An Overview on Electrochemical Sensors Based on Nanomaterials for the Determination of Drugs of Abuse

Author(s): Mandana Amiri*, Hamideh Imanzadeh, Yasaman Sefid-Sefidehkhan

Journal Name: Current Drug Delivery

Volume 18 , Issue 2 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Drug abuse is considered a serious source of economic and social problems. The identification of drugs of abuse is in demand in forensic and clinical toxicology. There are various methods for the determination of these materials, including chromatographic and mass spectrometric techniques. However, most of these techniques need high-cost equipment, they are time-consuming, and they suffer from complicated sample preparation protocols. In contrast, electrochemical methods are low cost, mobile, and they do not require complicated sample preparation protocols. The use of nanomaterials in electroanalysis has gained significant attention in order to improve selectivity, enhance sensitivity, and lower the limit of detections. Nanomaterials have significantly gained research-interest due to their low cost (due to low amounts of materials being used) and their uniquely size-dependent properties. The incorporation of nanomaterials into host matrices is important to prepare nanocomposite sensor films. Unique properties of nanomaterials and hybrid materials, such as mechanical strength, electrical conductivity, optical responsiveness, specific catalytic and magnetic properties, in addition to high surface area per mass ratio are attractive. Besides providing novel properties, nanomaterials allow low-cost electrode fabrication based on simple technologies. The combination of nanotechnology with modern electroanalytical techniques allows innovation in electrical sensing devices with features like increased mass transport, high sensor surface area, and controlled electrode surface micro-environment. The aim of this review is to give an outline of electroanalytical determination based on nanomaterials focusing on illicit drugs in matrices, such as urine, blood, or saliva. We summarize developments in field-based sensors for determining drugs of abuse.

Keywords: Drugs of abuse, electrochemical determination, nanomaterials, sensors, urine, saliva.

[1]
Ottaviani, G.; Cameriere, R.; Cippitelli, M.; Froldi, R.; Tassoni, G.; Zampi, M.; Cingolani, M. Determination of drugs of abuse in a single sample of human teeth by a gas chromatography-mass spectrometry method. J. Anal. Toxicol., 2017, 41(1), 32-36.
[http://dx.doi.org/10.1093/jat/bkw105] [PMID: 27681340]
[2]
Orfanidis, A.; Gika, H.; Mastrogianni, O.; Krokos, A.; Theodoridis, G.; Zaggelidou, E.; Raikos, N. Determination of drugs of abuse and pharmaceuticals in skeletal tissue by UHPLC-MS/MS. Forensic Sci. Int., 2018, 290, 137-145.
[http://dx.doi.org/10.1016/j.forsciint.2018.07.004] [PMID: 30036735]
[3]
Gorynski, K. A critical review of solid-phase microextraction applied in drugs of abuse determinations and potential applications for targeted doping testing. Trends Analyt. Chem., 2019, 112, 135-146.
[http://dx.doi.org/10.1016/j.trac.2018.12.029]
[4]
Peter, T.K.; Carl, R.P.; Ronald, E.S.; William, R.H. Fundamental concepts of analytical electrochemistry. Lab. Tech. Electroanalyt. Chem., 1996, 1-28.
[5]
Kolahalam, L.A.; Kasi Viswanath, I.V.; Diwakar, B.S.; Govindh, B.; Reddy, V.; Murthy, Y.L.N. Review on nanomaterials: Synthesis and applications. Materials Today: Proceedings, 2019, 18, 2182-2190.
[6]
Manikandan, V.S.; Adhikari, B.; Chen, A. Nanomaterial based electrochemical sensors for the safety and quality control of food and beverages. Analyst (Lond.), 2018, 143(19), 4537-4554.
[http://dx.doi.org/10.1039/C8AN00497H] [PMID: 30113611]
[7]
Dhara, K.; Mahapatra, D.R. Recent advances in electrochemical nonenzymatic hydrogen peroxide sensors based on nanomaterials: A review. J. Mater. Sci., 2019, 1-39.
[http://dx.doi.org/10.1007/s10853-019-03750-y]
[8]
Amiri, M.; Rezapour, F.; Bezaatpour, A. Hydrophilic carbon nanoparticulates at the surface of carbon paste electrode improve determination of paracetamol, phenylephrine and dextromethorphan. J. Electroanal. Chem. , 2014, 735, 10-18.
[http://dx.doi.org/10.1016/j.jelechem.2014.10.006]
[9]
Amiri, M.; Eynaki, H.; Mansoori, Y. Cysteine-anchored receptor on carbon nanoparticles for dopamine sensing. Electrochim. Acta, 2014, 123, 362-368.
[http://dx.doi.org/10.1016/j.electacta.2014.01.028]
[10]
Amiri, M.; Nouhi, S.; Azizian-Kalandaragh, Y. Facile synthesis of silver nanostructures by using various deposition potential and time: a nonenzymetic sensor for hydrogen peroxide. Mater. Chem. Phys., 2015, 155, 129-135.
[http://dx.doi.org/10.1016/j.matchemphys.2015.02.009]
[11]
Amiri, M.; Alimoradi, M.; Nekoueian, K.; Bezaatpour, A. Cobalt flower-like nanostructure as modifier for electrocatalytic determination of chloropheniramine. Ind. Eng. Chem. Res., 2012, 51(44), 14384-14389.
[http://dx.doi.org/10.1021/ie3016736]
[12]
Amiri, M.; Amali, E.; Nematollahzadeh, A. Poly-dopamine thin film for voltammetric sensing of atenolol. Sens. Actuators B Chem., 2015, 216, 551-557.
[http://dx.doi.org/10.1016/j.snb.2015.04.082]
[13]
Poo-arporn, Y.; Pakapongpan, S.; Chanlek, N.; Poo-arporn, R.P. The development of disposable electrochemical sensor based on Fe3O4-doped reduced graphene oxide modified magnetic screen-printed electrode for ractopamine determination in pork sample. Sens. Actuators B Chem., 2019, 284, 164-171.
[http://dx.doi.org/10.1016/j.snb.2018.12.121]
[14]
Nekoueian, K.; Amiri, M.; Sillanpaa, M. Carbon paste electrode with Au/Pd/MWCNT nanocomposite for nanomolar determination of timolol. Int. J. Electrochem. Sci., 2017, 12(2), 1612-1624.
[http://dx.doi.org/10.20964/2017.02.56]
[15]
Power, A.C.; Gorey, B.; Chandra, S.; Chapman, J. Carbon nanomaterials and their application to electrochemical sensors: a review. Nanotechnol. Rev., 2018, 7(1), 19-41.
