Kolliphor® HS 15-cyclodextrin Complex for the Delivery of Voriconazole: Preparation, Characterization, and Antifungal Activity

Author(s): Yiqi Li, Chao Zhu, Hui Wu, Hongchun Pan*, Hong Liu*

Journal Name: Current Drug Metabolism

Volume 21 , Issue 5 , 2020

Become EABM
Become Reviewer
Call for Editor


Background: This study aimed to reduce the amount of sulfobutylether-β-cyclodextrin (SBECD) used in the marketed voriconazole injections to meet the clinical needs of patients with moderate-to-severe renal impairment (creatinine clearance rate <50 mL/min).

Objective: This study found that the surfactant Kolliphor® HS 15 (HS 15) and SBECD had significant synergistic effects on solubilizing voriconazole, and a novel voriconazole complex delivery system (VRC-CD/HS 15) was established.

Methods: The complex system was characterized, and its antifungal activity was studied by dynamic light scattering, dialysis bag method, disk diffusion, and broth microdilution.

Results: Compared with the control, its encapsulation efficiency (90.07±0.48%), drug loading (7.37±0.25%) and zeta potential (-4.36±1.37 mV) were increased by 1.54%, 41.19%, and 296.36%, respectively; its average particle size (13.92±0.00 nm) was reduced by 15.69%, so the complex system had better stability. Simultaneously, its drug release behavior was similar to that of the control, and it was a first-order kinetic model. Antifungal studies indicated that the complex system had noticeable antifungal effects. With the increase of drug concentration, the inhibition zone increased. The minimum inhibitory concentrations of the complex system against Cryptococcus neoformans, Aspergillus niger and Candida albicans were 0.0313 μg/mL, 1 μg/mL and 128 μg/mL, respectively.

Conclusion: It showed a significant inhibitory effect on C. neoformans and had a visible therapeutic effect on Kunming mice infected with C. neoformans. Consequently, VRC-CD/HS 15 had better physicochemical properties and still had an apparent antifungal effect, and was promising as a potential alternative drug for clinical application.

Keywords: Voriconazole, sulfobutylether-β-cyclodextrin, Kolliphor® HS 15, characterization, antifungal activity, C. neoformans.

