Artificial RNA Editing with ADAR for Gene Therapy

Author(s): Sonali Bhakta, Toshifumi Tsukahara*

Journal Name: Current Gene Therapy

Volume 20 , Issue 1 , 2020


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Editing mutated genes is a potential way for the treatment of genetic diseases. G-to-A mutations are common in mammals and can be treated by adenosine-to-inosine (A-to-I) editing, a type of substitutional RNA editing. The molecular mechanism of A-to-I editing involves the hydrolytic deamination of adenosine to an inosine base; this reaction is mediated by RNA-specific deaminases, adenosine deaminases acting on RNA (ADARs), family protein. Here, we review recent findings regarding the application of ADARs to restoring the genetic code along with different approaches involved in the process of artificial RNA editing by ADAR. We have also addressed comparative studies of various isoforms of ADARs. Therefore, we will try to provide a detailed overview of the artificial RNA editing and the role of ADAR with a focus on the enzymatic site directed A-to-I editing.

Keywords: RNA editing, ADAR, mutation, MS2 system, enzyme application, genetic code restoration.

[1]
Keegan LP, Gallo A, O’Connell MA. The many roles of an RNA editor. Nat Rev Genet 2001; 2(11): 869-78.
[http://dx.doi.org/10.1038/35098584] [PMID: 11715042]
[2]
Zipeto MA, Jiang Q, Melese E, Jamieson CHM. RNA rewriting, recoding, and rewiring in human disease. Trends Mol Med 2015; 21(9): 549-59.
[http://dx.doi.org/10.1016/j.molmed.2015.07.001] [PMID: 26259769]
[3]
Chester A, Weinreb V, Carter CW Jr, Navaratnam N, Navaratnam N. Optimization of apolipoprotein B mRNA editing by APOBEC1 apoenzyme and the role of its auxiliary factor, ACF. RNA 2004; 10(9): 1399-411.
[http://dx.doi.org/10.1261/rna.7490704] [PMID: 15273326]
[4]
Brennicke A, Marchfelder A, Binder S. RNA editing. FEMS Microbiol Rev 1999; 3(1): 297-316.
[http://dx.doi.org/10.1111/j.1574-6976.1999.tb00401.x]
[5]
Kim H, Kim JS. A guide to genome engineering with programmable nucleases. Nat Rev Genet 2014; 15(5): 321-34.
[http://dx.doi.org/10.1038/nrg3686] [PMID: 24690881]
[6]
Maas S, Rich A. Changing genetic information through RNA editing. BioEssays 2000; 22(9): 790-802.
[http://dx.doi.org/10.1002/1521-1878(200009)22:9<790:AID-BIES4>3.0.CO;2-0] [PMID: 10944581]
[7]
Maas S, Rich A, Nishikura K. A-to-I RNA editing: recent news and residual mysteries. J Biol Chem 2003; 278(3): 1391-4.
[http://dx.doi.org/10.1074/jbc.R200025200] [PMID: 12446659]
[8]
Benne R, Van den Burg J, Brakenhoff JPJ, Sloof P, Van Boom JH, Tromp MC. Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 1986; 46(6): 819-26.
[http://dx.doi.org/10.1016/0092-8674(86)90063-2] [PMID: 3019552]
[9]
Powell LM, Wallis SC, Pease RJ, Edwards YH, Knott TJ, Scott J. A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine. Cell 1987; 50(6): 831-40.
[http://dx.doi.org/10.1016/0092-8674(87)90510-1] [PMID: 3621347]
[10]
Bazak L, Haviv A, Barak M, et al. A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res 2014; 24(3): 365-76.
[http://dx.doi.org/10.1101/gr.164749.113] [PMID: 24347612]
[11]
Ramaswami G, Lin W, Piskol R, Tan MH, Davis C, Li JB. Accurate identification of human Alu and non-Alu RNA editing sites. Nat Methods 2012; 9(6): 579-81.
[http://dx.doi.org/10.1038/nmeth.1982] [PMID: 22484847]
[12]
Sinnamon JR, Kim SY, Corson GM, et al. Site-directed RNA repair of endogenous Mecp2 RNA in neurons. Proc Natl Acad Sci USA 2017; 114(44): E9395-402.
[http://dx.doi.org/10.1073/pnas.1715320114] [PMID: 29078406]
[13]
Li JB, Church GM. Deciphering the functions and regulation of brain-enriched A-to-I RNA editing. Nat Neurosci 2013; 16(11): 1518-22.
[http://dx.doi.org/10.1038/nn.3539] [PMID: 24165678]
[14]
Harjanto D, Papamarkou T, Oates CJ, Rayon-Estrada V, Papavasiliou FN, Papavasiliou A. RNA editing generates cellular subsets with diverse sequence within populations. Nat Commun 2016; 7: 12145.
[http://dx.doi.org/10.1038/ncomms12145] [PMID: 27418407]
[15]
Matthews MM, Thomas JM, Zheng Y, et al. Structures of human ADAR2 bound to dsRNA reveal base-flipping mechanism and basis for site selectivity. Nat Struct Mol Biol 2016; 23(5): 426-33.
[http://dx.doi.org/10.1038/nsmb.3203] [PMID: 27065196]
[16]
Bass BL. RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem 2002; 71: 817-46.
[http://dx.doi.org/10.1146/annurev.biochem.71.110601.135501] [PMID: 12045112]
[17]
Barraud P, Allain FH. ADAR proteins: double-stranded RNA and Z-DNA binding domains. Curr Top Microbiol Immunol 2012; 353: 35-60.
[http://dx.doi.org/10.1007/82_2011_145] [PMID: 21728134]
[18]
Ryter JM, Schultz SC. Molecular basis of double-stranded RNA-protein interactions: structure of a dsRNA-binding domain complexed with dsRNA. EMBO J 1998; 17(24): 7505-13.
[http://dx.doi.org/10.1093/emboj/17.24.7505] [PMID: 9857205]
[19]
Hsiao YE, Bahn JH, Yang Y, et al. RNA editing in nascent RNA affects pre-mRNA splicing. Genome Res 2018; 28(6): 812-23.
[http://dx.doi.org/10.1101/gr.231209.117] [PMID: 29724793]
[20]
Maydanovych O, Beal PA. Breaking the central dogma by RNA editing. Chem Rev 2006; 106(8): 3397-411.
[http://dx.doi.org/10.1021/cr050314a] [PMID: 16895334]
[21]
Nishikura K. Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem 2010; 79: 321-49.
[http://dx.doi.org/10.1146/annurev-biochem-060208-105251] [PMID: 20192758]
[22]
Keegan LP, Leroy A, Sproul D, O’Connell MA. Adenosine deaminases acting on RNA (ADARs): RNA-editing enzymes. Genome Biol 2004; 5(2): 209.
[http://dx.doi.org/10.1186/gb-2004-5-2-209] [PMID: 14759252]
[23]
George CX, Gan Z, Liu Y, Samuel CE. Adenosine deaminases acting on RNA, RNA editing, and interferon action. J Interferon Cytokine Res 2011; 31(1): 99-117.
[http://dx.doi.org/10.1089/jir.2010.0097] [PMID: 21182352]
[24]
Hanswillemenke A, Kuzdere T, Vogel P, Jékely G, Stafforst T. Site-directed RNA editing in vivo can be triggered by the light-driven assembly of an artificial riboprotein. J Am Chem Soc 2015; 137(50): 15875-81.
[http://dx.doi.org/10.1021/jacs.5b10216] [PMID: 26594902]
[25]
Doelling JH, Franklin NC. Effects of all single base substitutions in the loop of boxB on antitermination of transcription by bacteriophage lambda’s N protein. Nucleic Acids Res 1989; 17(14): 5565-77.
[http://dx.doi.org/10.1093/nar/17.14.5565] [PMID: 2527353]
[26]
Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 1996; 93(3): 1156-60.
[http://dx.doi.org/10.1073/pnas.93.3.1156] [PMID: 8577732]
[27]
Oakes E, Anderson A, Cohen-Gadol A, Hundley HA. Adenosine Deaminase That Acts on RNA 3 (ADAR3) binding to glutamate receptor subunit B Pre-mRNA inhibits RNA editing in glioblastoma. J Biol Chem 2017; 292(10): 4326-35.
[http://dx.doi.org/10.1074/jbc.M117.779868] [PMID: 28167531]
[28]
Wang Y, Chung DH, Monteleone LR, et al. RNA binding candidates for human ADAR3 from substrates of a gain of function mutant expressed in neuronal cells. Nucleic Acids Res 2019; 47(20): 10801-14.
[http://dx.doi.org/10.1093/nar/gkz815] [PMID: 31552420]
[29]
Vogel P, Schneider MF, Wettengel J, Stafforst T. Improving site-directed RNA editing in vitro and in cell culture by chemical modification of the guideRNA. Angew Chem Int Ed Engl 2014; 53(24): 6267-71.
[http://dx.doi.org/10.1002/anie.201402634] [PMID: 24890431]
[30]
Vogel P, Stafforst T. Site-directed RNA editing with antagomir deaminases--a tool to study protein and RNA function. ChemMedChem 2014; 9(9): 2021-5.
[http://dx.doi.org/10.1002/cmdc.201402139] [PMID: 24954543]
[31]
Slotkin W, Nishikura K. Adenosine-to-inosine RNA editing and human disease. Genome Med 2013; 5(11): 105.
[http://dx.doi.org/10.1186/gm508] [PMID: 24289319]
[32]
Stefl R, Xu M, Skrisovska L, Emeson RB, Allain FH. Structure and specific RNA binding of ADAR2 double-stranded RNA binding motifs. Structure 2006; 14(2): 345-55.
[http://dx.doi.org/10.1016/j.str.2005.11.013] [PMID: 16472753]
[33]
Stephens OM, Haudenschild BL, Beal PA. The binding selectivity of ADAR2's dsRBMs contributes to RNA-editing selectivity. Chem Biol 2004; 11(9): 1239-50.
[http://dx.doi.org/10.1016/j.chembiol.2004.06.009] [PMID: 15380184]
[34]
Palladino MJ, Keegan LP, O’Connell MA, Reenan RA. A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integrity. Cell 2000; 102(4): 437-49.
[http://dx.doi.org/10.1016/S0092-8674(00)00049-0] [PMID: 10966106]
[35]
Higuchi M, Maas S, Single FN, et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 2000; 406(6791): 78-81.
[http://dx.doi.org/10.1038/35017558] [PMID: 10894545]
[36]
Wang Q, Khillan J, Gadue P, Nishikura K. Requirement of the RNA editing deaminase ADAR1 gene for embryonic erythropoiesis. Science 2000; 290(5497): 1765-8.
[http://dx.doi.org/10.1126/science.290.5497.1765] [PMID: 11099415]
[37]
Wahlstedt H, Daniel C, Ensterö M, Ohman M. Large-scale mRNA sequencing determines global regulation of RNA editing during brain development. Genome Res 2009; 19(6): 978-86.
[http://dx.doi.org/10.1101/gr.089409.108] [PMID: 19420382]
[38]
Bhalla T, Rosenthal JJC, Holmgren M, Reenan R. Control of human potassium channel inactivation by editing of a small mRNA hairpin. Nat Struct Mol Biol 2004; 11(10): 950-6.
[http://dx.doi.org/10.1038/nsmb825] [PMID: 15361858]
[39]
Hough RF, Bass BL. Purification of the Xenopus laevis double-stranded RNA adenosine deaminase. J Biol Chem 1994; 269(13): 9933-9.
[40]
Vissel B, Royle GA, Christie BR, et al. The role of RNA editing of kainate receptors in synaptic plasticity and seizures. Neuron 2001; 29(1): 217-27.
[http://dx.doi.org/10.1016/S0896-6273(01)00192-1] [PMID: 11182093]
[41]
Patterson JB, Samuel CE. Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase. Mol Cell Biol 1995; 15(10): 5376-88.
[http://dx.doi.org/10.1128/MCB.15.10.5376] [PMID: 7565688]
[42]
Smith HC, Bennett RP, Kizilyer A, McDougall WM, Prohaska KM. Functions and regulation of the APOBEC family of proteins. Semin Cell Dev Biol 2012; 23(3): 258-68.
[http://dx.doi.org/10.1016/j.semcdb.2011.10.004] [PMID: 22001110]
[43]
Woolf TM, Chase JM, Stinchcomb DT. Toward the therapeutic editing of mutated RNA sequences. Proc Natl Acad Sci USA 1995; 92(18): 8298-302.