[http://dx.doi.org/10.1515/ntrev-2017-0160]
[16]
Yang, C.; Denno, M.E.; Pyakurel, P.; Venton, B.J. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: a review. Anal. Chim. Acta, 2015, 887, 17-37.
[http://dx.doi.org/10.1016/j.aca.2015.05.049] [PMID: 26320782]
[17]
Asadian, E.; Ghalkhani, M.; Shahrokhian, S. Electrochemical sensing based on carbon nanoparticles: A review. Sens. Actuators B Chem., 2019, 293, 183-209.
[http://dx.doi.org/10.1016/j.snb.2019.04.075]
[18]
Nekoueian, K.; Amiri, M.; Sillanpää, M.; Marken, F.; Boukherroub, R.; Szunerits, S. Carbon-based quantum particles: an electroanalytical and biomedical perspective. Chem. Soc. Rev., 2019, 48(15), 4281-4316.
[http://dx.doi.org/10.1039/C8CS00445E] [PMID: 31215906]
[19]
Iijima, S. Synthesis of carbon nanotubes. Nature, 1991, 354(6348), 56-58.
[http://dx.doi.org/10.1038/354056a0]
[20]
Gao, C.; Guo, Z.; Liu, J.H.; Huang, X.J. The new age of carbon nanotubes: an updated review of functionalized carbon nanotubes in electrochemical sensors. Nanoscale, 2012, 4(6), 1948-1963.
[http://dx.doi.org/10.1039/c2nr11757f] [PMID: 22337209]
[21]
Setaro, A. Advanced carbon nanotubes functionalization. J. Phys. Condens. Matter, 2017, 29(42)423003
[http://dx.doi.org/10.1088/1361-648X/aa8248] [PMID: 28745302]
[22]
Zhu, Z. An overview of carbon nanotubes and graphene for biosensing applications. Nano-Micro Lett., 2017, 9(3), 25.
[http://dx.doi.org/10.1007/s40820-017-0128-6] [PMID: 30393720]
[23]
Garrido, J.; Borges, F.; Brett, C.; Garrido, E. Carbon nanotube β-cyclodextrin-modified electrode for quantification of cocaine in seized street samples. Ionics, 2016, 22(12), 2511-2518.
[http://dx.doi.org/10.1007/s11581-016-1765-3]
[24]
Babaei, A.; Soleimani Babadi, S.; Sohrabi, M. Simultaneous electrochemical determination of acetaminophen and codeine based on a MWCNT/MCM48 nanocomposite modified glassy carbon. J. Nanostruct., 2019, 9(2), 190-201.
[25]
Wester, N.; Mynttinen, E.; Etula, J.; Lilius, T.; Kalso, E.; Kauppinen, E.I.; Laurila, T.; Koskinen, J. Simultaneous detection of morphine and codeine in the presence of ascorbic acid and uric acid and in human plasma at nafion single-walled carbon nanotube thin-film electrode. ACS Omega, 2019, 4(18), 17726-17734.
[http://dx.doi.org/10.1021/acsomega.9b02147] [PMID: 31681878]
[26]
Lee, X.J.; Hiew, B.Y.Z.; Lai, K.C.; Lee, L.Y.; Gan, S.; Thangalazhy-Gopakumar, S.; Rigby, S. Review on graphene and its derivatives: synthesis methods and potential industrial implementation. J. Taiwan Instit. Chem. Engineers, 2019, 98, 163-180.
[http://dx.doi.org/10.1016/j.jtice.2018.10.028]
[27]
Szunerits, S.; Boukherroub, R. Graphene-based biosensors. Interface Focus, 2018, 8(3)20160132
[http://dx.doi.org/10.1098/rsfs.2016.0132] [PMID: 29696084]
[28]
Mohamed, M.A.; Atty, S.A.; Salama, N.N.; Banks, C.E. Highly selective sensing platform utilizing graphene oxide and multiwalled carbon nanotubes for the sensitive determination of tramadol in the presence of co‐formulated drugs. Electroanalysis, 2017, 29(4), 1038-1048.
[http://dx.doi.org/10.1002/elan.201600668]
[29]
Bagheri, H.; Khoshsafar, H.; Afkhami, A.; Amidi, S. Sensitive and simple simultaneous determination of morphine and codeine using a Zn2SnO4 nanoparticle/graphene composite modified electrochemical sensor. New J. Chem., 2016, 40(8), 7102-7112.
[http://dx.doi.org/10.1039/C6NJ00505E]
[30]
Atta, N.F.; Galal, A.; El-Ads, E.H.; Hassan, S.H. Cobalt oxide nanoparticles/graphene/ionic liquid crystal modified carbon paste electrochemical sensor for ultra-sensitive determination of a narcotic drug. Adv. Pharm. Bull., 2019, 9(1), 110-121.
[http://dx.doi.org/10.15171/apb.2019.014] [PMID: 31011565]
[31]
Atta, N.F.; Ahmed, R.A.; Amin, H.M.; Galal, A. Monodispersed gold nanoparticles decorated carbon nanotubes as an enhanced sensing platform for nanomolar detection of tramadol. Electroanalysis, 2012, 24(11), 2135-2146.
[http://dx.doi.org/10.1002/elan.201200344]
[32]
Atta, N.F.; Galal, A.; Hassan, S.H. Ultrasensitive determination of nalbuphine and tramadol narcotic analgesic drugs for postoperative pain relief using nano-cobalt oxide/ionic liquid crystal/carbon nanotubes-based electrochemical sensor. J. Electroanal. Chem. , 2019, 839, 48-58.
[http://dx.doi.org/10.1016/j.jelechem.2019.03.002]
[33]
Hwang, S.I.; Franconi, N.G.; Rothfuss, M.A.; Bocan, K.N.; Bian, L.; White, D.L.; Burkert, S.C.; Euler, R.W.; Sopher, B.J.; Vinay, M.L.; Sejdic, E.; Star, A. Tetrahydrocannabinol detection using semiconductor-enriched single-walled carbon nanotube chemiresistors. ACS Sens., 2019, 4(8), 2084-2093.
[http://dx.doi.org/10.1021/acssensors.9b00762] [PMID: 31321969]
[34]
Rizk, M.; Taha, E.A.; El-Alamin, M.M.A.; Hendawy, H.A.; Sayed, Y.M. Highly sensitive carbon based sensors using zinc oxide nanoparticles immobilized multiwalled carbon nanotubes for simultaneous determination of desvenlafaxine succinate and clonazepam. J. Electrochem. Soc., 2018, 165(7), H333-H341.
[http://dx.doi.org/10.1149/2.0551807jes]
[35]
George, J.M.; Antony, A.; Mathew, B. Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Mikrochim. Acta, 2018, 185(7), 358.
