Sulfonamides: Antiviral Strategy for Neglected Tropical Disease Virus

Author(s): Rudra Narayan Dash, Alok Kumar Moharana, Bharat Bhusan Subudhi*

Journal Name: Current Organic Chemistry

Volume 24 , Issue 9 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

The viral infections are a threat to the health system around the globe. Although more than 60 antiviral drugs have been approved by the FDA, most of them are for the management of few viruses like HIV, Hepatitis and Influenza. There is no antiviral for many viruses including Dengue, Chikungunya and Japanese encephalitis. Many of these neglected viruses are increasingly becoming global pathogens. Lack of broad spectrum of action and the rapid rise of resistance and cross-resistance to existing antiviral have further increased the challenge of antiviral development. Sulfonamide, as a privileged scaffold, has been capitalized to develop several bioactive compounds and drugs. Accordingly, several reviews have been published in recent times on bioactive sulfonamides. However, there are not enough review reports of antiviral sulfonamides in the last five years. Sulfonamides scaffolds have received sufficient attention for the development of non- nucleoside antivirals following the emergence of cross-resistance to nucleoside inhibitors. Hybridization of bioactive pharmacophores with sulfonamides has been used as a strategy to develop sulfonamide antivirals. This review is an effort to analyze these attempts and evaluate their translational potential. Parameters including potency (IC50), toxicity (CC50) and selectivity (CC50/IC50) have been used in this report to suggest the potential of sulfonamide derivatives to progress further as antiviral. Since most of these antiviral properties are based on the in vitro results, the drug-likeness of molecules has been predicted to propose in vivo potential. The structure-activity relationship has been analyzed to encourage further optimization of antiviral properties.

Keywords: Tropical disease virus, sulfonamide, antiviral, structure-activity, virus, pharmacophores.

