Bioactive Compounds Isolated from Defatted Microalgal Biomasses of Botryococcus Braunii and Dunaliella Tertiolecta showing a Tyrosinase Inhibitory Activity

Author(s): Da G. Lee, Shaheen A. Kashif, Ah Y. Yoo, Ji W. Choi, Yong I. Park, Andriy Synytsya, Jae K. Park*

Journal Name: Current Bioactive Compounds

Volume 17 , Issue 3 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Aims: This study aims to elucidate the structural difference and biochemical properties of bioactive compounds of microalgal biomasses.

Background: The structural difference and biochemical properties of bioactive compounds termed as Water-Soluble Macromolecules (WSMs) are interested in evaluating their biological activities.

Methods: This study was performed to elucidate the structural difference and biochemical properties of bioactive compounds termed as Water-Soluble Macromolecules (WSMs) isolated from defatted microalgal biomasses of Botryococcus braunii and Dunaliella tertiolecta.

Results: The compositional analysis of both WSMs revealed that WSM-Bb is a hetero-macromolecule consisting of various monosaccharides, whereas WSM-Dt was characterized as a homo-- macromolecule that mainly consists of glucose. Interestingly, WSM-Bb showed the significant tyrosinase inhibitory activity with the increase of both the concentration and reaction time. Whereas there was no significant inhibitory activity observed by WSM-Dt.

Conclusion: Inhibitory action of WSM-Bb toward both tyrosinase and tyrosine in either simultaneous or separate reaction may be mainly due to the physical affinity of WSM-Bb. These results emphasize the identification of the primary components of these WSMs and their relevance with the antioxidant function.

Keywords: Microalgae, biomasses, water-soluble macromolecule, antioxidant, tyrosinase, substrate specificity.

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 3
Year: 2021
Published on: 14 May, 2020
Page: [234 - 245]
Pages: 12
DOI: 10.2174/1573407216999200515095507
Price: $65

Article Metrics

PDF: 56