Application of Artificial Intelligence in Pharmaceutical and Biomedical Studies

Author(s): Abhimanyu Thakur*, Ambika P. Mishra, Bishnupriya Panda, Diana C.S. Rodríguez, Isha Gaurav, Babita Majhi

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 29 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Background: Artificial intelligence (AI) is the way to model human intelligence to accomplish certain tasks without much intervention of human beings. The term AI was first used in 1956 with The Logic Theorist program, which was designed to simulate problem-solving ability of human beings. There have been a significant amount of research works using AI in order to determine the advantages and disadvantages of its applicabication and, future perspectives that impact different areas of society. Even the remarkable impact of AI can be transferred to the field of healthcare with its use in pharmaceutical and biomedical studies crucial for the socioeconomic development of the population in general within different studies, we can highlight those that have been conducted with the objective of treating diseases, such as cancer, neurodegenerative diseases, among others. In parallel, the long process of drug development also requires the application of AI to accelerate research in medical care.

Methods: This review is based on research material obtained from PubMed up to Jan 2020. The search terms include “artificial intelligence”, “machine learning” in the context of research on pharmaceutical and biomedical applications.

Results: This study aimed to highlight the importance of AI in the biomedical research and also recent studies that support the use of AI to generate tools using patient data to improve outcomes. Other studies have demonstrated the use of AI to create prediction models to determine response to cancer treatment.

Conclusion: The application of AI in the field of pharmaceutical and biomedical studies has been extensive, including cancer research, for diagnosis as well as prognosis of the disease state. It has become a tool for researchers in the management of complex data, ranging from obtaining complementary results to conventional statistical analyses. AI increases the precision in the estimation of treatment effect in cancer patients and determines prediction outcomes.

Keywords: Artificial intelligence, machine learning, pharmaceutical research, biomedical research, pharmaceutical and biomedical applications, conventional statistical analyses.

[1]
Mintz Y, Brodie R. Introduction to artificial intelligence in medicine. Minim Invasive Ther Allied Technol 2019; 28(2): 73-81.
[http://dx.doi.org/10.1080/13645706.2019.1575882] [PMID: 30810430]
[2]
Jones LD, Golan D, Hanna SA, Ramachandran M. Artificial intelligence, machine learning and the evolution of healthcare: A bright future or cause for concern? Bone Joint Res 2018; 7(3): 223-5.
[http://dx.doi.org/10.1302/2046-3758.73.BJR-2017-0147.R1] [PMID: 29922439]
[3]
Newell A, Simon H. The logic theory machine-A complex information processing system. IEEE Trans Inf Theory 1956; 2: 61-79.
[http://dx.doi.org/10.1109/TIT.1956.1056797]
[4]
Laird JE, Rosenbloom PS. The Research of Allen Newell. AI Mag 1992.
[5]
Anyoha R. The History of Artificial Intelligence BLOG, Spec Ed Artif Intell 2017.Available at:. http://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/
[6]
Ernst G, Newell A. G P S: Case Study in Generality and Problem Solving. Academic Press Inc 1969.
[7]
Weizenbaum J. ELIZA--a computer program for the study of natural language communication between man and machine. Commun ACM 1966; 9: 36-45.
[http://dx.doi.org/10.1145/365153.365168]
[8]
Banks G. Artificial intelligence in medical diagnosis: The INTERNIST/CADUCEUS approach. Crit Rev Med Inform 1986; 1(1): 23-54.http://www.ncbi.nlm.nih.gov/pubmed/3331578
[PMID: 3331578]
[9]
Wolfram DA. An appraisal of INTERNIST-I. Artif Intell Med 1995; 7(2): 93-116.http://www.ncbi.nlm.nih.gov/pubmed/7647840
[http://dx.doi.org/10.1016/0933-3657(94)00028-Q] [PMID: 7647840]
[10]
Miller RA, McNeil MA, Challinor SM, Masarie FE Jr, Myers JD. The INTERNIST-1/QUICK MEDICAL REFERENCE project-status report. West J Med 1986; 145(6): 816-22.