[http://dx.doi.org/10.1007/s00604-018-2894-3] [PMID: 29974265]
[36]
Eissa, S.; Zourob, M. Competitive voltammetric morphine immunosensor using a gold nanoparticle decorated graphene electrode. Mikrochim. Acta, 2017, 184(7), 2281-2289.
[http://dx.doi.org/10.1007/s00604-017-2261-9]
[37]
Rocha-Santos, T.A.P. Sensors and biosensors based on magnetic nanoparticles. Trends Analyt. Chem., 2014, 62, 28-36.
[http://dx.doi.org/10.1016/j.trac.2014.06.016]
[38]
Beveridge, J.S.; Stephens, J.R.; Williams, M.E. The use of magnetic nanoparticles in analytical chemistry. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 2011, 4, 251-273.
[http://dx.doi.org/10.1146/annurev-anchem-061010-114041] [PMID: 21417723]
[39]
Dehdashtian, S.; Gholivand, M.B.; Shamsipur, M.; Kariminia, S. Construction of a sensitive and selective sensor for morphine using chitosan coated Fe3O4 magnetic nanoparticle as a modifier. Mater. Sci. Eng. C, 2016, 58, 53-59.
[http://dx.doi.org/10.1016/j.msec.2015.07.049] [PMID: 26478286]
[40]
Taei, M.; Hasanpour, F.; Hajhashemi, V.; Movahedi, M.; Baghlani, H. Simultaneous detection of morphine and codeine in urine samples of heroin addicts using multi-walled carbon nanotubes modified SnO2–Zn2SnO4 nanocomposites paste electrode. Appl. Surf. Sci., 2016, 363, 490-498.
[http://dx.doi.org/10.1016/j.apsusc.2015.12.074]
[41]
Ingole, P.P. A consolidated account of electrochemical determination of band structure parameters in II-VI semiconductor quantum dots: a tutorial review. Phys. Chem. Chem. Phys., 2019, 21(9), 4695-4716.
[http://dx.doi.org/10.1039/C8CP06847J] [PMID: 30775741]
[42]
Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J.M. Carbon dots and graphene quantum dots in electrochemical biosensing. Nanomaterials (Basel), 2019, 9(4), 634.
[http://dx.doi.org/10.3390/nano9040634] [PMID: 31010125]
[43]
Hua, M.; Li, P.; Li, L.; Huang, L.; Zhao, X.; Feng, Y.; Yang, Y. Quantum dots as immobilized substrate for electrochemical detection of cocaine based on conformational switching of aptamer. J. Electroanal. Chem. , 2011, 662(2), 306-311.
[http://dx.doi.org/10.1016/j.jelechem.2011.08.017]
[44]
Rosenblum, A.; Marsch, L.A.; Joseph, H.; Portenoy, R.K. Opioids and the treatment of chronic pain: controversies, current status, and future directions. Exp. Clin. Psychopharmacol., 2008, 16(5), 405-416.
[http://dx.doi.org/10.1037/a0013628] [PMID: 18837637]
[45]
Eissa, S.; Almthen, R.A.; Zourob, M. Disposable electrochemical immunosensor array for the multiplexed detection of the drug metabolites morphine, tetrahydrocannabinol and benzoylecgonine. Mikrochim. Acta, 2019, 186(8), 523.
[http://dx.doi.org/10.1007/s00604-019-3646-8] [PMID: 31292788]
[46]
Atta, N.F.; Galal, A.; Hassan, S.H. Electrochemical sensor for morphine based on gold nanoparticles/ferrocene carboxylic acid/poly (3, 4-ethylene-dioxythiophene) composite. Int. J. Electrochem. Sci., 2015, 10, 2265-2280.
[47]
Atta, N.F.; Galal, A.; El-Ads, E.H. Smart electrochemical morphine sensor using poly (3, 4-ethylenedioxythiophene)/gold-nanoparticles composite in presence of surfactant. Int. J. Electrochem. Sci., 2014, 9, 2113-2131.
[48]
Barthwal, S.; Singh, B.; Singh, N.B. A novel electrochemical sensor fabricated by embedding ZnO nano particles on MWCNT for morphine detection. Materials Today: Proc., 2018, 5(3, Part 1), 9061-9066.
[49]
Kumary, V.A.; Abraham, P.; Swamy, B.E.K.; Nancy, T.E.M.; Sreevalsan, A. A novel heterogeneous catalyst based on reduced graphene oxide supported copper coordinated amino acid – A platform for morphine sensing. J. Electroanal. Chem. , 2019, 850113367
[http://dx.doi.org/10.1016/j.jelechem.2019.113367]
[50]
Rajaei, M.; Foroughi, M.M.; Jahani, S.; Shahidi Zandi, M.; Hassani Nadiki, H. Sensitive detection of morphine in the presence of dopamine with La3+ doped fern-like CuO nanoleaves/MWCNTs modified carbon paste electrode. J. Mol. Liq., 2019, 284, 462-472.
[http://dx.doi.org/10.1016/j.molliq.2019.03.135]
[51]
Maccaferri, G.; Terzi, F.; Xia, Z.; Vulcano, F.; Liscio, A.; Palermo, V.; Zanardi, C. Highly sensitive amperometric sensor for morphine detection based on electrochemically exfoliated graphene oxide. Application in screening tests of urine samples. Sens. Actuators B Chem., 2019, 281, 739-745.
[http://dx.doi.org/10.1016/j.snb.2018.10.163]
[52]
Bagherinasab, Z.; Beitollahi, H.; Yousefi, M.; Bagherzadeh, M.; Hekmati, M. A sensitive voltammetric morphine nanosensor based on BaFe12O19 nanoparticle-modified screen-printed electrodes. J. Iranian Chem. Soc., 2019, 17(3), 11-14.
[53]
Bahrami, G.; Ehzari, H.; Mirzabeigy, S.; Mohammadi, B.; Arkan, E. Fabrication of a sensitive electrochemical sensor based on electrospun magnetic nanofibers for morphine analysis in biological samples. Mater. Sci. Eng. C, 2020, 106110183
[http://dx.doi.org/10.1016/j.msec.2019.110183] [PMID: 31753387]
[54]
Beitollai, H.; Mohammadi, S.Z.; Tajik, S. Electrochemical behavior of morphine at the surface of magnetic core shell manganese Ferrite nanoparticles modified screen printed electrode and its determination in real samples. Int. J. Nanodimens., 2019, 10(3), 304-312.