[http://dx.doi.org/10.1073/pnas.92.18.8298] [PMID: 7545300]
[44]
Kuttan A, Bass BL. Mechanistic insights into editing-site specificity of ADARs. Proc Natl Acad Sci USA 2012; 109(48): E3295-304.
[http://dx.doi.org/10.1073/pnas.1212548109] [PMID: 23129636]
[45]
Melton DA. Injected anti-sense RNAs specifically block messenger RNA translation in vivo. Proc Natl Acad Sci USA 1985; 82(1): 144-8.
[http://dx.doi.org/10.1073/pnas.82.1.144] [PMID: 3855537]
[46]
Maher LJ III, Dolnick BJ. Comparative hybrid arrest by tandem antisense oligodeoxyribonucleotides or oligodeoxyribonucleoside methylphosphonates in a cell-free system. Nucleic Acids Res 1988; 16(8): 3341-58.
[http://dx.doi.org/10.1093/nar/16.8.3341] [PMID: 2836793]
[47]
Sethi S, Nakamura S, Fujimoto K. Study of photochemical cytosine to uracil transition via ultrafast photo-cross-linking using vinylcarbazole derivatives in duplex DNA. Molecules 2018; 23(4): 1-12.
[http://dx.doi.org/10.3390/molecules23040828] [PMID: 29617316]
[48]
Fujimoto K, Konishi-Hiratsuka K, Sakamoto T, Yoshimura Y. Site-specific photochemical RNA editing. Chem Commun (Camb) 2010; 46(40): 7545-7.
[http://dx.doi.org/10.1039/c0cc03151h] [PMID: 20848024]
[49]
Fujimoto K, Yamada A, Yoshimura Y, Tsukaguchi T, Sakamoto T. Details of the ultrafast DNA photo-cross-linking reaction of 3-cyanovinylcarbazole nucleoside: cis-trans isomeric effect and the application for SNP-based genotyping. J Am Chem Soc 2013; 135(43): 16161-7.
[http://dx.doi.org/10.1021/ja406965f] [PMID: 24087918]
[50]
Vu LT, Nguyen TTK, Md Thoufic AA, Suzuki H, Tsukahara T. Chemical RNA editing for genetic restoration: The relationship between the structure and deamination efficiency of carboxyvinyldeoxyuridine oligodeoxynucleotides. Chem Biol Drug Des 2016; 87(4): 583-93.
[http://dx.doi.org/10.1111/cbdd.12693] [PMID: 26613569]
[51]
Vu LT, Nguyen TTK, Alam S, et al. Changing blue fluorescent protein to green fluorescent protein using chemical RNA editing as a novel strategy in genetic restoration. Chem Biol Drug Des 2015; 86(5): 1242-52.
[http://dx.doi.org/10.1111/cbdd.12592] [PMID: 26031895]
[52]
Kankowski S, Forstera B, Winkelmann A, et al. A novel RNA editing sensor tool and a specific agonist determine neuronal protein expression of RNA-Edited glycine receptors and identify a genomic APOBEC1 dimorphism as a new genetic risk factor of Epilepsy.Front Mol Neurosci. 2019; 10.(439)
[http://dx.doi.org/10.3389/fnmol.2017.00439] [PMID: 29375302]
[53]
Keryer-Bibens C, Barreau C, Osborne HB. Tethering of proteins to RNAs by bacteriophage proteins. Biol Cell 2008; 100(2): 125-38.
[http://dx.doi.org/10.1042/BC20070067] [PMID: 18199049]
[54]
Lazinski D, Grzadzielska E, Das A. Sequence-specific recognition of RNA hairpins by bacteriophage antiterminators requires a conserved arginine-rich motif. Cell 1989; 59(1): 207-18.
[http://dx.doi.org/10.1016/0092-8674(89)90882-9] [PMID: 2477156]
[55]
Stafforst T, Schneider MF. An RNA-deaminase conjugate selectively repairs point mutations. Angew Chem Int Ed Engl 2012; 51(44): 11166-9.
[http://dx.doi.org/10.1002/anie.201206489] [PMID: 23038402]
[56]
Tan R, Frankel AD. Structural variety of arginine-rich RNA-binding peptides. Proc Natl Acad Sci USA 1995; 92(12): 5282-6.
[http://dx.doi.org/10.1073/pnas.92.12.5282] [PMID: 7777498]
[57]
Su L, Radek JT, Hallenga K, et al. RNA recognition by a bent α-helix regulates transcriptional antitermination in phage lambda. Biochemistry 1997; 36(42): 12722-32.
[http://dx.doi.org/10.1021/bi971408k] [PMID: 9335528]
[58]
Fusco D, Accornero N, Lavoie B, et al. Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr Biol 2003; 13(2): 161-7.
[http://dx.doi.org/10.1016/S0960-9822(02)01436-7] [PMID: 12546792]
[59]
Jurica MS, Licklider LJ, Gygi SR, Grigorieff N, Moore MJ. Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis. RNA 2002; 8(4): 426-39.
[http://dx.doi.org/10.1017/S1355838202021088] [PMID: 11991638]
[60]
Franklin NC, Doelling JH. Overexpression of N antitermination proteins of bacteriophages lambda, 21, and P22: loss of N protein specificity. J Bacteriol 1989; 171(5): 2513-22.
[http://dx.doi.org/10.1128/JB.171.5.2513-2522.1989] [PMID: 2651405]
[61]
Hook B, Bernstein D, Zhang B, Wickens M. RNA-protein interactions in the yeast three-hybrid system: affinity, sensitivity, and enhanced library screening. RNA 2005; 11(2): 227-33.
[http://dx.doi.org/10.1261/rna.7202705] [PMID: 15613539]
[62]
Ni CZ, Syed R, Kodandapani R, Wickersham J, Peabody DS, Ely KR. Crystal structure of the MS2 coat protein dimer: implications for RNA binding and virus assembly. Structure 1995; 255-63.
[http://dx.doi.org/10.1016/S0969-2126(01)00156-3]
[63]
Valegârd K, Murray JB, Stonehouse NJ, van den Worm S, Stockley PG, Liljas L. The three-dimensional structures of two complexes between recombinant MS2 capsids and RNA operator fragments reveal sequence-specific protein-RNA interactions. J Mol Biol 1997; 270(5): 724-38.
[http://dx.doi.org/10.1006/jmbi.1997.1144] [PMID: 9245600]
[64]
Bertrand E, Chartrand P, Schaefer M, Shenoy SM, Singer RH, Long RM. Localization of ASH1 mRNA particles in living yeast. Mol Cell 1998; 2(4): 437-45.
[http://dx.doi.org/10.1016/S1097-2765(00)80143-4] [PMID: 9809065]
[65]
Beach DL, Salmon ED, Bloom K. Localization and anchoring of mRNA in budding yeast. Curr Biol 1999; 9(11): 569-78.
[http://dx.doi.org/10.1016/S0960-9822(99)80260-7] [PMID: 10359695]
[66]
Bardwell VJ, Wickens M. Purification of RNA and RNA-protein complexes by an R17 coat protein affinity method. Nucleic Acids Res 1991; 93: 8496-501.
[http://dx.doi.org/10.1093/nar/19.8.1980-a] [PMID: 1701242]
[67]
Urbanek MO, Galka-Marciniak P, Olejniczak M, Krzyzosiak WJ. RNA imaging in living cells - methods and applications. RNA Biol 2014; 11(8): 1083-95.
[http://dx.doi.org/10.4161/rna.35506] [PMID: 25483044]
[68]
Tyagi S. Imaging intracellular RNA distribution and dynamics in living cells. Nat Methods 2009; 6(5): 331-8.
[http://dx.doi.org/10.1038/nmeth.1321] [PMID: 19404252]
[69]
De Gregorio E, Preiss T, Hentze MW. Translation driven by an eIF4G core domain in vivo. EMBO J 1999; 18(17): 4865-74.
[http://dx.doi.org/10.1093/emboj/18.17.4865] [PMID: 10469664]
[70]
Pantopoulos K. Iron metabolism and the IRE/IRP regulatory system: an update. Ann N Y Acad Sci 2004; 1012: 1-13.
[http://dx.doi.org/10.1196/annals.1306.001] [PMID: 15105251]
[71]
Bardwell VJ, Wickens M. Purification of RNA and RNA-protein complexes by an R17 coat protein affinity method. Nucleic Acids Res 1990; 18(22): 6587-94.