[PMID: 3544509]
[11]
Holley P. Stephen Hawking just got an artificial intelligence upgrade, but still thinks AI could bring an end to mankind, Washington Post 2014.Available at:. https://www.washingtonpost.com/news/speaking-of-science/wp/2014/12/02/stephen-hawking-just-got-an-artificial-intelligence-upgrade-but-still-thinks-it-could-bring-an-end-to-mankind/?noredirect=on
[12]
Clute J, Nicholls P. The Encyclopedia of Science Fiction 1999.Available at:. https://www.amazon.co.uk/Encyclopedia-Science-Fiction-John-Clute/dp/1857238974
[13]
Lavington SH. The Manchester Mark I and atlas: A historical perspective. Commun ACM 1978; 21: 4-12.
[http://dx.doi.org/10.1145/359327.359331]
[14]
Turing A. Computing Machinery and Intelligence. Mind 1950; 49: 433-60.
[http://dx.doi.org/10.1093/mind/LIX.236.433]
[15]
[16]
Mick S, Wallace WA. Expert systems as decision aids for disaster management. Disasters 1985; 9: 98-101.
[http://dx.doi.org/10.1111/j.1467-7717.1985.tb00920.x]
[17]
McCarthy J. A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, AI Mag 1955.Available at:. https://www.aaai.org/ojs/index.php/aimagazine/article/view/1904/1802
[19]
Moore GE. Cramming More Components onto Integrated Circuits. Proc IEEE 1998; 86: 82-5.
[http://dx.doi.org/10.1109/JPROC.1998.658762]
[20]
Avelar AB. Verification of the Completeness of Unification Algorithms `a la Robinson 2010.Available at:. https://galdino.catalao.ufg.br/up/635/o/RobUnif.pdf
[21]
Lindsay RK, Buchanan BG, Feigenbaum EA, Lederberg J. DENDRAL: A case study of the first expert system for scientific hypothesis formation. Artif Intell 1993; 61: 209-61.
[http://dx.doi.org/10.1016/0004-3702(93)90068-M]
[22]
Feigenbaum E, McCorduck P, Nii H. The Rise of the Expert Company Times Books. 1988.
[23]
Moto-oka T. Overview to the Fifth Generation Computer System project Proc 10th Annu Int Symp Comput Archit - ISCA ’83. New York, USA. ACM Press, New York 1983; pp. 417-22.
[http://dx.doi.org/10.1145/800046.801682]
[24]
Thorpe C, Hebert MH, Kanade T, Shafer SA. Vision and navigation for the Carnegie-Mellon Navlab. IEEE Trans Pattern Anal Mach Intell 1988; 10: 362-73.
[http://dx.doi.org/10.1109/34.3900]
[25]
McGrew T. Collaborative intelligence. The internet chess club on game 2 of kasparov vs. deep blue. IEEE Internet Comput 1997; 1: 38-42.
[http://dx.doi.org/10.1109/4236.589193]
[26]
Baker J. The DRAGON system-An overview. IEEE Trans Acoust 1975; 23: 24-9.
[http://dx.doi.org/10.1109/TASSP.1975.1162650]
[27]
Alivisatos AP, Chun M, Church GM, Greenspan RJ, Roukes ML, Yuste R. The brain activity map project and the challenge of functional connectomics. Neuron 2012; 74: 970-4.
[http://dx.doi.org/10.1016/j.neuron.2012.06.006]
[28]
Hobert O. Neurogenesis in the nematode Caenorhabditis elegans. WormBook 2010; 1-24.
[http://dx.doi.org/10.1895/wormbook.1.12.2] [PMID: 20891032]
[29]
Han S-H, Kim KW, Kim S, Youn YC. Artificial neural network: Understanding the basic concepts without mathematics. Dement Neurocognitive Disord 2018; 17(3): 83-9.