[55]
Sanati, A.L.; Karimi-Maleh, H.; Badiei, A.; Biparva, P.; Ensafi, A.A. A voltammetric sensor based on NiO/CNTs ionic liquid carbon paste electrode for determination of morphine in the presence of diclofenac. Mater. Sci. Eng. C, 2014, 35, 379-385.
[http://dx.doi.org/10.1016/j.msec.2013.11.031] [PMID: 24411391]
[56]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. A Novel Strategy for determination of paracetamol in the presence of morphine using a carbon paste electrode modified with CdO nanoparticles and ionic liquids. Electroanalysis, 2016, 28(2), 366-371.
[http://dx.doi.org/10.1002/elan.201500357]
[57]
Nigović, B.; Sadiković, M.; Sertić, M. Multi-walled carbon nanotubes/Nafion composite film modified electrode as a sensor for simultaneous determination of ondansetron and morphine. Talanta, 2014, 122, 187-194.
[http://dx.doi.org/10.1016/j.talanta.2014.01.026] [PMID: 24720982]
[58]
Basiri, F.; Taei, M. Application of spinel-structured MgFe2O4 nanoparticles for simultaneous electrochemical determination diclofenac and morphine. Mikrochim. Acta, 2017, 184(1), 155-162.
[http://dx.doi.org/10.1007/s00604-016-1995-0]
[59]
Akbarian, Y.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. Fabrication of a new electrocatalytic sensor for determination of diclofenac, morphine and mefenamic acid using synergic effect of NiO-SWCNT and 2, 4-dimethyl-N/-[1- (2, 3-dihydroxy phenyl) methylidene] aniline. Sens. Actuators B Chem., 2018, 273, 228-233.
[http://dx.doi.org/10.1016/j.snb.2018.06.049]
[60]
Bagheri, H.; Khoshsafar, H.; Afkhami, A.; Amidi, S. Sensitive and simple simultaneous determination of morphine and codeine using a Zn2SnO4 nanoparticle/graphene composite modified electrochemical sensor. New J. Chem., 2016, 40(8), 7102-7112.
[http://dx.doi.org/10.1039/C6NJ00505E]
[61]
Hasanpour, F.; Taei, M.; Tahmasebi, S. Ultra-sensitive electrochemical sensing of acetaminophen and codeine in biological fluids using CuO/CuFe2O4 nanoparticles as a novel electrocatalyst. Yao Wu Shi Pin Fen Xi, 2018, 26(2), 879-886.
[http://dx.doi.org/10.1016/j.jfda.2017.10.001] [PMID: 29567260]
[62]
Santos, A.M.; Vicentini, F.C.; Figueiredo-Filho, L.C.; Deroco, P.B.; Fatibello-Filho, O. Flow injection simultaneous determination of acetaminophen and tramadol in pharmaceutical and biological samples using multiple pulse amperometric detection with a boron-doped diamond electrode. Diamond Related Materials, 2015, 60, 1-8.
[http://dx.doi.org/10.1016/j.diamond.2015.10.005]
[63]
Afkhami, A.; Khoshsafar, H.; Bagheri, H.; Madrakian, T. Facile simultaneous electrochemical determination of codeine and acetaminophen in pharmaceutical samples and biological fluids by graphene–CoFe2O4 nancomposite modified carbon paste electrode. Sens. Actuators B Chem., 2014, 203, 909-918.
[http://dx.doi.org/10.1016/j.snb.2014.07.031]
[64]
Ensafi, A.A.; Ahmadi, N.; Rezaei, B.; Abarghoui, M.M. A new electrochemical sensor for the simultaneous determination of acetaminophen and codeine based on porous silicon/palladium nanostructure. Talanta, 2015, 134, 745-753.
[http://dx.doi.org/10.1016/j.talanta.2014.12.028] [PMID: 25618731]
[65]
Mashhadizadeh, M.H.; Rasouli, F. Design of a new carbon paste electrode modified with TiO2 nanoparticles to use in an electrochemical study of codeine and simultaneous determination of codeine and acetaminophen in human plasma serum samples. Electroanalysis, 2014, 26(9), 2033-2042.
[http://dx.doi.org/10.1002/elan.201400141]
[66]
Batista Deroco, P.; Campanhã Vicentini, F.; Fatibello‐Filho, O. An electrochemical sensor for the simultaneous determination of paracetamol and codeine using a glassy carbon electrode modified with nickel oxide nanoparticles and carbon black. Electroanalysis, 2015, 27(9), 2214-2220.
[http://dx.doi.org/10.1002/elan.201500156]
[67]
Ensafi, A.A.; Abarghoui, M.M.; Rezaei, B. Simultaneous determination of morphine and codeine using Pt nanoparticles supported on porous silicon flour modified ionic liquid carbon paste electrode. Sens. Actuators B Chem., 2015, 219, 1-9.
[http://dx.doi.org/10.1016/j.snb.2015.05.010]
[68]
Elghobashy, M.R.; Mahmoud, A.M.; Rezk, M.R.; El-Rahman, M.K.A. Strategy for fabrication of stable tramadol solid-contact ion-selective potentiometric sensor based on polyaniline nanoparticles. J. Electrochem. Soc., 2015, 162(1), H1-H5.
[http://dx.doi.org/10.1149/2.0161501jes]
[69]
Hosseini, M.; Pur, M.R.K.; Norouzi, P.; Moghaddam, M.R.; Faridbod, F.; Ganjali, M.R.; Shamsi, J. Enhanced solid-state electrochemiluminescence of Ru (bpy) 3 2+ with nano-CeO2 modified carbon paste electrode and its application in tramadol determination. Anal. Methods, 2015, 7(5), 1936-1942.
[http://dx.doi.org/10.1039/C4AY02772H]
[70]
Madrakian, T.; Alizadeh, S.; Bahram, M.; Afkhami, A. A novel electrochemical sensor based on magneto LDH/Fe3O4 nanoparticles@ glassy carbon electrode for voltammetric determination of tramadol in real samples. Ionics, 2017, 23(4), 1005-1015.
[http://dx.doi.org/10.1007/s11581-016-1871-2]
[71]
Fathirad, F.; Mostafavi, A.; Afzali, D. Electrospun Pd nanoparticles loaded on Vulcan carbon/conductive polymeric ionic liquid nanofibers for selective and sensitive determination of tramadol. Anal. Chim. Acta, 2016, 940, 65-72.
[http://dx.doi.org/10.1016/j.aca.2016.08.051] [PMID: 27662760]
[72]
Rokhsefid, N.; Shishehbore, M.R. Synthesis and characterization of an Au nanoparticles/graphene nanosheet nanocomposite and its application for the simultaneous determination of tramadol and acetaminophen. Anal. Methods, 2019, 11(40), 5150-5159.