Armstrong-James, D.; Bicanic, T.; Brown, G.D.; Hoving, J.C.; Meintjes, G.; Nielsen, K. Working Group from the EMBO Workshop on AIDS-Related Mycoses. AIDS-related mycoses: current progress in the field and future priorities. Trends Microbiol., 2017, 25(6), 428-430.
[http://dx.doi.org/10.1016/j.tim.2017.02.013] [PMID: 28454846]
Pilmis, B.; Garcia-Hermoso, D.; Alanio, A.; Catherinot, E.; Scemla, A.; Jullien, V.; Bretagne, S.; Lortholary, O. Failure of voriconazole therapy due to acquired azole resistance in Aspergillus fumigatus in a kidney transplant recipient with chronic necrotizing aspergillosis. Am. J. Transplant., 2018, 18(9), 2352-2355.
[http://dx.doi.org/10.1111/ajt.14940] [PMID: 29790292]
Bassetti, M.; Pecori, D.; Della Siega, P.; Corcione, S.; De Rosa, F.G. Current and future therapies for invasive aspergillosis. Pulm. Pharmacol. Ther., 2015, 32, 155-165.
[http://dx.doi.org/10.1016/j.pupt.2014.06.002] [PMID: 24994691]
Schwartz, S.; Kontoyiannis, D.P.; Harrison, T.; Ruhnke, M. Advances in the diagnosis and treatment of fungal infections of the CNS. Lancet Neurol., 2018, 17(4), 362-372.
[http://dx.doi.org/10.1016/S1474-4422(18)30030-9] [PMID: 29477506]
Jung, S.H.; Lim, D.H.; Jung, S.H.; Lee, J.E.; Jeong, K-S.; Seong, H.; Shin, B.C. Amphotericin B-entrapping lipid nanoparticles and their in vitro and in vivo characteristics. Eur. J. Pharm. Sci., 2009, 37(3-4), 313-320.
[http://dx.doi.org/10.1016/j.ejps.2009.02.021] [PMID: 19491021]
Bhattacharya, S.; Esquivel, B.D.; White, T.C. Overexpression or deletion of ergosterol biosynthesis genes alters doubling time, response to stress agents, and drug susceptibility in Saccharomyces cerevisiae. MBio, 2018, 9(4), e01291-18.
[http://dx.doi.org/10.1128/mBio.01291-18] [PMID: 30042199]
Autmizguine, J.; Tan, S.; Cohen-Wolkowiez, M.; Cotten, C.M.; Wiederhold, N.; Goldberg, R.N.; Adams-Chapman, I.; Stoll, B.J.; Smith, P.B.; Benjamin, D.K., Jr NICHD Neonatal Research Network. Antifungal susceptibility and clinical outcome in neonatal candidiasis. Pediatr. Infect. Dis. J., 2018, 37(9), 923-929.
[http://dx.doi.org/10.1097/INF.0000000000001913] [PMID: 29369937]
Bongomin, F.; Oladele, R.O.; Gago, S.; Moore, C.B.; Richardson, M.D. A systematic review of fluconazole resistance in clinical isolates of Cryptococcus species. Mycoses, 2018, 61(5), 290-297.
[http://dx.doi.org/10.1111/myc.12747] [PMID: 29377368]
Park, S.Y.; Yoon, J.A.; Kim, S.H. Voriconazole-refractory invasive aspergillosis. Korean J. Intern. Med. (Korean. Assoc. Intern. Med.), 2017, 32(5), 805-812.
[http://dx.doi.org/10.3904/kjim.2017.109] [PMID: 28835093]
Hazirolan, G.; Canton, E.; Sahin, S.; Arikan-Akdagli, S. Head-to-head comparison of inhibitory and fungicidal activities of fluconazole, itraconazole, voriconazole, posaconazole, and isavuconazole against clinical isolates of Trichosporon asahii. Antimicrob. Agents Chemother., 2013, 57(10), 4841-4847.
[http://dx.doi.org/10.1128/AAC.00850-13] [PMID: 23877683]
Jeu, L.; Piacenti, F.J.; Lyakhovetskiy, A.G.; Fung, H.B. Voriconazole. Clin. Ther., 2003, 25(5), 1321-1381.
[http://dx.doi.org/10.1016/S0149-2918(03)80126-1] [PMID: 12867215]
Gonçalves Silva, E.; Marilia de Souza Silva, S.; Rodrigues Paula, C.; da Silva Ruiz, L.; Latercia Tranches Dias, A. Modulatory effect of voriconazole on the production of proinflammatory cytokines in experimental cryptococcosis in mice with severe combined immunodeficiency. J. Mycol. Med., 2018, 28(1), 106-111.
[http://dx.doi.org/10.1016/j.mycmed.2017.11.008] [PMID: 29273275]
