Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

General Research Article

Synthesis and Application of Zwitterionic Magnetic Molecularly Imprinted Polymer for Selective Removal of Fluoroquinolones from Aqueous Solution

Author(s): Huikai Shao, Samar Douh Cherif, Jincai Wang, Qiqin Wang* and Zhengjin Jiang*

Volume 17, Issue 3, 2021

Published on: 18 May, 2020

Page: [408 - 417] Pages: 10

DOI: 10.2174/1573411016999200518084012

Price: $65

Abstract

Background: Although molecularly imprinted polymers (MIPs) have now been widely utilized for the sample pre-treatment, chromatography separation and removal of pollutants, conventional MIPs still lack satisfactory compatibility with water, thus leading to poor molecular recognition for target analytes in aqueous solutions. The aim of the study was to prepare water-compatible MIPs.

Methods: The zwitterionic MMIPs were synthesized on vinyltrimethoxysilane-coated Fe3O4 (Fe3O4-VTMS) through a surface imprinting process by using levofloxacin (LEV) as a template, [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (SPE) as a functional monomer, N, N-methylene-bis-acrylamide (MBA) as a crosslinker and potassium persulfate as an initiator.

Results: The prepared zwitterionic LEV-MMIPs were characterized by Fourier transform infrared spectrometry, X-ray diffraction, vibrating sample magnetometry, scanning electron microscopy and water contact angle test. The characterization results showed that zwitterionic LEV-MMIPs exhibited good magnetic responsiveness and super-hydrophilicity (the contact angle is 0°). The optimum pH for binding LEV was found to be 6.0 and the binding isotherm followed the Langmuir isotherm model of monolayer adsorption. The binding process was very fast and the pseudo-second-order model fitted well with the kinetic data. The adsorption capacity of these zwitterionic MMIPs was 54.30 mg g-1 with a selectivity factor of 1.6 compared to the magnetic non-imprinted polymers (MNIPs). Their feasibility for removing fluoroquinolones (FQs) from the environmental sample was demonstrated using pearl river water spiked with LEV, gatifloxacin, ciprofloxacin and lomefloxacin. The zwitterionic LEV-MMIPs could be reused at least five times with a removal efficiency of more than 80% for the selected FQs.

Conclusion: The prepared zwitterionic LEV-MMIP is a promising sorbent for rapid, selective and efficient removal of fluoroquinolones from aqueous medium.

Keywords: Aqueous solution, chromatography separation, fluoroquinolones, removal, surface imprinting, zwitterionic magnetic molecularly imprinted polymer.