[http://dx.doi.org/10.1039/C9AY01497G]
[73]
Hassannezhad, M.; Hosseini, M.; Ganjali, M.R.; Arvand, M. A graphitic carbon nitride (g-C3N4/Fe3O4) nanocomposite: an efficient electrode material for the electrochemical determination of tramadol in human biological fluids. Anal. Methods, 2019, 11(15), 2064-2071.
[http://dx.doi.org/10.1039/C9AY00146H]
[74]
Afkhami, A.; Khoshsafar, H.; Bagheri, H.; Madrakian, T. Preparation of NiFe2O4/graphene nanocomposite and its application as a modifier for the fabrication of an electrochemical sensor for the simultaneous determination of tramadol and acetaminophen. Anal. Chim. Acta, 2014, 831, 50-59.
[http://dx.doi.org/10.1016/j.aca.2014.04.061] [PMID: 24861971]
[75]
Deiminiat, B.; Rounaghi, G.H.; Arbab-Zavar, M.H. Development of a new electrochemical imprinted sensor based on poly-pyrrole, sol-gel and multiwall carbon nanotubes for determination of tramadol. Sens. Actuators B Chem., 2017, 238, 651-659.
[http://dx.doi.org/10.1016/j.snb.2016.07.110]
[76]
Navaee, A.; Salimi, A.; Teymourian, H. Graphene nanosheets modified glassy carbon electrode for simultaneous detection of heroine, morphine and noscapine. Biosens. Bioelectron., 2012, 31(1), 205-211.
[http://dx.doi.org/10.1016/j.bios.2011.10.018] [PMID: 22079300]
[77]
KARIM NEZHAD. G.; Khorablou, Z. Voltammetric determination of methadone at stacked cysteic acid film and gold nanoparticles composite modified glassy carbon electrode. Analy. Bioanaly. Electrochem., 2017, 9(6), 25.
[78]
Afkhami, A.; Soltani-Felehgari, F.; Madrakian, T. A sensitive electrochemical sensor for rapid determination of methadone in biological fluids using carbon paste electrode modified with gold nanofilm. Talanta, 2014, 128, 203-210.
[http://dx.doi.org/10.1016/j.talanta.2014.03.003] [PMID: 25059149]
[79]
Farmany, A.; Shamsara, M.; Mahdavi, H. Enhanced electrochemical biosensing of buprenorphine opioid drug by highly stabilized magnetic nanocrystals. Sens. Actuators B Chem., 2017, 239, 279-285.
[http://dx.doi.org/10.1016/j.snb.2016.08.007]
[80]
Jahanbakhshi, M. In situ synthesis of rhodium nanoparticles - mesoporous carbon hybrid via a novel and facile nanocasting method for simultaneous determination of morphine and buprenorphine. Mater. Sci. Eng. C, 2019, 97, 479-485.
[http://dx.doi.org/10.1016/j.msec.2018.12.019] [PMID: 30678935]
[81]
Shaikh, T.; Nafady, A.; Talpur, F.N. Sirajuddin; Agheem, M. H.; Shah, M. R.; Sherazi, S. T. H.; Soomro, R. A.; Siddiqui, S., Tranexamic acid derived gold nanoparticles modified glassy carbon electrode as sensitive sensor for determination of nalbuphine. Sens. Actuators B Chem., 2015, 211, 359-369.
[http://dx.doi.org/10.1016/j.snb.2015.01.096]
[82]
Lopes, F.; Pacheco, J.G.; Rebelo, P.; Delerue-Matos, C. Molecularly imprinted electrochemical sensor prepared on a screen printed carbon electrode for naloxone detection. Sens. Actuators B Chem., 2017, 243, 745-752.
[http://dx.doi.org/10.1016/j.snb.2016.12.031]
[83]
Afkhami, A.; Gomar, F.; Madrakian, T. CoFe2O4 nanoparticles modified carbon paste electrode for simultaneous detection of oxycodone and codeine in human plasma and urine. Sens. Actuators B Chem., 2016, 233, 263-271.
[http://dx.doi.org/10.1016/j.snb.2016.04.067]
[84]
Manal, A.; Hendawy, H.A.; Eldin, G.M.; El-Sherif, Z.A. Application of nano graphene-modified electrode as an electrochemical sensor for determination of tapentadol in the presence of paracetamol. J. Indian Chem. Soc., 2019, 16(5), 1123-1130.
[85]
Hashemi, P.; Bagheri, H.; Afkhami, A.; Ardakani, Y.H.; Madrakian, T. Fabrication of a novel aptasensor based on three-dimensional reduced graphene oxide/polyaniline/gold nanoparticle composite as a novel platform for high sensitive and specific cocaine detection. Anal. Chim. Acta, 2017, 996, 10-19.
[http://dx.doi.org/10.1016/j.aca.2017.10.035] [PMID: 29137703]
[86]
Khairy, M.; Mahmoud, B.G.; Banks, C.E. Simultaneous determination of codeine and its co-formulated drugs acetaminophen and caffeine by utilising cerium oxide nanoparticles modified screen-printed electrodes. Sens. Actuators B Chem., 2018, 259, 142-154.
[http://dx.doi.org/10.1016/j.snb.2017.12.054]
[87]
Atta, N.F.; Galal, A.; Azab, S.M. Determination of morphine at gold nanoparticles/Nafion® carbon paste modified sensor electrode. Analyst (Lond.), 2011, 136(22), 4682-4691.
[http://dx.doi.org/10.1039/c1an15423k] [PMID: 21879032]
[88]
Ameku, W.A.; de Araujo, W.R.; Rangel, C.J.; Ando, R.A.; Paixão, T.R. Gold nanoparticle Paper-based dual-detection device for forensics applications. ACS Applied Nano Materials, 2019, 2(9), 5460-5468.
[http://dx.doi.org/10.1021/acsanm.9b01057]
[89]
Roushani, M.; Shahdost-Fard, F. Impedimetric detection of cocaine by using an aptamer attached to a screen printed electrode modified with a dendrimer/silver nanoparticle nanocomposite. Mikrochim. Acta, 2018, 185(4), 214.
[http://dx.doi.org/10.1007/s00604-018-2709-6] [PMID: 29594633]
[90]
Stevenson, H.; Bacon, A.; Joseph, K.M.; Gwandaru, W.R.W.; Bhide, A.; Sankhala, D.; Dhamu, V.N.; Prasad, S. A rapid response electrochemical biosensor for detecting Thc in saliva. Sci. Rep., 2019, 9(1), 12701.