Maschmeyer, G.; Haas, A. Voriconazole: a broad spectrum triazole for the treatment of serious and invasive fungal infections. Future Microbiol., 2006, 1(4), 365-385.
[http://dx.doi.org/10.2217/17460913.1.4.365] [PMID: 17661629]
Hoenigl, M.; Prattes, J.; Neumeister, P.; Wölfler, A.; Krause, R. Real-world challenges and unmet needs in the diagnosis and treatment of suspected invasive pulmonary aspergillosis in patients with haematological diseases: An illustrative case study. Mycoses, 2018, 61(3), 201-205.
[http://dx.doi.org/10.1111/myc.12727] [PMID: 29112326]
Angulo, N. Description of adverse reactions found in patients who received voriconazole in the university IPS from the period of May 2013 to March 2015. Drug Saf., 2019, 42(10), 1240-1241.
von Mach, M.A.; Burhenne, J.; Weilemann, L.S. Accumulation of the solvent vehicle sulphobutylether beta cyclodextrin sodium in critically ill patients treated with intravenous voriconazole under renal replacement therapy. BMC Clin. Pharmacol., 2006, 6, 6.
[http://dx.doi.org/10.1186/1472-6904-6-6] [PMID: 16981986]
Ullmann, A.J. Review of the safety, tolerability, and drug interactions of the new antifungal agents caspofungin and voriconazole. Curr. Med. Res. Opin., 2003, 19(4), 263-271.
[http://dx.doi.org/10.1185/030079903125001884] [PMID: 12841918]
Hoover, R.K.; Alcorn, H., Jr; Lawrence, L.; Paulson, S.K.; Quintas, M.; Luke, D.R.; Cammarata, S.K. Clinical pharmacokinetics of sulfobutylether-β-cyclodextrin in patients with varying degrees of renal impairment. J. Clin. Pharmacol., 2018, 58(6), 814-822.
[http://dx.doi.org/10.1002/jcph.1077] [PMID: 29578585]
Hafner, V.; Czock, D.; Burhenne, J.; Riedel, K-D.; Bommer, J.; Mikus, G.; Machleidt, C.; Weinreich, T.; Haefeli, W.E. Pharmacokinetics of sulfobutylether-beta-cyclodextrin and voriconazole in patients with end-stage renal failure during treatment with two hemodialysis systems and hemodiafiltration. Antimicrob. Agents Chemother., 2010, 54(6), 2596-2602.
[http://dx.doi.org/10.1128/AAC.01540-09] [PMID: 20368400]
Luke, D.R.; Tomaszewski, K.; Damle, B.; Schlamm, H.T. Review of the basic and clinical pharmacology of sulfobutylether-beta-cyclodextrin (SBECD). J. Pharm. Sci., 2010, 99(8), 3291-3301.
[http://dx.doi.org/10.1002/jps.22109] [PMID: 20213839]
Illum, L.; Jordan, F.; Lewis, A.L. CriticalSorb: a novel efficient nasal delivery system for human growth hormone based on Solutol HS15. J. Control. Release, 2012, 162(1), 194-200.
[http://dx.doi.org/10.1016/j.jconrel.2012.06.014] [PMID: 22709592]
Lan, L.; Zhou, Q.; Yang, X. Preparation of vinorelbine tartrate thermosensitive liposomes and measurement of its encapsulation efficiency. Acta Med. Mediter., 2017, 33, 1339-1343.
Ruozi, B.; Tosi, G.; Forni, F.; Fresta, M.; Vandelli, M.A. Atomic force microscopy and photon correlation spectroscopy: two techniques for rapid characterization of liposomes. Eur. J. Pharm. Sci., 2005, 25(1), 81-89.
[http://dx.doi.org/10.1016/j.ejps.2005.01.020] [PMID: 15854804]
Gong, C.; Xie, Y.; Wu, Q.; Wang, Y.; Deng, S.; Xiong, D.; Liu, L.; Xiang, M.; Qian, Z.; Wei, Y. Improving anti-tumor activity with polymeric micelles entrapping paclitaxel in pulmonary carcinoma. Nanoscale, 2012, 4(19), 6004-6017.
[http://dx.doi.org/10.1039/c2nr31517c] [PMID: 22910790]
Liu, L.; Mao, K.; Wang, W.; Pan, H.; Wang, F.; Yang, M.; Liu, H. Kolliphor® HS 15 micelles for the delivery of coenzyme q10: preparation, characterization, and stability. AAPS PharmSciTech, 2016, 17(3), 757-766.