[1]
Chaudhuri, S.; Symons, J.A.; Deval, J. Innovation and trends in the development and approval of antiviral medicines: 1987-2017 and beyond. Antiviral Res., 2018, 155, 76-88.
[http://dx.doi.org/10.1016/j.antiviral.2018.05.005] [PMID: 29758235]
[2]
Mackey, T.K.; Liang, B.A. Lessons from SARS and H1N1/A: employing a WHO-WTO forum to promote optimal economic-public health pandemic response. J. Public Health Policy, 2012, 33(1), 119-130.
[http://dx.doi.org/10.1057/jphp.2011.51] [PMID: 22048060]
[3]
Mackey, T.K.; Liang, B.A.; Cuomo, R.; Hafen, R.; Brouwer, K.C.; Lee, D.E. Emerging and reemerging neglected tropical diseases: a review of key characteristics, risk factors, and the policy and innovation environment. Clin. Microbiol. Rev., 2014, 27(4), 949-979.
[http://dx.doi.org/10.1128/CMR.00045-14] [PMID: 25278579]
[4]
Gómez, W.E.V.; Morales, A.J.R.; García, A.M.U.; Arismendy, E.G.; Lanos, J.E.C.; Calvo, E.P.; Mon, M.A.; Musso, D. Zika, dengue, and chikungunya co-infection in a pregnant woman from Colombia. Int. J. Infect. Dis., 2016, 51, 135-138.
[http://dx.doi.org/10.1016/j.ijid.2016.07.017] [PMID: 27497951]
[5]
Iovine, N.M.; Lednicky, J.; Cherabuddi, K.; Crooke, H.; White, S.K.; Loeb, J.C.; Cella, E.; Ciccozzi, M.; Salemi, M.; Morris, J.G. Jr Coinfection with Zika and dengue-2 viruses in a traveler returning from Haiti, 2016: clinical presentation and genetic analysis. Clin. Infect. Dis., 2017, 64(1), 72-75.
[http://dx.doi.org/10.1093/cid/ciw667] [PMID: 27694479]
[6]
Saswat, T.; Kumar, A.; Kumar, S.; Mamidi, P.; Muduli, S.; Debata, N.K.; Pal, N.S.; Pratheek, B.M.; Chattopadhyay, S.; Chattopadhyay, S. High rates of co-infection of Dengue and Chikungunya virus in Odisha and Maharashtra, India during 2013. Infect. Genet. Evol., 2015, 35, 134-141.
[http://dx.doi.org/10.1016/j.meegid.2015.08.006] [PMID: 26247719]
[7]
Dupont-Rouzeyrol, M.; O’Connor, O.; Calvez, E.; Daurès, M.; John, M.; Grangeon, J.P.; Gourinat, A.C. Co-infection with Zika and dengue viruses in 2 patients, New Caledonia, 2014. Emerg. Infect. Dis., 2015, 21(2), 381-382.
[http://dx.doi.org/10.3201/eid2102.141553] [PMID: 25625687]
[8]
Schilling, S.; Emmerich, P.; Günther, S.; Schmidt-Chanasit, J. Dengue and Chikungunya virus co-infection in a German traveller. J. Clin. Virol., 2009, 45(2), 163-164.
[http://dx.doi.org/10.1016/j.jcv.2009.04.001] [PMID: 19442576]
[9]
Zanotto, P.M.; Gould, E.A.; Gao, G.F.; Harvey, P.H.; Holmes, E.C. Population dynamics of flaviviruses revealed by molecular phylogenies. Proc. Natl. Acad. Sci. USA, 1996, 93(2), 548-553.
[http://dx.doi.org/10.1073/pnas.93.2.548] [PMID: 8570593]
[10]
Elena, S.F.; Sanjuán, R. Adaptive value of high mutation rates of RNA viruses: separating causes from consequences. J. Virol., 2005, 79(18), 11555-11558.
[http://dx.doi.org/10.1128/JVI.79.18.11555-11558.2005] [PMID: 16140732]
[11]
Malpica, J.M.; Fraile, A.; Moreno, I.; Obies, C.I.; Drake, J.W.; García-Arenal, F. The rate and character of spontaneous mutation in an RNA virus. Genetics, 2002, 162(4), 1505-1511.
[PMID: 12524327]
[12]
De Clercq, E. Antiviral agents: characteristic activity spectrum depending on the molecular target with which they interact In: Advances in virus research; 1-55.
[http://dx.doi.org/10.1016/S0065-3527(08)60082-2]
[13]
De Clercq, E.; Herdewijn, P. Strategies in the design of antiviral drugs. In: Pharmaceutical Sciences Encyclopedia: Drug Discovery, Development, and Manufacturing; John Wiley and Sons: New York, 2010, pp. 1-56.
[14]
Horne, W.S.; Wiethoff, C.M.; Cui, C.; Wilcoxen, K.M.; Amorin, M.; Ghadiri, M.R.; Nemerow, G.R. Antiviral cyclic D,L-α-peptides: targeting a general biochemical pathway in virus infections. Bioorg. Med. Chem., 2005, 13(17), 5145-5153.
[http://dx.doi.org/10.1016/j.bmc.2005.05.051] [PMID: 15993611]
[15]
Haller, J.S., Jr The First Miracle Drugs: How the Sulfa Drugs Transformed Medicine, 2008, 119-121.
[16]
Kanda, Y.; Kawanishi, Y.; Oda, K.; Sakata, T.; Mihara, S.I.; Asakura, K.; Kanemasa, T.; Ninomiya, M.; Fujimoto, M.; Konoike, T. Synthesis and structure-activity relationships of potent and orally active sulfonamide ETB selective antagonists. Bioorg. Med. Chem., 2001, 9(4), 897-907.
[http://dx.doi.org/10.1016/S0968-0896(00)00305-9] [PMID: 11354672]
[17]