Graphical Abstract
[1]
Herrera-Herrera, A.V.; Hernández-Borges, J.; Rodríguez-Delgado, M.A.; Herrero, M.; Cifuentes, A. Determination of quinolone residues in infant and young children powdered milk combining solid-phase extraction and ultra-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A, 2011, 1218(42), 7608-7614.
[http://dx.doi.org/10.1016/j.chroma.2011.05.066] [PMID: 21683365]
[2]
Tan, F.; Sun, D.; Gao, J.; Zhao, Q.; Wang, X.; Teng, F.; Quan, X.; Chen, J. Preparation of molecularly imprinted polymer nanoparticles for selective removal of fluoroquinolone antibiotics in aqueous solution. J. Hazard. Mater., 2013, 244-245, 750-757.
[http://dx.doi.org/10.1016/j.jhazmat.2012.11.003] [PMID: 23177246]
[3]
Rodríguez, E.; Navarro-Villoslada, F.; Benito-Peña, E.; Marazuela, M.D.; Moreno-Bondi, M.C. Multiresidue determination of ultratrace levels of fluoroquinolone antimicrobials in drinking and aquaculture water samples by automated online molecularly imprinted solid phase extraction and liquid chromatography. Anal. Chem., 2011, 83(6), 2046-2055.
[http://dx.doi.org/10.1021/ac102839n] [PMID: 21338057]
[4]
Prieto, A.; Schrader, S.; Bauer, C.; Möder, M. Synthesis of a molecularly imprinted polymer and its application for microextraction by packed sorbent for the determination of fluoroquinolone related compounds in water. Anal. Chim. Acta, 2011, 685(2), 146-152.
[http://dx.doi.org/10.1016/j.aca.2010.11.038] [PMID: 21168563]
[5]
Ling, W.; Ben, W.; Xu, K.; Zhang, Y.; Yang, M.; Qiang, Z. Ozonation of norfloxacin and levofloxacin in water: Specific reaction rate constants and defluorination reaction. Chemosphere, 2018, 195, 252-259.
[http://dx.doi.org/10.1016/j.chemosphere.2017.12.079] [PMID: 29272794]
[6]
Alexandrino, D.A.M.; Mucha, A.P.; Almeida, C.M.R.; Gao, W.; Jia, Z.; Carvalho, M.F. Biodegradation of the veterinary antibiotics enrofloxacin and ceftiofur and associated microbial community dynamics. Sci. Total Environ., 2017, 581-582, 359-368.
[http://dx.doi.org/10.1016/j.scitotenv.2016.12.141] [PMID: 28069302]
[7]
Nasuhoglu, D.; Rodayan, A.; Berk, D.; Yargeau, V. Removal of the antibiotic levofloxacin (LEVO) in water by ozonation and TiO2 photocatalysis. Chem. Eng. J., 2012, 189-190, 41-48.
[http://dx.doi.org/10.1016/j.cej.2012.02.016]
[8]
Zhang, J.; Fu, D.; Wu, J. Photodegradation of Norfloxacin in aqueous solution containing algae. J. Environ. Sci. (China), 2012, 24(4), 743-749.
[http://dx.doi.org/10.1016/S1001-0742(11)60814-0] [PMID: 22894111]
[9]
Zhu, L.; Santiago-Schübel, B.; Xiao, H.; Hollert, H.; Kueppers, S. Electrochemical oxidation of fluoroquinolone antibiotics: Mechanism, residual antibacterial activity and toxicity change. Water Res., 2016, 102, 52-62.
[http://dx.doi.org/10.1016/j.watres.2016.06.005] [PMID: 27318447]
[10]
Zhang, Y.; Rong, C.; Song, Y.; Wang, Y.; Pei, J.; Tang, X.; Zhang, R.; Yu, K. Oxidation of the antibacterial agent norfloxacin during sodium hypochlorite disinfection of marine culture water. Chemosphere,, 2017, 182, 245-254.
[http://dx.doi.org/10.1016/j.chemosphere.2017.05.023] [PMID: 28500969]
[11]
Fu, H.; Li, X.; Wang, J.; Lin, P.; Chen, C.; Zhang, X.; Suffet, I.H.M. Activated carbon adsorption of quinolone antibiotics in water: Performance, mechanism, and modeling. J. Environ. Sci. (China), 2017, 56, 145-152.
[http://dx.doi.org/10.1016/j.jes.2016.09.010] [PMID: 28571850]
[12]
Song, X.; Gunawan, P.; Jiang, R.; Leong, S.S.J.; Wang, K.; Xu, R. Surface activated carbon nanospheres for fast adsorption of silver ions from aqueous solutions. J. Hazard. Mater., 2011, 194, 162-168.
[http://dx.doi.org/10.1016/j.jhazmat.2011.07.076] [PMID: 21862215]
[13]
Demirbas, A. Agricultural based activated carbons for the removal of dyes from aqueous solutions: A review. J. Hazard. Mater., 2009, 167(1-3), 1-9.
[http://dx.doi.org/10.1016/j.jhazmat.2008.12.114] [PMID: 19181447]
[14]
Shao, H.; Zhao, L.; Chen, J.; Zhou, H.; Huang, S.; Li, K. Preparation, characterization and application of molecularly imprinted monolithic column for hesperetin. J. Pharm. Biomed. Anal., 2015, 111, 241-247.
[http://dx.doi.org/10.1016/j.jpba.2015.04.006] [PMID: 25910048]
