Chemoenzymatic Synthesis and Function of Chitin Derivatives

Author(s): Makoto Ogata*

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 29 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Chitin, abundant biomass found in crab shells and other marine life, has wide applications in the production of food, pharmaceuticals, and cosmetics. Our recent studies have focused on the development of new functional materials by derivatizing chitin oligosaccharides and monosaccharides. For example, we have prepared various derivatives by chemoenzymatic synthesis using N-acetylglucosamine (GlcNAc) or chitin oligosaccharide prepared from chitin as starting materials. First, we have achieved the total synthesis of two secondary metabolites (furanodictine A and B) with neuronal differentiation-inducing activity on PC12 cells by using a simple heatinduced structural transformation of GlcNAc and esterification reaction. Second, we synthesized both a novel inhibitor that has facilitated a re-examination of the reaction mechanism of hen egg-white lysozyme, and a new substrate for assaying lysozyme activity by using chitin oligosaccharides as raw materials. Thus, the development of new materials by simple derivatization of chitin mono- or oligo-saccharides is paving the way for effective use of chitin.

Keywords: Chitin, chitooligosaccharide, N-acetylglucosamine, chemoenzymatic synthesis, chitin derivatives, inhibitor, enzyme assay.

[1]
Tracey MV. Chitin. Rev Pure Appl Chem 1957; 7: 1-14.
[2]
Carreño-Gómez B, Duncan R. Evaluation of the biological properties of soluble chitosan and chitosan microspheres. Int J Pharm 1997; 148: 231-40.
[http://dx.doi.org/10.1016/S0378-5173(96)04847-8]
[3]
Tharanathan RN, Kittur FS. Chitin-the undisputed biomolecule of great potential. Crit Rev Food Sci Nutr 2003; 43(1): 61-87.
[http://dx.doi.org/10.1080/10408690390826455] [PMID: 12587986]
[4]
Kumar MN, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ. Chitosan chemistry and pharmaceutical perspectives. Chem Rev 2004; 104(12): 6017-84.
[http://dx.doi.org/10.1021/cr030441b] [PMID: 15584695]
[5]
Kaur S, Dhillon GS. Recent trends in biological extraction of chitin from marine shell wastes: a review. Crit Rev Biotechnol 2015; 35(1): 44-61.
[http://dx.doi.org/10.3109/07388551.2013.798256] [PMID: 24083454]
[6]
Yadav M, Goswami P, Paritosh K, et al. Seafood waste: A source for preparation of commercially employable chitin/chitosan materials. Bioresour Bioprocess 2019; 6: 8.
[http://dx.doi.org/10.1186/s40643-019-0243-y]
[7]
Jayakumar R, Prabaharan M, Nair SV, Tamura H. Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 2010; 28(1): 142-50.
[http://dx.doi.org/10.1016/j.biotechadv.2009.11.001] [PMID: 19913083]
[8]
Yoshiike Y, Yokota S, Tanaka N, Kitaoka T, Wariishi H. Preparation and cell culture behavior of self-assembled monolayers composed of chitohexaose and chitosan hexamer. Carbohydr Polym 2010; 82: 21-7.
[http://dx.doi.org/10.1016/j.carbpol.2010.04.015]
[9]
Kono H, Teshirogi T. Cyclodextrin-grafted chitosan hydrogels for controlled drug delivery. Int J Biol Macromol 2015; 72: 299-308.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.08.030] [PMID: 25192852]
[10]
Suenaga S, Osada M. Preparation of β-chitin nanofiber aerogels by lyophilization. Int J Biol Macromol 2019; 126: 1145-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.006] [PMID: 30611806]
[11]
Panchal SS, Vasava DV. Biodegradable polymeric materials: Synthetic approach. ACS Omega 2020; 5(9): 4370-9.
[http://dx.doi.org/10.1021/acsomega.9b04422] [PMID: 32175484]
[12]
Felse PA, Panda T. Studies on applications of chitin and its derivatives. Bioprocess Eng 1999; 20: 505-12.
[http://dx.doi.org/10.1007/s004490050622]
[13]
Ifuku S, Nogi M, Abe K, et al. Preparation of chitin nanofibers with a uniform width as α-chitin from crab shells. Biomacromolecules 2009; 10(6): 1584-8.