[http://dx.doi.org/10.1093/nar/18.22.6587] [PMID: 1701242]
[72]
Lykke-Andersen J, Shu MD, Steitz JA. Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell 2000; 103(7): 1121-31.
[http://dx.doi.org/10.1016/S0092-8674(00)00214-2] [PMID: 11163187]
[73]
Lykke-Andersen J. Communication of the position of exon-exon junctions to the mRNA surveillance machinery by the protein RNPS1. Science 2001; 293: 1836-9.
[http://dx.doi.org/10.1126/science.1062786]
[74]
Montiel-Gonzalez MF, Vallecillo-Viejo I, Yudowski GA, Rosenthal JJC. Correction of mutations within the cystic fibrosis transmembrane conductance regulator by site-directed RNA editing. Proc Natl Acad Sci USA 2013; 110(45): 18285-90.
[http://dx.doi.org/10.1073/pnas.1306243110] [PMID: 24108353]
[75]
Azad MTA, Bhakta S, Tsukahara T. Site-directed RNA editing by adenosine deaminase acting on RNA for correction of the genetic code in gene therapy. Gene Ther 2017; 24(12): 779-86.
[http://dx.doi.org/10.1038/gt.2017.90] [PMID: 28984845]
[76]
Vallecillo-Viejo IC, Liscovitch-Brauer N, Montiel-Gonzalez MF, Eisenberg E, Rosenthal JJC. Abundant off-target edits from site-directed RNA editing can be reduced by nuclear localization of the editing enzyme. RNA Biol 2018; 15(1): 104-14.
[http://dx.doi.org/10.1080/15476286.2017.1387711] [PMID: 29099293]
[77]
Chattopadhyay S, Garcia-Mena J, DeVito J, Wolska K, Das A. Bipartite function of a small RNA hairpin in transcription antitermination in bacteriophage lambda. Proc Natl Acad Sci USA 1995; 92(9): 4061-5.
[http://dx.doi.org/10.1073/pnas.92.9.4061] [PMID: 7732031]
[78]
Grünewald J, Zhou R, Garcia SP, et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 2019; 569(7756): 433-7.
[http://dx.doi.org/10.1038/s41586-019-1161-z] [PMID: 30995674]
[79]
Kunz JB, Neu-Yilik G, Hentze MW, Kulozik AE, Gehring NH. Functions of hUpf3a and hUpf3b in nonsense-mediated mRNA decay and translation. RNA 2006; 12(6): 1015-22.
[http://dx.doi.org/10.1261/rna.12506] [PMID: 16601204]
[80]
Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 2003; 21(1): 86-9.
[http://dx.doi.org/10.1038/nbt765] [PMID: 12469133]
[81]
Juillerat A, Gronemeyer T, Keppler A, et al. Directed evolution of O6-alkylguanine-DNA alkyltransferase for efficient labeling of fusion proteins with small molecules in vivo. Chem Biol 2003; 10(4): 313-7.
[http://dx.doi.org/10.1016/S1074-5521(03)00068-1] [PMID: 12725859]
[82]
Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 2014; 32(4): 347-55.
[http://dx.doi.org/10.1038/nbt.2842] [PMID: 24584096]
[83]
O’Connell MR. Molecular mechanisms of RNA-targeting by Cas13-containing type VI CRISPR-cas systems. J Mol Biol 2019; 431(1): 66-87.
[http://dx.doi.org/10.1016/j.jmb.2018.06.029] [PMID: 29940185]
[84]
Zhang F, Wen Y, Guo X. CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet 2014; 23(R1): R40-6.
[http://dx.doi.org/10.1093/hmg/ddu125] [PMID: 24651067]
[85]
Bian Z, Ni Y, Xu JR, Liu H. A-to-I mRNA editing in fungi: occurrence, function, and evolution. Cell Mol Life Sci 2019; 76(2): 329-40.
[http://dx.doi.org/10.1007/s00018-018-2936-3] [PMID: 30302531]
[86]
Xu X, Qi LS. A CRISPR-dCas toolbox for genetic engineering and synthetic biology. J Mol Biol 2019; 431(1): 34-47.