[15]
Shao, H.; Zhou, H.; Zhang, T.; Zhao, X.; Jiang, Z.; Wang, Q. Preparation of molecularly imprinted hybrid monoliths for the selective detection of fluoroquinolones in infant formula powders. J. Chromatogr. A, 2019, 1588, 33-40.
[http://dx.doi.org/10.1016/j.chroma.2018.12.038] [PMID: 30587346]
[16]
Zhang, H.Q. Water-compatible molecularly imprinted polymers: promising synthetic substitutes for biological receptors. Polymer (Guildf.), 2014, 55, 699-714.
[http://dx.doi.org/10.1016/j.polymer.2013.12.064]
[17]
Zhou, T.; Ding, J.; Ni, L.; Yu, J.; Li, H.; Ding, H.; Chen, Y.; Ding, L. Preparation of magnetic superhydrophilic molecularly imprinted resins for detection of triazines in aqueous samples. J. Chromatogr. A, 2017, 1497, 38-46.
[http://dx.doi.org/10.1016/j.chroma.2017.03.069] [PMID: 28381361]
[18]
Manesiotis, P.; Borrelli, C.; Aureliano, C.S.; Svensson, C.; Sellergren, B. Water-compatible imprinted polymers for selective depletion of riboflavine from beverages. J. Mater. Chem., 2009, 19, 6185-6193.
[http://dx.doi.org/10.1039/b906117g]
[19]
Liu, C.; Chen, W.; Yuan, G.; Xiao, Y.; Crommen, J.; Xu, S.; Jiang, Z. Influence of the crosslinker type on the chromatographic properties of hydrophilic sulfoalkylbetaine-type monolithic columns. J. Chromatogr. A, 2014, 1373, 73-80.
[http://dx.doi.org/10.1016/j.chroma.2014.11.007] [PMID: 25464999]
[20]
Yuan, G.; Peng, Y.; Liu, Z.; Hong, J.; Xiao, Y.; Guo, J.; Smith, N.W.; Crommen, J.; Jiang, Z. A facile and efficient strategy to enhance hydrophilicity of zwitterionic sulfoalkylbetaine type monoliths. J. Chromatogr. A, 2013, 1301, 88-97.
[http://dx.doi.org/10.1016/j.chroma.2013.05.063] [PMID: 23796416]
[21]
Liu, Z.; Peng, Y.; Wang, T.; Yuan, G.; Zhang, Q.; Guo, J.; Jiang, Z. Preparation and application of novel zwitterionic monolithic column for hydrophilic interaction chromatography. J. Sep. Sci., 2013, 36(2), 262-269.
[http://dx.doi.org/10.1002/jssc.201200682] [PMID: 23180752]
[22]
Rodríguez-Dorado, R.; Carro, A.M.; Chianella, I.; Karim, K.; Concheiro, A.; Lorenzo, R.A.; Piletsky, S.; Alvarez-Lorenzo, C. Oxytetracycline recovery from aqueous media using computationally designed molecularly imprinted polymers. Anal. Bioanal. Chem., 2016, 408(24), 6845-6856.
[http://dx.doi.org/10.1007/s00216-016-9811-6] [PMID: 27488280]
[23]
Chang, Y.S.; Ko, T.H.; Hsu, T.J.; Syu, M.J. Synthesis of an imprinted hybrid organic-inorganic polymeric sol-gel matrix toward the specific binding and isotherm kinetics investigation of creatinine. Anal. Chem., 2009, 81(6), 2098-2105.
[http://dx.doi.org/10.1021/ac802168w] [PMID: 19236048]
[24]
Shen, F.; Zhang, Q.; Ren, X. A triple-function zwitterion for preparing water compatible diclofenac imprinted polymers. Chem. Commun. (Camb.), 2015, 51(1), 183-186.
[http://dx.doi.org/10.1039/C4CC04739G] [PMID: 25387988]
[25]
Chen, F.F.; Xie, X.Y.; Shi, Y.P. Preparation of magnetic molecularly imprinted polymer for selective recognition of resveratrol in wine. J. Chromatogr. A, 2013, 1300, 112-118.
[http://dx.doi.org/10.1016/j.chroma.2013.02.018] [PMID: 23481473]
[26]
Liang, X. Novel ionic liquid supported on a magnetic core and its catalytic activities. Ind. Eng. Chem. Res., 2014, 53, 17325-17332.
[http://dx.doi.org/10.1021/ie502681w]
[27]
Karimi-Maleh, H.; Shafieizadeh, M.; Taher, M.A.; Opoku, F.; Kiarii, E.M.; Govender, P.P.; Ranjbari, S.; Rezapour, M.; Orooji, Y. The role of magnetite/graphene oxide nano-composite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples, an experimental/theoretical investigation. J. Mol. Liq., 2020, 298112040
[http://dx.doi.org/10.1016/j.molliq.2019.112040]
[28]
Anirudhan, T.S.; Christa, J.; Deepa, J.R. Extraction of melamine from milk using a magnetic molecularly imprinted polymer. Food Chem., 2017, 227, 85-92.,
[http://dx.doi.org/10.1016/j.foodchem.2016.12.090] [PMID: 28274462]
[29]
Zhao, J.K.; Fu, X.M.; Zhang, S.Z.; Hou, W.G. Water dispersible avermectin-layered double hydroxide nanocomposites modified with sodium dodecyl sulfate. Appl. Clay Sci., 2011, 51, 460-466.
[http://dx.doi.org/10.1016/j.clay.2011.01.009]