[http://dx.doi.org/10.12779/dnd.2018.17.3.83] [PMID: 30906397]
[30]
Deo RC. Machine Learning in Medicine. Circulation 2015; 132(20): 1920-30.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.001593] [PMID: 26572668]
[31]
Argatov I. Artificial Neural Networks (ANNs) as a novel modeling technique in tribology. Front Mech Eng 2019; 5
[http://dx.doi.org/10.3389/fmech.2019.00030]
[32]
McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. 1943. Bull Math Biol 1990; 52(1-2): 99-115.http://www.ncbi.nlm.nih.gov/pubmed/2185863
[http://dx.doi.org/10.1016/S0092-8240(05)80006-0] [PMID: 2185863]
[33]
Ranka S, Mohan CK, Mehrotra K, Menon A. Characterization of a class of sigmoid functions with applications to neural networks. Neural Netw 1996; 9(5): 819-35.http://www.ncbi.nlm.nih.gov/pubmed/12662565
[http://dx.doi.org/10.1016/0893-6080(95)00107-7] [PMID: 12662565]
[34]
Wang Q, Zhao X, Huang J, et al. Addressing Complexities of Machine Learning in Big Data: Principles, Trends and Challenges from Systematical Perspectives, Preprints 2017.Available at:.
[http://dx.doi.org/10.20944/preprints201710.0076.v1]
[35]
Genewein T, Braun DA. Occam’s Razor in sensorimotor learning. Proc Biol Sci 2014; 281(1783) 20132952
[http://dx.doi.org/10.1098/rspb.2013.2952] [PMID: 24671968]
[36]
Akgün E, Demir M. Modeling course achievements of elementary education teacher candidates with artificial neural networks. Int J Assess Tools Educ 2018; 491-509.
[http://dx.doi.org/10.21449/ijate.444073]
[37]
Chakraborty S, Rahman T. The difficulties in cancer treatment. Ecancermedicalscience 2012; 6
[http://dx.doi.org/10.3332%2Fecancer.2012.ed16] [PMID: 24883085]
[38]
Thakur A, Roy A, Ghosh A, Chhabra M, Banerjee S. Abiraterone acetate in the treatment of prostate cancer. Biomed Pharmacother 2018; 101: 211-8.
[http://dx.doi.org/10.1016/j.biopha.2018.02.067] [PMID: 29494958]
[39]
Gyawali B. Does global oncology need artificial intelligence? Lancet Oncol 2018; 19(5): 599-600.
[http://dx.doi.org/10.1016/S1470-2045(18)30269-9] [PMID: 29726374]
[40]
Becker AS, Marcon M, Ghafoor S, Wurnig MC, Frauenfelder T, Boss A. Deep Learning in Mammography: Diagnostic Accuracy of a Multipurpose Image Analysis Software in the Detection of Breast Cancer. Invest Radiol 2017; 52(7): 434-40.
[http://dx.doi.org/10.1097/RLI.0000000000000358] [PMID: 28212138]
[41]
Chen PC, Gadepalli K, MacDonald R, et al. An augmented reality microscope with real-time artificial intelligence integration for cancer diagnosis. Nat Med 2019; 25(9): 1453-7.
[http://dx.doi.org/10.1038/s41591-019-0539-7] [PMID: 31406351]
[42]
Rhrissorrakrai K, Koyama T, Parida L. Watson for Genomics: Moving Personalized Medicine Forward. Trends Cancer 2016; 2(8): 392-5.
[http://dx.doi.org/10.1016/j.trecan.2016.06.008] [PMID: 28741491]
[43]
Bio-IT World Staff. VA, IBM Extend Watson For Genomics Partnership . 2018.http://www.bio-itworld.com/2018/07/19/va-ibm-extend-watson-for-genomics-partnership.aspx
[44]
Bhattacharya P. Apollo Hospitals Bangalore Deploys IBM Watson for Genomics To Treat Cancer, Dynamiccio 2018.Available at:. https://www.dynamiccio.com/ibm-watson-for-genomics-at-apollo-hospitals-in-bangalore/
[45]
Cancer Discovery, Oncologists Partner with Watson on Genomics. Cancer Discov 2015; 5: 788-8.
[http://dx.doi.org/10.1158/2159-8290.CD-NB2015-090]
[46]
Griffiths A, Miller J, Suzuki D. An Introduction to Genetic Analysis, Mutation and cancer 2000.Available at:. https://www.ncbi.nlm.nih.gov/books/NBK21809/
[47]
Ma X, Yu H. Global burden of cancer. Yale J Biol Med 2006; 79(3-4): 85-94.http://www.ncbi.nlm.nih.gov/pubmed/17940618
[PMID: 17940618]
[48]
Seyfried TN, Huysentruyt LC. On the origin of cancer metastasis. Crit Rev Oncog 2013; 18(1-2): 43-73.