[http://dx.doi.org/10.1038/s41598-019-49185-y] [PMID: 31481686]
[91]
Lu, D.; Lu, F.; Pang, G. A novel tetrahydrocannabinol electrochemical nano immunosensor based on horseradish peroxidase and double-layer gold nanoparticles. Molecules, 2016, 21(10), 1377.
[http://dx.doi.org/10.3390/molecules21101377] [PMID: 27763523]
[92]
Zhang, Q.; Berg, D.; Mugo, S.M. Molecularly imprinted carbon based electrodes for tetrahydrocannabinol sensing. Inorg. Chem. Commun., 2019, 107107459
[http://dx.doi.org/10.1016/j.inoche.2019.107459]
[93]
Habibi, B.; Jahanbakhshi, M. Silver nanoparticles/multi walled carbon nanotubes nanocomposite modified electrode: voltammetric determination of clonazepam. Electrochim. Acta, 2014, 118, 10-17.
[http://dx.doi.org/10.1016/j.electacta.2013.11.169]
[94]
Allahnouri, F.; Farhadi, K.; Eskandari, H.; Molaei, R. Screen printed carbon electrode modified with a copper@porous silicon nanocomposite for voltammetric sensing of clonazepam. Mikrochim. Acta, 2019, 186(10), 676.
[http://dx.doi.org/10.1007/s00604-019-3784-z] [PMID: 31494758]
[95]
Prakash, V.; Sharma, S.; Kaur, J.; Mehta, S. Graphene oxide/lysine composite–a potent electron mediator for detection of diazepam. Anal. Methods, 2018, 10(41), 5038-5046.
[http://dx.doi.org/10.1039/C8AY01429A]
[96]
Rahimi-Nasrabadi, M.; Khoshroo, A.; Mazloum-Ardakani, M. Electrochemical determination of diazepam in real samples based on fullerene-functionalized carbon nanotubes/ionic liquid nanocomposite. Sens. Actuators B Chem., 2017, 240, 125-131.
[http://dx.doi.org/10.1016/j.snb.2016.08.144]
[97]
Majidi, M.R.; Ghaderi, S.; Asadpour-Zeynali, K.; Dastangoo, H. Synthesis of dendritic silver nanostructures supported by graphene nanosheets and its application for highly sensitive detection of diazepam. Mater. Sci. Eng. C, 2015, 57, 257-264.
[http://dx.doi.org/10.1016/j.msec.2015.07.037] [PMID: 26354262]
[98]
Narang, J.; Malhotra, N.; Singhal, C.; Mathur, A.; Pn, A.K.; Pundir, C.S. Detection of alprazolam with a lab on paper economical device integrated with urchin like Ag@ Pd shell nano-hybrids. Mater. Sci. Eng. C, 2017, 80, 728-735.
[http://dx.doi.org/10.1016/j.msec.2016.11.128] [PMID: 28866222]
[99]
Motaharian, A.; Hosseini, M.R.M. Electrochemical sensor based on a carbon paste electrode modified by graphene nanosheets and molecularly imprinted polymer nanoparticles for determination of a chlordiazepoxide drug. Anal. Methods, 2016, 8(33), 6305-6312.
[http://dx.doi.org/10.1039/C6AY01594H]
[100]
Rezaei, B.; Rahmanian, O.; Ensafi, A.A. Sensing lorazepam with a glassy carbon electrode coated with an electropolymerized-imprinted polymer modified with multiwalled carbon nanotubes and gold nanoparticles. Mikrochim. Acta, 2013, 180(1-2), 33-39.
[http://dx.doi.org/10.1007/s00604-012-0897-z]
[101]
Rafiee, B.; Fakhari, A.R.; Ghaffarzadeh, M. Impedimetric and stripping voltammetric determination of methamphetamine at gold nanoparticles-multiwalled carbon nanotubes modified screen printed electrode. Sens. Actuators B Chem., 2015, 218, 271-279.
[http://dx.doi.org/10.1016/j.snb.2015.03.077]
[102]
Švorc, Ľ.; Vojs, M.; Michniak, P.; Marton, M.; Rievaj, M.; Bustin, D. Electrochemical behavior of methamphetamine and its voltammetric determination in biological samples using self-assembled boron-doped diamond electrode. J. Electroanal. Chem. , 2014, 717-718, 34-40.
[http://dx.doi.org/10.1016/j.jelechem.2014.01.008]
[103]
Oghli, A.H.; Alipour, E.; Asadzadeh, M. Development of a novel voltammetric sensor for the determination of methamphetamine in biological samples on the pretreated pencil graphite electrode. RSC Advances, 2015, 5(13), 9674-9682.
[http://dx.doi.org/10.1039/C4RA11399C]
[104]
Bartlett, C-A.; Taylor, S.; Fernandez, C.; Wanklyn, C.; Burton, D.; Enston, E.; Raniczkowska, A.; Black, M.; Murphy, L. Disposable screen printed sensor for the electrochemical detection of methamphetamine in undiluted saliva. Chem. Cent. J., 2016, 10, 3-3.
[http://dx.doi.org/10.1186/s13065-016-0147-2] [PMID: 26839583]
[105]
Chen, T-W.; Rajaji, U.; Chen, S-M.; Jothi Ramalingam, R. A relative study on sonochemically synthesized mesoporous WS2 nanorods & hydrothermally synthesized WS2 nanoballs towards electrochemical sensing of psychoactive drug (Clonazepam). Ultrason. Sonochem., 2019, 54, 79-89.
[http://dx.doi.org/10.1016/j.ultsonch.2019.02.012] [PMID: 30833196]
[106]
Dehgan-Reyhan, S.; Najafi, M.; Maddah, B. Preparation of nanocomposite modified Defective Mesoporous Carbon (DMC) Ceramic Electrode (DMCCE): application to electrochemical determination of clonazepam. Sens. Lett., 2017, 15(12), 987-991.
[http://dx.doi.org/10.1166/sl.2017.3909]
[107]
Jain, R.; Sinha, A.; Kumari, N.; Khan, A.L. A polyaniline/graphene oxide nanocomposite as a voltammetric sensor for electroanalytical detection of clonazepam. Anal. Methods, 2016, 8(15), 3034-3045.
[http://dx.doi.org/10.1039/C6AY00424E]
[108]
Khoshroo, A.; Hosseinzadeh, L.; Sobhani-Nasab, A.; Rahimi-Nasrabadi, M.; Ahmadi, F. Silver nanofibers/ionic liquid nanocomposite based electrochemical sensor for detection of clonazepam via electrochemically amplified detection. Microchem. J., 2019, 145, 1185-1190.