[http://dx.doi.org/10.1208/s12249-015-0399-5] [PMID: 26340950]
Unal, H.; d’Angelo, I.; Pagano, E.; Borrelli, F.; Izzo, A.; Ungaro, F. Core-shell hybrid nanocapsules for oral delivery of camptothecin: formulation development, in vitro and in vivo evaluation. J. Nanopart. Res., 2015, 17(1), 1-13.
Khafri, H.Z.; Ghaedi, M.; Asfaram, A.; Javadian, H.; Safarpoor, M. Synthesis of CuS and ZnO/Zn(OH)(2) nanoparticles and their evaluation for in vitro antibacterial and antifungal activities. Appl. Organomet. Chem., 2018, 32(7)
Ozdemir, U.O.; Akkaya, N.; Ozbek, N. New nickel(II), palladium(II), platinum(II) complexes with aromatic methanesulfonylhydrazone based ligands. Synthesis, spectroscopic characterization and in vitro antibacterial evaluation. Inorg. Chim. Acta, 2013, 400, 13-19.
Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard M27-A3, 3rd ed; CLSI: Wayne, PA, USA, 2008.
Rishi, P.; Vij, S.; Maurya, I.K.; Kaur, U.J.; Bharati, S.; Tewari, R. Peptides as adjuvants for ampicillin and oxacillin against methicillin-resistant Staphylococcus aureus (MRSA). Microb. Pathog., 2018, 124, 11-20.
[http://dx.doi.org/10.1016/j.micpath.2018.08.023] [PMID: 30118800]
Klepser, M.E.; Malone, D.; Lewis, R.E.; Ernst, E.J.; Pfaller, M.A. Evaluation of voriconazole pharmacodynamics using time-kill methodology. Antimicrob. Agents Chemother., 2000, 44(7), 1917-1920.
[http://dx.doi.org/10.1128/AAC.44.7.1917-1920.2000] [PMID: 10858354]
Sabiiti, W.; May, R.C.; Pursall, E.R. Experimental models of cryptococcosis. Int. J. Microbiol., 2012, 2012626745
[http://dx.doi.org/10.1155/2012/626745] [PMID: 22007224]
Nishikawa, H.; Fukuda, Y.; Mitsuyama, J.; Tashiro, M.; Tanaka, A.; Takazono, T.; Saijo, T.; Yamamoto, K.; Nakamura, S.; Imamura, Y.; Miyazaki, T.; Kakeya, H.; Yamamoto, Y.; Yanagihara, K.; Mukae, H.; Kohno, S.; Izumikawa, K. In vitro and in vivo antifungal activities of T-2307, a novel arylamidine, against Cryptococcus gattii: an emerging fungal pathogen. J. Antimicrob. Chemother., 2017, 72(6), 1709-1713.
[http://dx.doi.org/10.1093/jac/dkx020] [PMID: 28201509]
Fajalia, AI.; Tsianou, M. Self-assembly control via molecular recognition: effect of cyclodextrins on surfactant micelle structure and interactions determined by SANS. Colloid. Surf. Physicochem. Engin. Aspect, 2015, 480, 91-104.
Zhang, Y.; Huo, M.; Zhou, J.; Zou, A.; Li, W.; Yao, C.; Xie, S. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J., 2010, 12(3), 263-271.
[http://dx.doi.org/10.1208/s12248-010-9185-1] [PMID: 20373062]
Parveen, S.; Wani, A.H.; Shah, M.A.; Devi, H.S.; Bhat, M.Y.; Koka, J.A. Preparation, characterization and antifungal activity of iron oxide nanoparticles. Microb. Pathog., 2018, 115, 287-292.
[http://dx.doi.org/10.1016/j.micpath.2017.12.068] [PMID: 29306005]
Moellenhoff, K.; Dette, H.; Kotzagiorgis, E.; Volgushev, S.; Collignon, O. Regulatory assessment of drug dissolution profiles comparability via maximum deviation. Stat. Med., 2018, 37(20), 2968-2981.
[http://dx.doi.org/10.1002/sim.7689] [PMID: 29862526]
Ige, P.P.; Baria, R.K.; Gattani, S.G. Fabrication of fenofibrate nanocrystals by probe sonication method for enhancement of dissolution rate and oral bioavailability. Colloids Surf. B Biointerfaces, 2013, 108, 366-373.
[http://dx.doi.org/10.1016/j.colsurfb.2013.02.043] [PMID: 23602990]
Tan, Q.Y.; Xu, M.L.; Wu, J.Y.; Yin, H.F.; Zhang, J.Q. Preparation and characterization of poly(lactic acid) nanoparticles for sustained release of pyridostigmine bromide. Pharmazie, 2012, 67(4), 311-318.