[http://dx.doi.org/10.1615/CritRevOncog.v18.i1-2.40] [PMID: 23237552]
[49]
Parsa N. Environmental factors inducing human cancers. Iran J Public Health 2012; 41(11): 1-9.
[PMID: 23304670]
[50]
Rampling R, James A, Papanastassiou V. The present and future management of malignant brain tumours: surgery, radiotherapy, chemotherapy. J Neurol Neurosurg Psychiatry 2004; 75(Suppl. 2): ii24-30.
[http://dx.doi.org/10.1136/jnnp.2004.040535] [PMID: 15146036]
[51]
McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening. Nature 2020; 577(7788): 89-94.
[http://dx.doi.org/10.1038/s41586-019-1799-6] [PMID: 31894144]
[52]
Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med 2019; 25(6): 954-61.
[http://dx.doi.org/10.1038/s41591-019-0447-x] [PMID: 31110349]
[53]
Kuo R-J, Huang M-H, Cheng W-C, Lin C-C, Wu Y-H. Application of a two-stage fuzzy neural network to a prostate cancer prognosis system. Artif Intell Med 2015; 63(2): 119-33.
[http://dx.doi.org/10.1016/j.artmed.2014.12.008] [PMID: 25576196]
[54]
Horie Y, Yoshio T, Aoyama K, et al. Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks. Gastrointest Endosc 2019; 89(1): 25-32.
[http://dx.doi.org/10.1016/j.gie.2018.07.037] [PMID: 30120958]
[55]
Yu K-H, Zhang C, Berry GJ, et al. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat Commun 2016; 7: 12474.
[http://dx.doi.org/10.1038/ncomms12474] [PMID: 27527408]
[56]
Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J 2014; 13: 8-17.
[http://dx.doi.org/10.1016/j.csbj.2014.11.005] [PMID: 25750696]
[57]
Drahansky M, Paridah M, Moradbak A, Mohamed A. Prediction of cancer patient outcomes based on artificial intelligence. Intech Artif Intell - Scope Limitations 2016; 13. Available at:.
[http://dx.doi.org/10.5772/57353]
[58]
Sherbet GV, Woo WL, Dlay S. Application of artificial intelligence-based technology in cancer management: A commentary on the deployment of artificial neural networks. Anticancer Res 2018; 38(12): 6607-13.
[http://dx.doi.org/10.21873/anticanres.13027] [PMID: 30504368]
[59]
Enshaei A, Robson CN, Edmondson RJ. Artificial Intelligence Systems as Prognostic and Predictive Tools in Ovarian Cancer. Ann Surg Oncol 2015; 22(12): 3970-5.
[http://dx.doi.org/10.1245/s10434-015-4475-6] [PMID: 25752894]
[60]
Lo Y-C, Rensi SE, Torng W, Altman RB. Machine learning in chemoinformatics and drug discovery. Drug Discov Today 2018; 23(8): 1538-46.
[http://dx.doi.org/10.1016/j.drudis.2018.05.010] [PMID: 29750902]
[61]
Lu J, Lu D, Fu Z, Zheng M, Luo X. Machine Learning-Based Modeling of Drug Toxicity. 2018; pp. 247-64.
[http://dx.doi.org/10.1007/978-1-4939-7717-8_15]
[62]
Linden A, Yarnold PR, Nallamothu BK. Using machine learning to model dose-response relationships. J Eval Clin Pract 2016; 22(6): 856-63.
[http://dx.doi.org/10.1111/jep.12573] [PMID: 27240883]
[63]
Han R, Yang Y, Li X, Ouyang D. Predicting oral disintegrating tablet formulations by neural network techniques. Asian J Pharm Sci 2018; 13(4): 336-42.
[http://dx.doi.org/10.1016/j.ajps.2018.01.003] [PMID: 32104407]
[64]
Akseli I, Xie J, Schultz L, et al. A practical framework toward prediction of breaking force and disintegration of tablet formulations using machine learning tools. J Pharm Sci 2017; 106(1): 234-47.