[http://dx.doi.org/10.1016/j.microc.2018.12.049]
[109]
Lotfi, S.; Veisi, H. Electrochemical determination of clonazepam drug based on glassy carbon electrode modified with Fe3O4/R-SH/Pd nanocomposite. Mater. Sci. Eng. C, 2019, 103109754
[http://dx.doi.org/10.1016/j.msec.2019.109754] [PMID: 31349476]
[110]
Shahrokhian, S.; Balotf, H.; Ghalkhani, M. Nano composite coating based on cellulose nanofibers/carbon nanoparticles: application to voltammetric determination of clonazepam. J. Solid State Electrochem., 2015, 19(1), 251-260.
[http://dx.doi.org/10.1007/s10008-014-2597-6]
[111]
Soroush, S.; Maryam, B.; Mohamad, S.; Maryam, M. Potentiometric determination of clonazepam using carbon paste electrode based on Molecular Imprinted Polymer (MIP) in solution and in a biological fluid model. Pharm. Anal. Acta, 2016, 7, 1-8.
[112]
Amini, R.; Asadpour-Zeynali, K. Layered double hydroxide nanoparticles embedded in a biopolymer: A novel platform for electroanalytical determination of diazepam. New J. Chem., 2019, 43(19), 7463-7470.
[http://dx.doi.org/10.1039/C8NJ06325G]
[113]
Dehghanzade, M.; Alipour, E. Voltammetric determination of diazepam using a bismuth modified pencil graphite electrode. Anal. Methods, 2016, 8(9), 1995-2004.
[http://dx.doi.org/10.1039/C6AY00098C]
[114]
Hosseini, M.R.M.; Motaharian, A. Electroanalytical determination of diazepam in tablet and human serum samples using a multiwalled carbon nanotube embedded molecularly imprinted polymer-modified carbon paste electrode. RSC Advances, 2015, 5(99), 81650-81659.
[http://dx.doi.org/10.1039/C5RA11598A]
[115]
Lakshmi, A.; Gopu, G.; Thanikaikarasan, S.; Mahalingam, T.; Alvarez, P.; Sebastian, P.; Vedhi, C. Electroanalysis of diazepam on nanosize conducting poly (3-methylthiophene) modified glassy carbon electrode. J. New Mater. Electrochem. Syst., 2014, 17(3), 185-190.
[http://dx.doi.org/10.14447/jnmes.v17i3.420]
[116]
Narang, J.; Singhal, C.; Mathur, A.; Khanuja, M.; Varshney, A.; Garg, K.; Dahiya, T.; Pundir, C.S. Lab on paper chip integrated with Si@GNRs for electroanalysis of diazepam. Anal. Chim. Acta, 2017, 980, 50-57.
[http://dx.doi.org/10.1016/j.aca.2017.05.006] [PMID: 28622803]
[117]
Zare, M.; Tehrani, M.S.; Husain, S.W.; Azar, P.A. Multiwall carbon nanotube‐ionic liquid modified paste electrode as an efficient sensor for the determination of diazepam and oxazepam in real samples. Electroanalysis, 2014, 26(12), 2599-2606.
[http://dx.doi.org/10.1002/elan.201400305]
[118]
Rezaei, B.; Boroujeni, M.K.; Ensafi, A.A. A novel electrochemical nanocomposite imprinted sensor for the determination of lorazepam based on modified polypyrrole@ sol-gel@ gold nanoparticles/pencil graphite electrode. Electrochim. Acta, 2014, 123, 332-339.
[http://dx.doi.org/10.1016/j.electacta.2014.01.056]
[119]
Samiec, P.; Švorc, Ľ.; Stanković, D.M.; Vojs, M.; Marton, M.; Navrátilová, Z. Mercury-free and modification-free electroanalytical approach towards bromazepam and alprazolam sensing: a facile and efficient assay for their quantification in pharmaceuticals using boron-doped diamond electrodes. Sens. Actuators B Chem., 2017, 245, 963-971.
[http://dx.doi.org/10.1016/j.snb.2017.02.023]
[120]
Tavakkoli, N.; Soltani, N.; Mohammadi, F. A nanoporous gold-based electrochemical aptasensor for sensitive detection of cocaine. RSC Advances, 2019, 9(25), 14296-14301.
[http://dx.doi.org/10.1039/C9RA01292C]
[121]
Chen, Z.; Lu, M. Target-responsive aptamer release from manganese dioxide nanosheets for electrochemical sensing of cocaine with target recycling amplification. Talanta, 2016, 160, 444-448.
[http://dx.doi.org/10.1016/j.talanta.2016.07.052] [PMID: 27591636]
[122]
Roushani, M.; Shahdost-fard, F. An aptasensor for voltammetric and impedimetric determination of cocaine based on a glassy carbon electrode modified with platinum nanoparticles and using rutin as a redox probe. Mikrochim. Acta, 2016, 183(1), 185-193.
[http://dx.doi.org/10.1007/s00604-015-1604-7]
[123]
Balbino, M.A.; Eleoterio, I.C.; de Oliveira, M.F.; McCord, B.R. Electrochemical study of delta-9-tetrahydrocannabinol by cyclic voltammetry using screen printed electrode, improvements in forensic analysis. Sensors Transduc., 2016, 207(12), 73.
[124]
Madrakian, T.; Haghshenas, E.; Afkhami, A. Simultaneous determination of tyrosine, acetaminophen and ascorbic acid using gold nanoparticles/multiwalled carbon nanotube/glassy carbon electrode by differential pulse voltammetric method. Sens. Actuators B Chem., 2014, 193, 451-460.
[http://dx.doi.org/10.1016/j.snb.2013.11.117]
[125]
Beitollahi, H.; Garkani-Nejad, F.; Tajik, S.; Ganjali, M.R. Voltammetric determination of acetaminophen and tryptophan using a graphite screen printed electrode modified with functionalized graphene oxide nanosheets within a Fe3O4@SiO2 nanocomposite. Iran. J. Pharm. Res., 2019, 18(1), 80-90.
[PMID: 31089346]
[126]
Zhu, W.; Huang, H.; Gao, X.; Ma, H. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films. Mater. Sci. Eng. C, 2014, 45, 21-28.
[http://dx.doi.org/10.1016/j.msec.2014.08.067] [PMID: 25491797]
[127]
Haghshenas, E.; Madrakian, T.; Afkhami, A. A novel electrochemical sensor based on magneto Au nanoparticles/carbon paste electrode for voltammetric determination of acetaminophen in real samples. Mater. Sci. Eng. C, 2015, 57, 205-214.
[http://dx.doi.org/10.1016/j.msec.2015.07.054] [PMID: 26354256]
[128]
Babaei, A.; Sohrabi, M. Selective simultaneous determination of levodopa and acetaminophen in the presence of ascorbic acid using a novel TiO2 hollow sphere/multi-walled carbon nanotube/poly-aspartic acid composite modified carbon paste electrode. Anal. Methods, 2016, 8(5), 1135-1144.
