009.05.020] [PMID: 19577457]
[60]
Mollazadeh, H.; Cicero, A.F.G.; Blesso, C.N.; Pirro, M.; Majeed, M.; Sahebkar, A. Immune modulation by curcumin: The role of interleukin-10. Crit. Rev. Food Sci. Nutr., 2019, 59(1), 89-101.
[http://dx.doi.org/10.1080/10408398.2017.1358139] [PMID: 28799796]
[61]
Panahi, Y.; Hosseini, M.S.; Khalili, N.; Naimi, E.; Simental-Mendía, L.E.; Majeed, M.; Sahebkar, A. Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: A post-hoc analysis of a randomized controlled trial. Biomed. Pharmacother., 2016, 82, 578-582.
[http://dx.doi.org/10.1016/j.biopha.2016.05.037] [PMID: 27470399]
[62]
Panahi, Y.; Kianpour, P.; Mohtashami, R.; Jafari, R.; Simental-Mendía, L.E.; Sahebkar, A. Efficacy and safety of phytosomal curcumin in non-alcoholic fatty liver disease: A randomized controlled trial. Drug Res. (Stuttg.), 2017, 67(4), 244-251.
[http://dx.doi.org/10.1055/s-0043-100019] [PMID: 28158893]
[63]
Rezaee, R.; Momtazi, A.A.; Monemi, A.; Sahebkar, A. Curcumin: A potentially powerful tool to reverse cisplatin-induced toxicity. Pharmacol. Res., 2017, 117, 218-227.
[http://dx.doi.org/10.1016/j.phrs.2016.12.037] [PMID: 28042086]
[64]
Sahebkar, A. Molecular mechanisms for curcumin benefits against ischemic injury. Fertil. Steril., 2010, 94(5), e75-e76.
[http://dx.doi.org/10.1016/j.fertnstert.2010.07.1071] [PMID: 20797714]
[65]
Duvoix, A.; Blasius, R.; Delhalle, S.; Schnekenburger, M.; Morceau, F.; Henry, E.; Dicato, M.; Diederich, M. Chemopreventive and therapeutic effects of curcumin. Cancer Lett., 2005, 223(2), 181-190.
[http://dx.doi.org/10.1016/j.canlet.2004.09.041] [PMID: 15896452]
[66]
Rezzani, R.; Franco, C.; Rodella, L.F. Curcumin as a therapeutic strategy in liver diseases. Nutrients, 2019, 11(10), E2498.
[http://dx.doi.org/10.3390/nu11102498] [PMID: 31627369]
[67]
Srivastava, R.M.; Singh, S.; Dubey, S.K.; Misra, K.; Khar, A. Immunomodulatory and therapeutic activity of curcumin. Int. Immunopharmacol., 2011, 11(3), 331-341.
[http://dx.doi.org/10.1016/j.intimp.2010.08.014] [PMID: 20828642]
[68]
Lopresti, A.L. Curcumin for neuropsychiatric disorders: A review of in vitro, animal and human studies. J. Psychopharmacol. (Oxford), 2017, 31(3), 287-302.
[http://dx.doi.org/10.1177/0269881116686883] [PMID: 28135888]
[69]
Sigra, S.; Hesselmark, E.; Bejerot, S. Treatment of PANDAS and PANS: A systematic review. Neurosci. Biobehav. Rev., 2018, 86, 51-65.
[http://dx.doi.org/10.1016/j.neubiorev.2018.01.001] [PMID: 29309797]
[70]
Spartz, E.J.; Freeman, G.M., Jr; Brown, K.; Farhadian, B.; Thienemann, M.; Frankovich, J. Course of neuropsychiatric symptoms after introduction and removal of nonsteroidal anti-inflammatory drugs: A pediatric observational study. J. Child Adolesc. Psychopharmacol., 2017, 27(7), 652-659.
[http://dx.doi.org/10.1089/cap.2016.0179] [PMID: 28696783]
[71]
Brown, K.D.; Farmer, C.; Freeman, G.M., Jr; Spartz, E.J.; Farhadian, B.; Thienemann, M.; Frankovich, J. Effect of early and prophylactic nonsteroidal anti-inflammatory drugs on flare duration in pediatric acute-onset neuropsychiatric syndrome: An observational study of patients followed by an academic community-based pediatric acute-onset neuropsychiatric syndrome clinic. J. Child Adolesc. Psychopharmacol., 2017, 27(7), 619-628.
[http://dx.doi.org/10.1089/cap.2016.0193] [PMID: 28696786]
[72]
Calaprice, D.; Tona, J.; Murphy, T.K. Treatment of pediatric acute-onset neuropsychiatric disorder in a large survey population. J. Child Adolesc. Psychopharmacol., 2018, 28(2), 92-103.
[http://dx.doi.org/10.1089/cap.2017.0101] [PMID: 28832181]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 10
Year: 2020
Published on: 11 October, 2020
Page: [1198 - 1205]
Pages: 8
DOI: 10.2174/1570180817999200520122910
Price: $65

Article Metrics

PDF: 14
HTML: 1