[http://dx.doi.org/10.1016/j.jmb.2018.06.037] [PMID: 29958882]
[87]
Montiel-Gonzalez MF, Diaz Quiroz JF, Rosenthal JJC. Current strategies for Site-Directed RNA Editing using ADARs. Methods 2019; 156: 16-24.
[http://dx.doi.org/10.1016/j.ymeth.2018.11.016] [PMID: 30502398]
[88]
Monteleone LR, Matthews MM, Palumbo CM, et al. A bump-hole approach for directed RNA editing. Cell Chem Biol 2019; 26(2): 269-77.
[http://dx.doi.org/10.1016/j.chembiol.2018.10.025] [PMID: 30581135]
[89]
Merkle T, Merz S, Reautschnig P, et al. Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides. Nat Biotechnol 2019; 37(2): 133-8.
[http://dx.doi.org/10.1038/s41587-019-0013-6] [PMID: 30692694]
[90]
Cox DBT, Gootenberg JS, Abudayyeh OO, et al. RNA editing with CRISPR-Cas13. Science 2017; 358(6366): 1019-27.
[http://dx.doi.org/10.1126/science.aaq0180] [PMID: 29070703]
[91]
Smargon AA, Shi YJ, Yeo GW. RNA-targeting CRISPR systems from metagenomic discovery to transcriptomic engineering. Nat Cell Biol 2020; 22(2): 143-50.
[http://dx.doi.org/10.1038/s41556-019-0454-7] [PMID: 32015437]
[92]
Burmistrz M, Krakowski K, Krawczyk-Balska A. RNA-Targeting CRISPR-Cas systems and their applications. Int J Mol Sci 2020; 21(3): 1122-35.
[http://dx.doi.org/10.3390/ijms21031122] [PMID: 32046217]
[93]
Bhakta S, Azad MTA, Tsukahara T. Genetic code restoration by artificial RNA editing of Ochre stop codon with ADAR1 deaminase. Protein Eng Des Sel 2018; 31(12): 471-8.
[http://dx.doi.org/10.1093/protein/gzz005] [PMID: 31120126]
[94]
Katrekar D, Chen G, Meluzzi D, et al. In vivo RNA editing of point mutations via RNA-guided adenosine deaminases. Nat Methods 2019; 16(3): 239-42.
[http://dx.doi.org/10.1038/s41592-019-0323-0] [PMID: 30737497]
[95]
Katrekar D, Mali P. In vivo RNA targeting of point mutations via suppressor tRNAs and adenosine deaminases. Cold Spring Harbour( BioRxiv) 2017.
[http://dx.doi.org/10.1101/210278]
[96]
Azad MTA, Qulsum U, Tsukahara T. Comparative Activity of Adenosine Deaminase Acting on RNA (ADARs) isoforms for correction of genetic code in gene therapy. Curr Gene Ther 2019; 19(1): 31-9.
[http://dx.doi.org/10.2174/1566523218666181114122116] [PMID: 30426900]
[97]
Mao S, Liu Y, Huang S, Huang X, Chi T. Site-directed RNA editing (SDRE): Off-target effects and their countermeasures. J Genet Genomics 2019; 46(11): 531-5.
[http://dx.doi.org/10.1016/j.jgg.2019.11.005] [PMID: 31889638]
[98]
Vogel P, Moschref M, Li Q, et al. Efficient and precise editing of endogenous transcripts with SNAP-tagged ADARs. Nat Methods 2018; 15(7): 535-8.
[http://dx.doi.org/10.1038/s41592-018-0017-z] [PMID: 29967493]
[99]
Franklin NC. Clustered arginine residues of bacteriophage lambda N protein are essential to antitermination of transcription, but their locale cannot compensate for boxB loop defects. J Mol Biol 1993; 231(2): 343-60.
[http://dx.doi.org/10.1006/jmbi.1993.1287] [PMID: 8510151]
[100]
Montiel-González MF, Vallecillo-Viejo IC, Rosenthal JJ. An efficient system for selectively altering genetic information within mRNAs. Nucleic Acids Res 2016; 44(21): e157
[http://dx.doi.org/10.1093/nar/gkw738] [PMID: 27557710]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 1
Year: 2020
Published on: 23 June, 2020
Page: [44 - 54]
Pages: 11
DOI: 10.2174/1566523220666200516170137
Price: $65

Article Metrics

PDF: 37
HTML: 4