[30]
Dramou, P.; Zuo, P.; He, H.; Pham-Huy, L.A.; Zou, W.; Xiao, D.; Pham-Huy, C. Development of novel amphiphilic magnetic molecularly imprinted polymers compatible with biological fluids for solid phase extraction and physicochemical behavior study. J. Chromatogr. A, 2013, 1317, 110-120.
[http://dx.doi.org/10.1016/j.chroma.2013.07.075] [PMID: 23916954]
[31]
Chen, Y.; Xiong, Z.; Zhang, L.; Zhao, J.; Zhang, Q.; Peng, L.; Zhang, W.; Ye, M.; Zou, H. Facile synthesis of zwitterionic polymer-coated core-shell magnetic nanoparticles for highly specific capture of N-linked glycopeptides. Nanoscale, 2015, 7(7), 3100-3108.
[http://dx.doi.org/10.1039/C4NR05955G] [PMID: 25611677]
[32]
Zhang, Y.L.; Zhang, J.; Dai, C.M.; Zhou, X.F.; Liu, S.G. Sorption of carbamazepine from water by magnetic molecularly imprinted polymers based on chitosan-Fe3O4. Carbohydr. Polym., 2013, 97(2), 809-816.
[http://dx.doi.org/10.1016/j.carbpol.2013.05.072] [PMID: 23911519]
[33]
Ji, W.; Xie, H.; Zhou, J.; Wang, X.; Ma, X.; Huang, L. Water-compatible molecularly imprinted polymers for selective solid phase extraction of dencichine from the aqueous extract of Panax notoginseng. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1008, 225-233.
[http://dx.doi.org/10.1016/j.jchromb.2015.11.053] [PMID: 26680322]
[34]
Song, R.; Hu, X.; Guan, P.; Li, J.; Du, C.; Qian, L.; Wang, C. Surface modification of imprinted polymer microspheres with ultrathin hydrophilic shells to improve selective recognition of glutathione in aqueous media. Mater. Sci. Eng. C, 2016, 60, 1-6.
[http://dx.doi.org/10.1016/j.msec.2015.11.018] [PMID: 26706500]
[35]
Zhao, M.; Zhang, C.; Zhang, Y.; Guo, X.; Yan, H.; Zhang, H. Efficient synthesis of narrowly dispersed hydrophilic and magnetic molecularly imprinted polymer microspheres with excellent molecular recognition ability in a real biological sample. Chem. Commun. (Camb.), 2014, 50(17), 2208-2210.
[http://dx.doi.org/10.1039/C3CC49131E] [PMID: 24435292]
[36]
Luo, Y.B.; Ma, Q.; Feng, Y.Q. Stir rod sorptive extraction with monolithic polymer as coating and its application to the analysis of fluoroquinolones in honey sample. J. Chromatogr. A, 2010, 1217(22), 3583-3589.
[http://dx.doi.org/10.1016/j.chroma.2010.03.036] [PMID: 20394937]
[37]
Khoo, K.H.; Culberson, C.H.; Bates, R.G. Thermodynamics of the dissociation of ammonium ion in seawater from 5 to 40°C. J. Solution Chem., 1977, 6, 281-290.
[http://dx.doi.org/10.1007/BF00645459]
[38]
Tan, F.; Deng, M.; Liu, X.; Zhao, H.; Li, X.; Quan, X.; Chen, J. Evaluation of a novel microextraction technique for aqueous samples: porous membrane envelope filled with multiwalled carbon nanotubes coated with molecularly imprinted polymer. J. Sep. Sci., 2011, 34(6), 707-715.
[http://dx.doi.org/10.1002/jssc.201000791] [PMID: 21312332]
[39]
Djozan, D.; Baheri, T. Preparation and evaluation of solid-phase microextraction fibers based on monolithic molecularly imprinted polymers for selective extraction of diacetylmorphine and analogous compounds. J. Chromatogr. A, 2007, 1166(1-2), 16-23.
[http://dx.doi.org/10.1016/j.chroma.2007.08.003] [PMID: 17723231]
[40]
Li, Y.; Li, X.; Chu, J.; Dong, C.; Qi, J.; Yuan, Y. Synthesis of core-shell magnetic molecular imprinted polymer by the surface RAFT polymerization for the fast and selective removal of endocrine disrupting chemicals from aqueous solutions. Environ. Pollut., 2010, 158(6), 2317-2323.
[http://dx.doi.org/10.1016/j.envpol.2010.02.007] [PMID: 20199830]
[41]
Pejin, B.; Iodice, C.; Tommonaro, G.; De Rosa, S. Synthesis and biological activities of thio-avarol derivatives. J. Nat. Prod., 2008, 71(11), 1850-1853.
[http://dx.doi.org/10.1021/np800318m] [PMID: 19007183]
[42]
Tommonaro, G.; García-Font, N.; Vitale, R.M.; Pejin, B.; Iodice, C.; Cañadas, S.; Marco-Contelles, J.; Oset-Gasque, M.J. Avarol derivatives as competitive AChE inhibitors, non hepatotoxic and neuroprotective agents for Alzheimer’s disease. Eur. J. Med. Chem., 2016, 122, 326-338.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.036] [PMID: 27376495]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy