CYP1A1 and CYP2D6 Polymorphisms and Susceptibility to Chronic Myelocytic Leukaemia

Author(s): Hadeil M.E. Idris, Hiba B. Khalil, Jeremy Mills, Abozer Y. Elderdery*

Journal Name: Current Cancer Drug Targets

Volume 20 , Issue 9 , 2020


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Abstract:

Background: CYP1A1 and CYP2D6 are both xenobiotic metabolizing enzymes belonging to the CYP450 enzyme family. Polymorphisms in these genes vary between individuals, resulting in dissimilar patterns of susceptibility to the effects of carcinogenic substances and drugs.

Objective: In a prospective study, the influence of CYP1A1*2C and CYP2D6*4 gene polymorphisms on the susceptibility to chronic myelocytic leukaemia (CML) were investigated.

Methods: Prevalence of CYP1A1*2C and CYP2D6*4 was detected in blood specimens from three hundred participants - two hundred patients and a hundred healthy individuals as a control group, using PCR-RFLP.

Results: CYP1A1 Ile/Val and Val/Val genotype frequency in our study population was 82% & 15% in CML patients and 55% & 8% in controls, respectively. This suggests that carriers had an elevated risk (OR=18.38, 95% CI=7.364-45.913, p value; =0.000 and OR=23.125,95 % CI=7.228-73.980, p value=0.000, respectively). Individuals carrying the CYP2D6 heterozygous genotype (IM) were notably fewer in number within the CML group at 43.5%, as opposed to 93% of the controls. This suggests that the IM genotype may have a prophylactic function in lowering CML risk (OR=0.036, 95% CI=0.005-0.271, p value =0.001). In spite of the distribution of the homozygous mutant (PM) genotype being higher in cases with CML (87% as opposed to 6% in the control), this difference was deemed non-significant (OR=0.558, 95% CI=0.064-4.845, p value =0.597).

Conclusion: These findings indicate that polymorphic CYP1A1 and CYP2D6 genes affect the susceptibility to CML.

Keywords: Leukaemia, CML, CYP1A1, CYP2D6, polymorphisms, Sudan.

[1]
Sailaja, K.; Vishnupriya, S.; Surekha, D.; Rao, D.N.; Rao, D. Association of CYP2D6* 4 polymorphism with chronic myeloid leukemia. JMSR, 2007, 1(1), 43-46.
[2]
Kassogue, Y.; Dehbi, H.; Quachouh, M.; Quessar, A.; Benchekroun, S.; Nadifi, S. Association of glutathione S-transferase (GSTM1 and GSTT1) genes with chronic myeloid leukemia. Springerplus, 2015, 4(1), 210.
[http://dx.doi.org/10.1186/s40064-015-0966-y] [PMID: 25969820]
[3]
Dhaval, K. Patel, D. J. S. Xenobiotics: An essential precursor for living system. Am J Adv Drug Deliv, 2016, 1(3), 262-270.
[4]
Lakkireddy, S.; Aula, S.; Avn, S.; Kapley, A.; Rao Digumarti, R.; Jamil, K. Association of the common CYP1A1*2C variant (Ile462Val Polymorphism) with chronic myeloid leukemia (CML) in patients undergoing imatinib therapy. Cell J., 2015, 17(3), 510-519.
[PMID: 26464823]
[5]
Lu, J.; Zhao, Q.; Zhai, Y.J.; He, H.R.; Yang, L.H.; Gao, F.; Zhou, R.S.; Zheng, J.; Ma, X.C. Genetic polymorphisms of CYP1A1 and risk of leukemia: A meta-analysis. OncoTargets Ther., 2015, 8, 2883-2902.
[http://dx.doi.org/10.2147/OTT.S92259] [PMID: 26491362]
[6]
Mukry, S.N.; Shahni, A.; Zaidi, U.; Shamsi, T.S. Cytochromes P450 and glutathione S-transferases polymorphisms: Can they predict efficacy of tyrosine kinase inhibitors in chronic myeloid leukemia? Blood, 2019, 134(Suppl. 1), 5920.
[7]
Chen, H.C.; Hu, W.X.; Liu, Q.X.; Li, W.K.; Chen, F.Z.; Rao, Z.Z.; Liu, X.F.; Luo, Y.P.; Cao, Y.F. Genetic polymorphisms of metabolic enzymes CYP1A1, CYP2D6, GSTM1 and GSTT1 and leukemia susceptibility. Eur. J. Cancer Prev., 2008, 17(3), 251-258.
[http://dx.doi.org/10.1097/CEJ.0b013e3282b72093] [PMID: 18414197]
[8]
Stejskalova, L.; Pavek, P. The function of cytochrome P450 1A1 enzyme (CYP1A1) and aryl hydrocarbon receptor (AhR) in the placenta. Curr. Pharm. Biotechnol., 2011, 12(5), 715-730.
[http://dx.doi.org/10.2174/138920111795470994] [PMID: 21342125]
[9]
Ezzeldin, N.; El-Lebedy, D.; Darwish, A.; El-Bastawisy, A.; Hassan, M.; Abd El-Aziz, S.; Abdel-Hamid, M.; Saad-Hussein, A. Genetic polymorphisms of human cytochrome P450 CYP1A1 in an Egyptian population and tobacco-induced lung cancer. Genes Environ., 2017, 39(1), 7-15.
[http://dx.doi.org/10.1186/s41021-016-0066-4] [PMID: 28074113]
[10]
Abbas, A.; Delvinquiere, K.; Lechevrel, M.; Lebailly, P.; Gauduchon, P.; Launoy, G.; Sichel, F. GSTM1, GSTT1, GSTP1 and CYP1A1 genetic polymorphisms and susceptibility to esophageal cancer in a French population: Different pattern of squamous cell carcinoma and adenocarcinoma. World J. Gastroenterol., 2004, 10(23), 3389-3393.
[http://dx.doi.org/10.3748/wjg.v10.i23.3389] [PMID: 15526353]
[11]
Al-Achkar, W.; Azeiz, G.; Moassass, F.; Wafa, A. Influence of CYP1A1, GST polymorphisms and susceptibility risk of chronic myeloid leukemia in Syrian population. Med. Oncol., 2014, 31(5), 889.
[http://dx.doi.org/10.1007/s12032-014-0889-4] [PMID: 24671854]
[12]
Surekha, D.; Sailaja, K.; Rao, D.N.; Padma, T.; Raghunadharao, D.; Vishnupriya, S. Association of CYP1A1*2 polymorphisms with breast cancer risk: A case control study. Indian J. Med. Sci., 2009, 63(1), 13-20.
[http://dx.doi.org/10.4103/0019-5359.49077] [PMID: 19346634]
[13]
Joseph, T.; Kusumakumary, P.; Chacko, P.; Abraham, A.; Radhakrishna Pillai, M. Genetic polymorphism of CYP1A1, CYP2D6, GSTM1 and GSTT1 and susceptibility to acute lymphoblastic leukaemia in Indian children. Pediatr. Blood Cancer, 2004, 43(5), 560-567.
[http://dx.doi.org/10.1002/pbc.20074] [PMID: 15382273]
[14]
Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther., 2013, 138(1), 103-141.
[http://dx.doi.org/10.1016/j.pharmthera.2012.12.007] [PMID: 23333322]
[15]
Wilkinson, G.R. Drug metabolism and variability among patients in drug response. N. Engl. J. Med., 2005, 352(21), 2211-2221.
[http://dx.doi.org/10.1056/NEJMra032424] [PMID: 15917386]
[16]
Wang, X.; Li, J.; Dong, G.; Yue, J. The endogenous substrates of brain CYP2D. Eur. J. Pharmacol., 2014, 724, 211-218.
[http://dx.doi.org/10.1016/j.ejphar.2013.12.025] [PMID: 24374199]
[17]
Surekha, D.; Sailaja, K.; Rao, D.N.; Padma, T.; Raghunadharao, D.; and Vishnupriya, S. CYP2D6*4 polymorphisms and breast cancer risk. Biol. Med. (Aligarh), 2010, 4(2), 49-55.
[18]
Zhou, S.F. Polymorphism of human cytochrome P450 2D6 and its clinical significance: part II. Clin. Pharmacokinet., 2009, 48(12), 761-804.