[http://dx.doi.org/10.1016/j.xphs.2016.08.026] [PMID: 28340955]
[65]
Krumholz HM. Big data and new knowledge in medicine: the thinking, training, and tools needed for a learning health system. Health Aff (Millwood) 2014; 33(7): 1163-70.
[http://dx.doi.org/10.1377/hlthaff.2014.0053] [PMID: 25006142]
[66]
Mockute R, Desai S, Perera S, et al. Artificial intelligence within pharmacovigilance: A means to identify cognitive services and the framework for their validation. Pharmaceut Med 2019; 33(2): 109-20.
[http://dx.doi.org/10.1007/s40290-019-00269-0] [PMID: 31933254]
[67]
Schmider J, Kumar K, LaForest C, Swankoski B, Naim K, Caubel PM. Innovation in pharmacovigilance: Use of artificial intelligence in adverse event case processing. Clin Pharmacol Ther 2019; 105(4): 954-61.
[http://dx.doi.org/10.1002/cpt.1255] [PMID: 30303528]
[68]
Song D, Chen Y, Min Q, et al. Similarity-based machine learning support vector machine predictor of drug-drug interactions with improved accuracies. J Clin Pharm Ther 2019; 44(2): 268-75.
[http://dx.doi.org/10.1111/jcpt.12786] [PMID: 30565313]
[69]
Ustun B, Adler LA, Rudin C, et al. The world health organization adult attention-deficit/hyperactivity disorder self-report screening scale for DSM-5 JAMA Psychiatry. 2017; 74: 520. 0298
[http://dx.doi.org/10.1001/jamapsychiatry]
[70]
Ramsundar B, Liu B, Wu Z, et al. Is multitask deep learning practical for pharma? J Chem Inf Model 2017; 57(8): 2068-76.
[http://dx.doi.org/10.1021/acs.jcim.7b00146] [PMID: 28692267]
[71]
Dipnall JF, Pasco JA, Berk M, et al. Fusing data mining, machine learning and traditional statistics to detect biomarkers associated with depression. PLoS One 2016; 11(2) e0148195
[http://dx.doi.org/10.1371/journal.pone.0148195] [PMID: 26848571]
[72]
Cao H, Meyer-Lindenberg A, Schwarz E. Comparative evaluation of machine learning strategies for analyzing big data in psychiatry. Int J Mol Sci 2018; 19(11): 3387.
[http://dx.doi.org/10.3390/ijms19113387] [PMID: 30380679]
[73]
Levatić J, Pavić K, Perković I, et al. Machine learning prioritizes synthesis of primaquine ureidoamides with high antimalarial activity and attenuated cytotoxicity. Eur J Med Chem 2018; 146: 651-67.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.062] [PMID: 29407988]
[74]
Takahashi H, Tampo H, Arai Y, Inoue Y, Kawashima H. Applying artificial intelligence to disease staging: Deep learning for improved staging of diabetic retinopathy. PLoS One 2017; 12(6)e0179790
[http://dx.doi.org/10.1371/journal.pone.0179790] [PMID: 28640840]
[75]
Finkelmann AR, Göller AH, Schneider G. Site of metabolism prediction based on ab initio derived atom representations. ChemMed-Chem 2017; 12(8): 606-12.
[http://dx.doi.org/10.1002/cmdc.201700097] [PMID: 28322513]
[76]
Perez Arribas I, Goodwin GM, Geddes JR, Lyons T, Saunders KEA. A signature-based machine learning model for distinguishing bipolar disorder and borderline personality disorder. Transl Psychiatry 2018; 8(1): 274.
[http://dx.doi.org/10.1038/s41398-018-0334-0] [PMID: 30546013]
[77]
An S, Malhotra K, Dilley C, et al. Predicting drug-resistant epilepsy - A machine learning approach based on administrative claims data. Epilepsy Behav 2018; 89: 118-25.
[http://dx.doi.org/10.1016/j.yebeh.2018.10.013] [PMID: 30412924]
[78]
Fuchs J-A, Grisoni F, Kossenjans M, Hiss JA, Schneider G. Lipophilicity prediction of peptides and peptide derivatives by consensus machine learning. MedChemComm 2018; 9(9): 1538-46.