[http://dx.doi.org/10.1021/bm900163d] [PMID: 19397258]
[14]
Casadidio C, Peregrina DV, Gigliobianco MR, Deng S, Censi R, Di Martino P. Chitin and chitosans: Characteristics, eco-friendly processes, and applications in cosmetic science. Mar Drugs 2019; 17(6): 369.
[http://dx.doi.org/10.3390/md17060369] [PMID: 31234361]
[15]
Kobayashi S, Kiyosada T, Shoda S. Synthesis of artificial chitin: Irreversible catalytic behavior of a glycosyl hydrolase through a transition state analogue substrate. J Am Chem Soc 1996; 118: 13113-4.
[http://dx.doi.org/10.1021/ja963011u]
[16]
Sakamoto J, Sugiyama J, Kimura S, et al. Artificial chitin spherulites composed of single crystalline ribbons of α-chitin via enzymatic polymerization. Macromolecules 2000; 33: 4155-60.
[http://dx.doi.org/10.1021/ma000230y]
[17]
Hattori T, Sakabe Y, Ogata M, et al. Enzymatic synthesis of an α-chitin-like substance via lysozyme-mediated transglycosylation. Carbohydr Res 2012; 347(1): 16-22.
[http://dx.doi.org/10.1016/j.carres.2011.09.025] [PMID: 22137737]
[18]
Hamed I, Özogul F, Regenstein JM. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccarides). Trends Food Sci Technol 2016; 48: 40-50.
[http://dx.doi.org/10.1016/j.tifs.2015.11.007]
[19]
Liaqat F, Eltem R. Chitooligosaccharides and their biological activities: A comprehensive review. Carbohydr Polym 2018; 184: 243-59.
[http://dx.doi.org/10.1016/j.carbpol.2017.12.067] [PMID: 29352917]
[20]
Kaczmarek MB, Struszczyk-Swita K, Li X, Szczęsna-Antczak M, Daroch M. Enzymatic modifications of chitin, chitosan, and chitooligosaccharides. Front Bioeng Biotechnol 2019; 7: 243.
[http://dx.doi.org/10.3389/fbioe.2019.00243] [PMID: 31612131]
[21]
Wang Y, Zhou P, Yu J, et al. Antimicrobial effect of chitooligosaccharides produced by chitosanase from Pseudomonas CUY8. Asia Pac J Clin Nutr 2007; 16(Suppl. 1): 174-7.
[PMID: 17392099]
[22]
Rhoades J, Roller S. Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods. Appl Environ Microbiol 2000; 66(1): 80-6.
[http://dx.doi.org/10.1128/AEM.66.1.80-86.2000] [PMID: 10618206]
[23]
Jeon Y-J, Shahidi F, Kim S-E. Preparation of chitin and chitosan oligomers and their application in physiological functional foods. Food Rev Int 2000; 16: 159-76.
[http://dx.doi.org/10.1081/FRI-100100286]
[24]
Shintani T, Yamazaki F, Katoh T, et al. Glucosamine induces autophagy via an mTOR-independent pathway. Biochem Biophys Res Commun 2010; 391(4): 1775-9.
[http://dx.doi.org/10.1016/j.bbrc.2009.12.154] [PMID: 20045674]
[25]
Kong S-Z, Li D-D, Luo H, et al. Anti-photoaging effects of chitosan oligosaccharide in ultraviolet-irradiated hairless mouse skin. Exp Gerontol 2018; 103: 27-34.
[http://dx.doi.org/10.1016/j.exger.2017.12.018] [PMID: 29275159]
[26]
Masaka R, Ogata M, Misawa Y, et al. Molecular design of N-linked tetravalent glycosides bearing N-acetylglucosamine, N,N′-diacetylchitobiose and N-acetyllactosamine: Analysis of cross-linking activities with WGA and ECA lectins. Bioorg Med Chem 2010; 18(2): 621-9.
[http://dx.doi.org/10.1016/j.bmc.2009.12.006] [PMID: 20056550]
[27]
Fujita K, Tanaka S, Iizumi K, et al. Melibiosamine, a novel oligosaccharide, suppresses mitogen-induced IL-2 production via inactivation of NFAT and NFκB in Jurkat cells. Biochem Biophys Rep 2019,. 19100658
[http://dx.doi.org/10.1016/j.bbrep.2019.100658] [PMID: 31431927]
[28]
Coxon B, Hough L. The epimerization of 2-acetamido-2-deoxy-D-pentoses. J Chem Soc 1961; 1577-9.
[http://dx.doi.org/10.1039/jr9610001577]
[29]
Rodén L, Jin J, Yu H, Campbell P. Tritium labelling of amino sugars at C-2 by alkaline epimerization in tritiated water. Glycobiology 1995; 5(2): 167-73.
[http://dx.doi.org/10.1093/glycob/5.2.167] [PMID: 7780191]
[30]
Yamaguchi S, Ohnishi J, Maru I, Ohta Y. Simple and large-scale production of N-acetylneuraminic acid and N-acetyl-D-mannosamine. Trends Glycosci Glycotechnol 2006; 18: 245-52.
[http://dx.doi.org/10.4052/tigg.18.245]
[31]
Roseman S, Comb DG. The hexosamine moiety of N-acetylneuraminic acid (sialic acid). J Am Chem Soc 1958; 80: 3166-7.
[http://dx.doi.org/10.1021/ja01545a069]
[32]
Sallam MAE. Studies on the epimerization of 2-acetamido-2-deoxyhexoses: Preparation of 2-acetamido-2-deoxy-D-[2-3H]-glucose and -mannose. Carbohydr Res 1978; 63: 127-30.
[http://dx.doi.org/10.1016/S0008-6215(00)80936-2]
[33]
Yoshimura J, Sakai H, Oda N, Hashimoto H. Aminosugars. XX: Synthesis of some derivatives of 2-acetamido-2-deoxy-D-mannose. Bull Chem Soc Jpn 1972; 45: 2027-32.
[http://dx.doi.org/10.1246/bcsj.45.2027]
[34]
Sugai T, Kuboki A, Hiramatsu S, Okazaki H, Ohta H. Improved enzymatic procedure for a preparative-scale synthesis of sialic acid and KDN. Bull Chem Soc Jpn 1995; 68: 3581-9.
[http://dx.doi.org/10.1246/bcsj.68.3581]
[35]
Bednarski MD, Chenault HK, Simon ES. Membrane-enclosed enzymatic catalysis (MEEC): A useful, practical new method for the manipulation of enzymes in organic synthesis. J Am Chem Soc 1987; 109: 1283-5.
[http://dx.doi.org/10.1021/ja00238a067]
[36]
Morgan WTJ, Elson LA. A colorimetric method for the determination of N-acetylglucosamine and N-acetylchrondrosamine. Biochem J 1934; 28(3): 988-95.
[http://dx.doi.org/10.1042/bj0280988] [PMID: 16745491]
[37]
Kuhn R, Krüger G. 3-Acetamino-furan aus N-acetyl-D-glicosamin; ein beitrag zur theoris der Morgan-Elson-reaktion. Chem Ber 1956; 89: 1473-86.
[http://dx.doi.org/10.1002/cber.19560890615]
[38]
Beau JM, Rollin P, Sinaÿ P. Structure du chromogène I de la réaction de Morgan-Elson. Carbohydr Res 1977; 53(2): 187-95.
[http://dx.doi.org/10.1016/S0008-6215(00)88086-6] [PMID: 858145]
[39]
Ogata M, Hattori T, Takeuchi R, Usui T. Novel and facile synthesis of furanodictines A and B based on transformation of 2-acetamido-2-deoxy-D-glucose into 3,6-anhydro hexofuranoses. Carbohydr Res 2010; 345(2): 230-4.
[http://dx.doi.org/10.1016/j.carres.2009.10.007] [PMID: 19962133]
[40]
Osada M, Kikuta K, Yoshida K, et al. Non catalytic synthesis of Chromogen I and III from N-acetyl-D-glucosamine in high-temperature water. Green Chem 2013; 15: 2960-6.
[http://dx.doi.org/10.1039/c3gc41161c]
[41]
Zheng XY, Peng JB, Livera MMVS, et al. Selective formation of chromogen I from N-acetyl-D-glucosamine upon lanthanide coordination. Inorg Chem 2017; 56(1): 110-3.
[http://dx.doi.org/10.1021/acs.inorgchem.6b02589] [PMID: 27936647]
[42]
Osada M, Kobayashi H, Miyazawa T, Suenaga S, Ogata M. Non-catalytic conversion of chitin into Chromogen I in high-temperature water. Int J Biol Macromol 2019; 136: 994-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.123] [PMID: 31229547]
[43]
Kikuchi H, Saito Y, Komiya J, et al. Furanodictine A and B: amino sugar analogues produced by cellular slime mold Dictyostelium discoideum showing neuronal differentiation activity. J Org Chem 2001; 66(21): 6982-7.
[http://dx.doi.org/10.1021/jo015657x] [PMID: 11597217]
[44]
Yoda H, Suzuki Y, Takabe K. Novel and stereoselective asymmetric synthesis of an amino sugar analogue, furanodictine A. Tetrahedron Lett 2004; 45: 1599-601.
[http://dx.doi.org/10.1016/j.tetlet.2003.12.135]
[45]
Mereyala HB, Baseeruddin M, Koduru SR. Formal synthesis of furanodictine B from D-glucose. Tetrahedron Asymmetry 2004; 15: 3457-60.
[http://dx.doi.org/10.1016/j.tetasy.2004.09.012]
[46]
Matsuura D, Mitsui T, Sengoku T, Takahashi M, Yoda H. Stereodivergent synthesis of new amino sugars, furanodictines A and B, starting from D-glucuronolactone. Tetrahedron 2008; 64: 11686-96.
[http://dx.doi.org/10.1016/j.tet.2008.10.014]
[47]
Blake CCF, Fenn RH, North AC, Phillips DC, Poljak RJ, Poljak RJ. Structure of lysozyme. A Fourier map of the electron density at 6 angstrom resolution obtained by x-ray diffraction. Nature 1962; 196: 1173-6.
[http://dx.doi.org/10.1038/1961173a0] [PMID: 13971463]
[48]
Lillelund VH, Jensen HH, Liang X, Bols M. Recent developments of transition-state analogue glycosidase inhibitors of non-natural product origin. Chem Rev 2002; 102(2): 515-53.
[http://dx.doi.org/10.1021/cr000433k] [PMID: 11841253]
[49]
Ito T, Katayama T, Hattie M, et al. Crystal structures of a glycoside hydrolase family 20 lacto-N-biosidase from Bifidobacterium bifidum. J Biol Chem 2013; 288(17): 11795-806.
[http://dx.doi.org/10.1074/jbc.M112.420109] [PMID: 23479733]
[50]
Ogata M, Takeuchi R, Suzuki A, Hirai H, Usui T. Facile synthesis of 4-O-β-N-acetylchitooligosyl 2-acetamido-2,3-dideoxydidehydro-gluconolactone based on the transformation of chitooligosaccharide and its suppressive effects against the furylfuramide-induced SOS response. Biosci Biotechnol Biochem 2012; 76(7): 1362-6.
[http://dx.doi.org/10.1271/bbb.120119] [PMID: 22785478]
[51]
Ogata M, Umemoto N, Ohnuma T, et al. A novel transition-state analogue for lysozyme, 4-O-β-tri-N-acetylchitotriosyl moranoline, provided evidence supporting the covalent glycosyl-enzyme intermediate. J Biol Chem 2013; 288(9): 6072-82.
[http://dx.doi.org/10.1074/jbc.M112.439281] [PMID: 23303182]
[52]
Blake CCF, Johnson LN, Mair GA, North AC, Phillips DC, Sarma VR. Crystallographic studies of the activity of hen egg-white lysozyme. Proc R Soc Lond B Biol Sci 1967; 167(1009): 378-88.
[PMID: 4382801]
[53]
Thoma JA, Spradlin JE, Dygert S. Plant and animal amylases in The Enzymes (PD Boyer, ed). Academic Press New York 1971; 5: pp. 115-89.
[54]
Imoto T, Johnson LN, North ACT, Phillips DC, Rupley JA. Vertebrate lysozymes in The Enzymes (PD Boyer, ed). Academic Press New York 1972; 7: pp. 665-868.
[55]
Rupley JA, Gates V. Studies on the enzymic activity of lysozyme, II. The hydrolysis and transfer reactions of N-acetylglucosamine oligosaccharides. Proc Natl Acad Sci USA 1967; 57: 496-510.
[http://dx.doi.org/10.1073/pnas.57.3.496]
[56]
Strynadka NCJ, James MNG. Lysozyme revisited: crystallographic evidence for distortion of an N-acetylmuramic acid residue bound in site D. J Mol Biol 1991; 220(2): 401-24.