[PMID: 22570937]
Huang, X.; Brazel, C.S. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J. Control. Release, 2001, 73(2-3), 121-136.
[http://dx.doi.org/10.1016/S0168-3659(01)00248-6] [PMID: 11516493]
Zhou, H.Y.; Jiang, L.J.; Zhang, Y.P.; Li, J.B. Beta-cyclodextrin inclusion complex: preparation, characterization, and its aspirin release in vitro. Front. Mater. Sci., 2012, 6(3), 259-267.
Matshetshe, K.I.; Parani, S.; Manki, S.M.; Oluwafemi, O.S. Preparation, characterization and in vitro release study of β- cyclodextrin/chitosan nanoparticles loaded Cinnamomum zeylanicum essential oil. Int. J. Biol. Macromol., 2018, 118(Pt A), 676-682.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.125] [PMID: 29959997]
Sabatelli, F.; Patel, R.; Mann, P.A.; Mendrick, C.A.; Norris, C.C.; Hare, R.; Loebenberg, D.; Black, T.A.; McNicholas, P.M. In vitro activities of posaconazole, fluconazole, itraconazole, voriconazole, and amphotericin B against a large collection of clinically important molds and yeasts. Antimicrob. Agents Chemother., 2006, 50(6), 2009-2015.
[http://dx.doi.org/10.1128/AAC.00163-06] [PMID: 16723559]
Serena, C.; Pastor, F.J.; Mariné, M.; Rodríguez, M.M.; Guarro, J. Efficacy of voriconazole in a murine model of cryptococcal central nervous system infection. J. Antimicrob. Chemother., 2007, 60(1), 162-165.
[http://dx.doi.org/10.1093/jac/dkm123] [PMID: 17483143]
Cuenca-Estrella, M.; Díaz-Guerra, T.M.; Mellado, E.; Monzón, A.; Rodríguez-Tudela, J.L. Comparative in vitro activity of voriconazole and itraconazole against fluconazole-susceptible and fluconazole-resistant clinical isolates of Candida species from Spain. Eur. J. Clin. Microbiol. Infect. Dis., 1999, 18(6), 432-435.
[http://dx.doi.org/10.1007/s100960050313] [PMID: 10442422]
Walsh, T.J.; Anaissie, E.J.; Denning, D.W.; Herbrecht, R.; Kontoyiannis, D.P.; Marr, K.A.; Morrison, V.A.; Segal, B.H.; Steinbach, W.J.; Stevens, D.A.; van Burik, J.A.; Wingard, J.R.; Patterson, T.F. Infectious Diseases Society of America. Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin. Infect. Dis., 2008, 46(3), 327-360.
[http://dx.doi.org/10.1086/525258] [PMID: 18177225]
Li, Y.; Nguyen, M.H.; Schmidt, S.; Zhong, L.; Derendorf, H.; Clancy, C.J. Pharmacokinetic/pharmacodynamic modelling and in vitro simulation of dynamic voriconazole-Candida interactions. Int. J. Antimicrob. Agents, 2009, 34(3), 240-245.
[http://dx.doi.org/10.1016/j.ijantimicag.2009.02.006] [PMID: 19339162]
Levêque, D.; Nivoix, Y.; Jehl, F.; Herbrecht, R. Clinical pharmacokinetics of voriconazole. Int. J. Antimicrob. Agents, 2006, 27(4), 274-284.
[http://dx.doi.org/10.1016/j.ijantimicag.2006.01.003] [PMID: 16563707]
Silva, E.G.; Paula, C.R.; de Assis Baroni, F.; Gambale, W. Voriconazole, combined with amphotericin B, in the treatment for pulmonary cryptococcosis caused by C. neoformans (serotype A) in mice with severe combined immunodeficiency (SCID). Mycopathologia, 2012, 173(5-6), 445-449.
[http://dx.doi.org/10.1007/s11046-011-9499-2] [PMID: 22071662]
Wang, T.; Su, J.; Feng, Y. The effectiveness topical amphotericin B in the management of chronic rhinosinusitis: a meta-analysis. Eur. Arch. Otorhinolaryngol., 2015, 272(8), 1923-1929.
[http://dx.doi.org/10.1007/s00405-014-3269-y] [PMID: 25217082]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [379 - 389]
Pages: 11
DOI: 10.2174/1389200221666200520085915
Price: $65

Article Metrics

PDF: 32