[http://dx.doi.org/10.1039/C5AY02497H]
[129]
Li, T.; Xu, J.; Zhao, L.; Shen, S.; Yuan, M.; Liu, W.; Tu, Q.; Yu, R.; Wang, J. Au nanoparticles/poly(caffeic acid) composite modified glassy carbon electrode for voltammetric determination of acetaminophen. Talanta, 2016, 159, 356-364.
[http://dx.doi.org/10.1016/j.talanta.2016.06.044] [PMID: 27474318]
[130]
Taei, M.; Salavati, H.; Hasanpour, F.; Habibollahi, S.; Baghlani, H. Simultaneous determination of ascorbic acid, acetaminophen and codeine based on multi-walled carbon nanotubes modified with magnetic nanoparticles paste electrode. Mater. Sci. Eng. C, 2016, 69, 1-11.
[http://dx.doi.org/10.1016/j.msec.2016.06.014] [PMID: 27612682]
[131]
Foroughi, M.M.; Jahani, S.; Hassani Nadiki, H. Lanthanum doped fern-like CuO nanoleaves/MWCNTs modified glassy carbon electrode for simultaneous determination of tramadol and acetaminophen. Sens. Actuators B Chem., 2019, 285, 562-570.
[http://dx.doi.org/10.1016/j.snb.2019.01.069]
[132]
Mynttinen, E.; Wester, N.; Lilius, T.; Kalso, E.; Koskinen, J.; Laurila, T. Simultaneous electrochemical detection of tramadol and O-desmethyltramadol with Nafion-coated tetrahedral amorphous carbon electrode. Electrochim. Acta, 2019, 295, 347-353.
[http://dx.doi.org/10.1016/j.electacta.2018.10.148]
[133]
Alizadeh, T.; Atashi, F.; Akhoundian, M.; Ganjali, M.R. Highly selective extraction and voltammetric determination of the opioid drug buprenorphine via a carbon paste electrode impregnated with nano-sized molecularly imprinted polymer. Mikrochim. Acta, 2019, 186(9), 654.
[http://dx.doi.org/10.1007/s00604-019-3736-7] [PMID: 31463524]
[134]
Ardeshiri, M.; Jalali, F. Highly selective electrode for potentiometric analysis of methadone in biological fluids and pharmaceutical formulations. Mater. Sci. Eng. C, 2016, 63, 30-36.
[http://dx.doi.org/10.1016/j.msec.2016.02.050] [PMID: 27040192]
[135]
Fouladgar, M. A new sensor for determination of nalbuphine using NiO/functional single walled carbon nanotubes nanocomposite and ionic liquid. Sens. Actuators B Chem., 2016, 230, 456-462.
[http://dx.doi.org/10.1016/j.snb.2016.02.094]
[136]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H.; Moradi, R. Simultaneous detection of nalbuphine and diclofenac as important analgesic drugs in biological and pharmaceutical samples using a Pt: Co nanostructure-based electrochemical sensor. J. Electrochem. Soc., 2017, 164(2), B60-B65.
[http://dx.doi.org/10.1149/2.0911702jes]
[137]
Gomar, F.; Afkhami, A.; Madrakian, T. Voltammetric detection of naloxoneonMWCNTs/copper nanoparticles/zinc oxide composite modified glassy carbon electrode. Annual Electrochem. Seminar Iran, 2014, 10 [Epub ahead of print]
[138]
Shokri, A.; Bagheri, H.; Mojtahedi, M.M. A sensitive electrochemical sensor for rapid and selective determination of codeine in biological samples using carbon paste electrode modified with carbon nanotube and nickel oxide nanoparticles. Cumhuriyet Üniversitesi Fen-Edebiyat Fakültesi Fen Bilimleri Dergisi, 2015, 36(3), 2756-2765.
[139]
Simioni, N.B.; Oliveira, G.G.; Vicentini, F.C.; Lanza, M.R.V.; Janegitz, B.C.; Fatibello-Filho, O. Nanodiamonds stabilized in dihexadecyl phosphate film for electrochemical study and quantification of codeine in biological and pharmaceutical samples. Diamond Related Materials, 2017, 74, 191-196.
[http://dx.doi.org/10.1016/j.diamond.2017.03.007]
[140]
Mohamed, M.A.; El-Gendy, D.M.; Ahmed, N.; Banks, C.E.; Allam, N.K. 3D spongy graphene-modified screen-printed sensors for the voltammetric determination of the narcotic drug codeine. Biosens. Bioelectron., 2018, 101, 90-95.
[http://dx.doi.org/10.1016/j.bios.2017.10.020] [PMID: 29049947]
[141]
Hassanvand, Z.; Jalali, F. Gold nanoparticles/cysteic acid modified electrode for simultaneous electrochemical determination of tramadol and paracetamol. Analy. Bioanaly. Chem. Res., 2019, 6(2), 393-404.
[142]
Bagheri, H.; Shirzadmehr, A.; Rezaei, M.; Khoshsafar, H. Determination of tramadol in pharmaceutical products and biological samples using a new nanocomposite carbon paste sensor based on decorated nanographene/tramadol-imprinted polymer nanoparticles/ionic liquid. Ionics, 2018, 24(3), 833-843.
[http://dx.doi.org/10.1007/s11581-017-2252-1]
[143]
Çidem, E.; Teker, T.; Aslanoglu, M. A sensitive determination of tramadol using a voltammetric platform based on antimony oxide nanoparticles. Microchem. J., 2019, 147, 879-885.
[http://dx.doi.org/10.1016/j.microc.2019.04.018]
[144]
Li, Y.; Zou, L.; Li, Y.; Li, K.; Ye, B. A new voltammetric sensor for morphine detection based on electrochemically reduced MWNTs-doped graphene oxide composite film. Sens. Actuators B Chem., 2014, 201, 511-519.
[http://dx.doi.org/10.1016/j.snb.2014.05.034]
[145]
Rezaei, B.; Foroughi-Dehnavi, S.; Ensafi, A.A. Fabrication of electrochemical sensor based on molecularly imprinted polymer and nanoparticles for determination trace amounts of morphine. Ionics, 2015, 21(10), 2969-2980.
[http://dx.doi.org/10.1007/s11581-015-1458-3]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 18
ISSUE: 2
Year: 2021
Published on: 19 May, 2020
Page: [162 - 183]
Pages: 22
DOI: 10.2174/1567201817666200520084835
Price: $65

Article Metrics

PDF: 24
HTML: 1