[http://dx.doi.org/10.1016/0022-2836(91)90021-W] [PMID: 1856865]
[57]
Fukamizo T. Chitinolytic enzymes: catalysis, substrate binding, and their application. Curr Protein Pept Sci 2000; 1(1): 105-24.
[http://dx.doi.org/10.2174/1389203003381450] [PMID: 12369923]
[58]
Malcolm BA, Rosenberg S, Corey MJ, Allen JS, de Baetselier A, Kirsch JF. Site-directed mutagenesis of the catalytic residues Asp-52 and Glu-35 of chicken egg white lysozyme. Proc Natl Acad Sci USA 1989; 86(1): 133-7.
[http://dx.doi.org/10.1073/pnas.86.1.133] [PMID: 2563161]
[59]
Phillips DC. The three-dimensional structure of an enzyme molecule. Sci Am 1966; 215(5): 78-90.
[http://dx.doi.org/10.1038/scientificamerican1166-78] [PMID: 5978599]
[60]
Koshland DE. Stereochemistry and the mechanism of enzymatic reactions. Biol Rev Camb Philos Soc 1953; 28: 416-36.
[http://dx.doi.org/10.1111/j.1469-185X.1953.tb01386.x]
[61]
Vocadlo DJ, Davies GJ, Laine R, Withers SG. Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature 2001; 412(6849): 835-8.
[http://dx.doi.org/10.1038/35090602] [PMID: 11518970]
[62]
Johnson LN, Phillips DC, Rupley JA. The activity of lysozyme: an interim review of crystallographic and chemical evidence. Brookhaven Symp Biol 1968; 21(1): 120-38.
[PMID: 4889241]
[63]
Secemski II, Lehrer SS, Lienhard GE. A transition state analog for lysozyme. J Biol Chem 1972; 247(15): 4740-8.
[PMID: 5052219]
[64]
Chipman DM, Sharon N. Mechanism of lysozyme action. Science 1969; 165(3892): 454-65.
[http://dx.doi.org/10.1126/science.165.3892.454] [PMID: 4893486]
[65]
Osada M, Kikuta K, Yoshida K, et al. Non-catalytic dehydration of N,N′-diacetylchitobiose in high-temperature water. RSC Advances 2014; 4: 33651-7.
[http://dx.doi.org/10.1039/C4RA06319H]
[66]
Tanaka A. Steady-state kinetic and calorimetric studies on the binding of Aspergillus niger glucoamylase with gluconolactone, 1-deoxynojirimycin, and β-cyclodextrin. Biosci Biotechnol Biochem 1996; 60(12): 2055-8.
[http://dx.doi.org/10.1271/bbb.60.2055] [PMID: 8988638]
[67]
Zechel DL, Boraston AB, Gloster T, et al. Iminosugar glycosidase inhibitors: structural and thermodynamic dissection of the binding of isofagomine and 1-deoxynojirimycin to β-glucosidases. J Am Chem Soc 2003; 125(47): 14313-23.
[http://dx.doi.org/10.1021/ja036833h] [PMID: 14624580]
[68]
Jensen HH, Lyngbye L, Bols M. A free-energy relationship between the rate of acidic hydrolysis of glycosides and the pKa of isofagomines. Angew Chem Int Ed 2001; 40: 3447-9.
[http://dx.doi.org/10.1002/1521-3773(20010917)40:18<3447::AID-ANIE3447>3.0.CO;2-8]
[69]
Warshel A, Levitt M. Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 1976; 103(2): 227-49.
[http://dx.doi.org/10.1016/0022-2836(76)90311-9] [PMID: 985660]
[70]
Kuroki R, Ito Y, Kato Y, Imoto T. A covalent enzyme-substrate adduct in a mutant hen egg white lysozyme (D52E). J Biol Chem 1997; 272(32): 19976-81.
[http://dx.doi.org/10.1074/jbc.272.32.19976] [PMID: 9242666]
[71]
Shinya S, Urasaki A, Ohnuma T, et al. Interaction of di-N-acetylchitobiosyl moranoline with a family GH19 chitinase from moss, Bryum coronatum. Glycobiology 2014; 24(10): 945-55.
[http://dx.doi.org/10.1093/glycob/cwu052] [PMID: 24907709]
[72]
Leysen S, Van Herreweghe JM, Yoneda K, et al. The structure of the proteinaceous inhibitor PliI from Aeromonas hydrophila in complex with its target lysozyme. Acta Crystallogr D Biol Crystallogr 2015; 71(Pt 2): 344-51.