[http://dx.doi.org/10.2165/11318070-000000000-00000] [PMID: 19902987]
[19]
Gomes, L.; Lemos, M.C.; Paiva, I.; Ribeiro, C.; Carvalheiro, M.; Regateiro, F.J. CYP2D6 genetic polymorphisms are associated with susceptibility to pituitary tumors. Acta Med. Port., 2005, 18(5), 339-343.
[PMID: 16611538]
[20]
Anwarullah; Aslam, M.; Badshah, M.; Abbasi, R.; Sultan, A.; Khan, K.; Ahmad, N.; von Engelhardt, J. Further evidence for the association of CYP2D6*4 gene polymorphism with Parkinson’s disease: A case control study. Genes Environ., 2017, 39(1), 18-24.
[http://dx.doi.org/10.1186/s41021-017-0078-8]
[21]
Lee, J.Y.; Vinayagamoorthy, N.; Han, K.; Kwok, S.K.; Ju, J.H.; Park, K.S.; Jung, S.H.; Park, S.W.; Chung, Y.J.; Park, S.H. Association of polymorphisms of cytochrome P450 2D6 with blood hydroxychloroquine levels in patients with systemic lupus erythematosus. Arthritis Rheumatol., 2016, 68(1), 184-190.
[http://dx.doi.org/10.1002/art.39402] [PMID: 26316040]
[22]
Taspinar, M.; Aydos, S.E.; Comez, O.; Elhan, A.H.; Karabulut, H.G.; Sunguroglu, A. CYP1A1, GST gene polymorphisms and risk of chronic myeloid leukemia. Swiss Med. Wkly., 2008, 138(1-2), 12-17.
[PMID: 18224491]
[23]
Shahab, L.; Goniewicz, M.L.; Blount, B.C.; Brown, J.; McNeill, A.; Alwis, K.U.; Feng, J.; Wang, L.; West, R. Nicotine, carcinogen, and toxin exposure in long-term e-cigarette and nicotine replacement therapy users: A cross-sectional study. Ann. Intern. Med., 2017, 166(6), 390-400.
[http://dx.doi.org/10.7326/M16-1107] [PMID: 28166548]
[24]
Nagai, F.; Hiyoshi, Y.; Sugimachi, K.; Tamura, H.O. Cytochrome P450 (CYP) expression in human myeloblastic and lymphoid cell lines. Biol. Pharm. Bull., 2002, 25(3), 383-385.
[http://dx.doi.org/10.1248/bpb.25.383] [PMID: 11913539]
[25]
Farnaz Razmkhah, Vahid Pazhakh; Farhad, Zaker.; Farzaneh, Atashrazm.; Maryam, Sheikhi. Frequency of CYP1A1*2C polymorphism in patients with leukemia in the iranian population. Lab. Med., 2011, 42(4), 220-223.
[http://dx.doi.org/10.1309/LM337JWOSVNEHPUI]
[26]
Sabitha, K.; Reddy, M.V.; Jamil, K. Smoking related risk involved in individuals carrying genetic variants of CYP1A1 gene in head and neck cancer. Cancer Epidemiol., 2010, 34(5), 587-592.
[http://dx.doi.org/10.1016/j.canep.2010.05.002] [PMID: 20887941]
[27]
Ovsepian, V.A.; Vinogradova, E.Iu.; Sherstneva, E.S. Cytochrome P4501A1, glutathione S-transferase M1 and T1 gene polymorphisms in chronic myeloid leukemia. Genetika, 2010, 46(10), 1360-1362.
[PMID: 21254556]
[28]
Khedhaier, A.; Hassen, E.; Bouaouina, N.; Gabbouj, S.; Ahmed, S.B.; Chouchane, L. Implication of xenobiotic metabolizing enzyme gene (CYP2E1, CYP2C19, CYP2D6, mEH and NAT2) polymorphisms in breast carcinoma. BMC Cancer, 2008, 8, 109.
[http://dx.doi.org/10.1186/1471-2407-8-109] [PMID: 18423013]
[29]
Lemos, M.C.; Carrilho, F.; Rodrigues, F.; Coutinho, E.; Gomes, L.; Carvalheiro, M.; Regateiro, F.J. Genetic polymorphism of CYP2D6 influences susceptibility to papillary thyroid cancer. Clin. Endocrinol. (Oxf.), 2007, 67(2), 180-183.
[http://dx.doi.org/10.1111/j.1365-2265.2007.02858.x] [PMID: 17547692]
[30]
Wolf, C.R.; Smith, C.A.; Gough, A.C.; Moss, J.E.; Vallis, K.A.; Howard, G.; Carey, F.J.; Mills, K.; McNee, W.; Carmichael, J. Relationship between the debrisoquine hydroxylase polymorphism and cancer susceptibility. Carcinogenesis, 1992, 13(6), 1035-1038.
[http://dx.doi.org/10.1093/carcin/13.6.1035] [PMID: 1600608]
[31]
Lemos, M.C.; Cabrita, F.J.; Silva, H.A.; Vivan, M.; Plácido, F.; Regateiro, F.J. Genetic polymorphism of CYP2D6, GSTM1 and NAT2 and susceptibility to haematological neoplasias. Carcinogenesis, 1999, 20(7), 1225-1229.
[http://dx.doi.org/10.1093/carcin/20.7.1225] [PMID: 10383893]
[32]
Roddam, P.L.; Rollinson, S.; Kane, E.; Roman, E.; Moorman, A.; Cartwright, R.; Morgan, G.J. Poor metabolizers at the cytochrome P450 2D6 and 2C19 loci are at increased risk of developing adult acute leukaemia. Pharmacogenetics, 2000, 10(7), 605-615.
[http://dx.doi.org/10.1097/00008571-200010000-00004] [PMID: 11037802]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 9
Year: 2020
Page: [675 - 680]
Pages: 6
DOI: 10.2174/1570163817666200518081356
Price: $65

Article Metrics

PDF: 14
HTML: 3