Machine Learning-Based Scoring Functions, Development and Applications with SAnDReS

Author(s): Gabriela Bitencourt-Ferreira, Camila Rizzotto, Walter Filgueira de Azevedo Junior*

Journal Name: Current Medicinal Chemistry

Volume 28 , Issue 9 , 2021


Become EABM
Become Reviewer
Call for Editor

Abstract:

Background: Analysis of atomic coordinates of protein-ligand complexes can provide three-dimensional data to generate computational models to evaluate binding affinity and thermodynamic state functions. Application of machine learning techniques can create models to assess protein-ligand potential energy and binding affinity. These methods show superior predictive performance when compared with classical scoring functions available in docking programs.

Objective: Our purpose here is to review the development and application of the program SAnDReS. We describe the creation of machine learning models to assess the binding affinity of protein-ligand complexes.

Methods: SAnDReS implements machine learning methods available in the scikit-learn library. This program is available for download at https://github.com/azevedolab/sandres. SAnDReS uses crystallographic structures, binding and thermodynamic data to create targeted scoring functions.

Results: Recent applications of the program SAnDReS to drug targets such as Coagulation factor Xa, cyclin-dependent kinases and HIV-1 protease were able to create targeted scoring functions to predict inhibition of these proteins. These targeted models outperform classical scoring functions.

Conclusion: Here, we reviewed the development of machine learning scoring functions to predict binding affinity through the application of the program SAnDReS. Our studies show the superior predictive performance of the SAnDReS-developed models when compared with classical scoring functions available in the programs such as AutoDock4, Molegro Virtual Docker and AutoDock Vina.

Keywords: Machine learning, SAnDReS, cyclin-dependent kinase, protein-ligand interactions, binding affinity, Gibbs free energy.

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 28
ISSUE: 9
Year: 2021
Page: [1746 - 1756]
Pages: 11
DOI: 10.2174/0929867327666200515101820
Price: $95

Article Metrics

PDF: 481