[http://dx.doi.org/10.1107/S1399004714025863] [PMID: 25664745]
[73]
Smolelis AN, Hartsell SE. The determination of lysozyme. J Bacteriol 1949; 58(6): 731-6.
[http://dx.doi.org/10.1128/JB.58.6.731-736.1949] [PMID: 15395173]
[74]
Parry RM Jr, Chandan RC, Shahani KM. A rapid and sensitive assay muramidase. Proc Soc Exp Biol Med 1965; 119: 384-6.
[http://dx.doi.org/10.3181/00379727-119-30188] [PMID: 14328897]
[75]
Gorin G, Wang S-F, Papapavlou L. Assay of lysozyme by its lytic action on M. lysodeikticus cells. Anal Biochem 1971; 39(1): 113-27.
[http://dx.doi.org/10.1016/0003-2697(71)90467-2] [PMID: 5544583]
[76]
Ballardie FW, Capon B, Cuthbert MW, Dearie WM. Some studies on catalysis by lysozyme. Bioorg Chem 1977; 6: 483-509.
[http://dx.doi.org/10.1016/0045-2068(77)90047-5]
[77]
Nanjo F, Sakai K, Usui T. p-nitrophenyl penta-N-acetyl-β-chitopentaoside as a novel synthetic substrate for the colorimetric assay of lysozyme. J Biochem 1988; 104(2): 255-8.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a122453] [PMID: 2972699]
[78]
Fukuda H, Tanimoto T, Yamaha T. Enhancement of the sensitivity of a fluorometric lysozyme assay system by adding β-N-acetylhexosaminidase. Chem Pharm Bull (Tokyo) 1985; 33(8): 3375-80.
[http://dx.doi.org/10.1248/cpb.33.3375] [PMID: 2935266]
[79]
Fukamizo T, Minematsu T, Yanase Y, Hayashi K, Goto S. Substrate size dependence of lysozyme-catalyzed reaction. Arch Biochem Biophys 1986; 250(2): 312-21.
[http://dx.doi.org/10.1016/0003-9861(86)90732-0] [PMID: 3777938]
[80]
Ogata M, Matsui M, Kono H, Matsuzaki Y, Kato Y, Usui T. A novel analytical procedure for assaying lysozyme activity using an end-blocked chitotetraose derivative as substrate. Anal Biochem 2017; 538: 64-70.
[http://dx.doi.org/10.1016/j.ab.2017.09.015] [PMID: 28951249]
[81]
Matsui M, Kono H, Ogata M. Molecular design and synthesis of a novel substrate for assaying lysozyme activity. J Appl Glycosci 2018; 65: 31-6.
[http://dx.doi.org/10.5458/jag.jag.JAG-2018_003]
[82]
Takahashi T, Ikegami-Kawai M, Okuda R, Suzuki K. A fluorimetric Morgan-Elson assay method for hyaluronidase activity. Anal Biochem 2003; 322(2): 257-63.
[http://dx.doi.org/10.1016/j.ab.2003.08.005] [PMID: 14596836]
[83]
Muckenschnabel I, Bernhardt G, Spruss T, Dietl B, Buschauer A. Quantitation of hyaluronidases by the Morgan-Elson reaction: comparison of the enzyme activities in the plasma of tumor patients and healthy volunteers. Cancer Lett 1998; 131(1): 13-20.
[http://dx.doi.org/10.1016/S0304-3835(98)00196-7] [PMID: 9839615]
[84]
Elson LA, Morgan WTJ. A colorimetric method for the determination of glucosamine and chondrosamine. Biochem J 1933; 27(6): 1824-8.
[http://dx.doi.org/10.1042/bj0271824] [PMID: 16745305]
[85]
Rodén L, Yu H, Jin J, et al. Analysis of the Morgan-Elson chromogens by high-performance liquid chromatography. Anal Biochem 1997; 254(2): 240-8.
[http://dx.doi.org/10.1006/abio.1997.2398] [PMID: 9417784]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 29
Year: 2020
Published on: 03 September, 2020
Page: [3522 - 3529]
Pages: 8
DOI: 10.2174/1381612826666200515132623
Price: $65

Article Metrics

PDF: 26
HTML: 3