[http://dx.doi.org/10.1039/C8MD00370J] [PMID: 30288227]
[79]
Venhuizen FG, van Ginneken B, van Asten F, et al. Automated Staging of Age-Related Macular Degeneration Using Optical Coherence Tomography. Invest Ophthalmol Vis Sci 2017; 58(4): 2318-28.
[http://dx.doi.org/10.1167/iovs.16-20541] [PMID: 28437528]
[80]
Crimi A, Commowick O, Maarouf A, et al. Predictive value of imaging markers at multiple sclerosis disease onset based on gadolinium- and USPIO-enhanced MRI and machine learning. PLoS One 2014; 9(4) e93024
[http://dx.doi.org/10.1371/journal.pone.0093024] [PMID: 24691080]
[81]
Lee H, Yune S, Mansouri M, et al. An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets. Nat Biomed Eng 2019; 3(3): 173-82.
[http://dx.doi.org/10.1038/s41551-018-0324-9] [PMID: 30948806]
[82]
Lundberg SM, Nair B, Vavilala MS, et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat Biomed Eng 2018; 2(10): 749-60.
[http://dx.doi.org/10.1038/s41551-018-0304-0] [PMID: 31001455]
[83]
Wang P, Xiao X, Glissen Brown JR, et al. Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy. Nat Biomed Eng 2018; 2(10): 741-8.
[http://dx.doi.org/10.1038/s41551-018-0301-3] [PMID: 31015647]
[84]
Kopparthy VL, Snodgrass R, Erickson D. Holographic diagnosis of lymphoma. Nat Biomed Eng 2018; 2(9): 631-2.
[http://dx.doi.org/10.1038/s41551-018-0291-1] [PMID: 31015677]
[85]
Rivenson Y, Wang H, Wei Z, et al. Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning. Nat Biomed Eng 2019; 3(6): 466-77.
[http://dx.doi.org/10.1038/s41551-019-0362-y] [PMID: 31142829]
[86]
Kraft BM, Jäger C, Kraft K, Leibl BJ, Bittner R. The AESOP robot system in laparoscopic surgery: increased risk or advantage for surgeon and patient? Surg Endosc 2004; 18(8): 1216-23.
[http://dx.doi.org/10.1007/s00464-003-9200-z] [PMID: 15457381]
[87]
DiMaio S, Hanuschik M, Kreaden U. The da Vinci Surgical System Surg Robot. Boston, MA: Springer US 2011; pp. 199-217.
[http://dx.doi.org/10.1007/978-1-4419-1126-1_9]
[88]
Arbabshirani MR, Fornwalt BK, Mongelluzzo GJ, et al. Advanced machine learning in action: Identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration. NPJ Digit Med 2018; 1: 9.
[http://dx.doi.org/10.1038/s41746-017-0015-z] [PMID: 31304294]
[89]
Putha P, Tadepalli M, Reddy B, et al. Can artificial intelligence reliably report chest X-Rays? Radiologist validation of an algorithm trained on 23 million X-Rays 2018.http://arxiv.org/abs/1807.07455
[90]
Hassanzadeh P, Atyabi F, Dinarvand R. The significance of artificial intelligence in drug delivery system design. Adv Drug Deliv Rev 2019; 151-152: 169-90.
[http://dx.doi.org/10.1016/j.addr.2019.05.001] [PMID: 31071378]
[91]
Rafienia M, Amiri M, Janmaleki M, Sadeghian A. Application of artificial neural networks in controlled drug delivery systems. Appl Artif Intell 2010; 24: 807-20.
[http://dx.doi.org/10.1080/08839514.2010.508606]
[92]
Yang Y, Ye Z, Su Y, Zhao Q, Li X, Ouyang D. Deep learning for in vitro prediction of pharmaceutical formulations. Acta Pharm Sin B 2019; 9(1): 177-85.
[http://dx.doi.org/10.1016/j.apsb.2018.09.010] [PMID: 30766789]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 29
Year: 2020
Published on: 03 September, 2020
Page: [3569 - 3578]
Pages: 10
DOI: 10.2174/1381612826666200515131245
Price: $65

Article Metrics

PDF: 30
HTML: 4