Stokes, S.S.; Albert, R.; Buurman, E.T.; Andrews, B.; Shapiro, A.B.; Green, O.M.; McKenzie, A.R.; Otterbein, L.R. Inhibitors of the acetyltransferase domain of N-acetylglucosamine-1-phosphate-uridylyltransferase/glucose mine-1-phosphate-acetyltransferase (GlmU). Part 2: Optimization of physical properties leading to antibacterial aryl sulfonamides. Bioorg. Med. Chem. Lett., 2012, 22(23), 7019-7023.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.003] [PMID: 23099094]
[18]
Chibale, K.; Haupt, H.; Kendrick, H.; Yardley, V.; Saravanamuthu, A.; Fairlamb, A.H.; Croft, S.L. Antiprotozoal and cytotoxicity evaluation of sulfonamide and urea analogues of quinacrine. Bioorg. Med. Chem. Lett., 2001, 11(19), 2655-2657.
[http://dx.doi.org/10.1016/S0960-894X(01)00528-5] [PMID: 11551771]
[19]
Ezabadi, I.R.; Camoutsis, C.; Zoumpoulakis, P.; Geronikaki, A.; Soković, M.; Glamocilija, J.; Cirić, A. Sulfonamide-1,2,4-triazole derivatives as antifungal and antibacterial agents: synthesis, biological evaluation, lipophilicity, and conformational studies. Bioorg. Med. Chem., 2008, 16(3), 1150-1161.
[http://dx.doi.org/10.1016/j.bmc.2007.10.082] [PMID: 18053730]
[20]
Kennedy, J.F.; Thorley, M. Pharmaceutical Substances, A. Kleeman, J. Engel, B. Kutscher & D. Reichert George ThiemeVerlag, Stuttgart/New York. Bioseparation, 1999, 8(6), 336-336.
[http://dx.doi.org/10.1023/A:1008114712553]
[21]
Gal, C.S. An overview of SR121463, a selective non-peptide vasopressin V2 receptor antagonist. Cardiovasc. Drug Rev., 2001, 19(3), 201-214.
[PMID: 11607038]
[22]
Natarajan, A.; Guo, Y.; Harbinski, F.; Fan, Y.H.; Chen, H.; Luus, L.; Diercks, J.; Aktas, H.; Chorev, M.; Halperin, J.A. Novel arylsulfoanilide oxindole hybrid as an anticancer agent that inhibits translation initiation. J. Med. Chem., 2004, 47(21), 4979-4982.
[http://dx.doi.org/10.1021/jm0496234] [PMID: 15456240]
[23]
Carta, F.; Supuran, C.T.; Scozzafava, A. Sulfonamides and their isosters as carbonic anhydrase inhibitors. Future Med. Chem., 2014, 6(10), 1149-1165.
[http://dx.doi.org/10.4155/fmc.14.68] [PMID: 25078135]
[24]
Supuran, C.T.; Scozzafava, A.; Casini, A. Carbonic anhydrase inhibitors. Med. Res. Rev., 2003, 23(2), 146-189.
[http://dx.doi.org/10.1002/med.10025] [PMID: 12500287]
[25]
Actor, P.; Chow, A.W.; Dutko, F.J.; McKinlay, M.A. Chemotherapeutics. In: Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH, 2000, pp. 412-464.
[26]
Supuran, C.T. Special issue: sulfonamides. Molecules, 2017, 22(10), 1642.
[http://dx.doi.org/10.3390/molecules22101642] [PMID: 28961201]
[27]
De Clercq, E. Strategies in the design of antiviral drugs. Nat. Rev. Drug Discov., 2002, 1(1), 13-25.
[http://dx.doi.org/10.1038/nrd703] [PMID: 12119605]
[28]
Supuran, C.T.; Innocenti, A.; Mastrolorenzo, A.; Scozzafava, A. Antiviral sulfonamide derivatives. Mini Rev. Med. Chem., 2004, 4(2), 189-200.
[http://dx.doi.org/10.2174/1389557043487402] [PMID: 14965291]
[29]
Scozzafava, A.; Owa, T.; Mastrolorenzo, A.; Supuran, C.T. Anticancer and antiviral sulfonamides. Curr. Med. Chem., 2003, 10(11), 925-953.
[http://dx.doi.org/10.2174/0929867033457647] [PMID: 12678681]
[30]
Zhao, C.; Rakesh, K.P.; Ravidar, L.; Fang, W.Y.; Qin, H.L. Pharmaceutical and medicinal significance of sulfur (SVI)-Containing motifs for drug discovery: a critical review. Eur. J. Med. Chem., 2019, 162, 679-734.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.017] [PMID: 30496988]
[31]
Kolaczek, A.; Fusiarz, I.; Lawecka, J.; Branowska, D. Biological activity and synthesis of sulfonamide derivatives: a brief review. Chemik, 2014, 68(7), 620-628.
[32]
Lavanya, R. Sulphonamides: a pharmaceutical review. Int. J. Pharm. Sci. Invent., 2017, 6(2), 1-3.
[33]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[34]
Lipinski, C.A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[35]
De Luca, L.; Giacomelli, G. An easy microwave-assisted synthesis of sulfonamides directly from sulfonic acids. J. Org. Chem., 2008, 73(10), 3967-3969.
[http://dx.doi.org/10.1021/jo800424g] [PMID: 18393527]
[36]
Bahrami, K.; Khodaei, M.M.; Soheilizad, M. Direct conversion of thiols to sulfonyl chlorides and sulfonamides. J. Org. Chem., 2009, 74(24), 9287-9291.
[http://dx.doi.org/10.1021/jo901924m] [PMID: 19919028]
[37]
Veisi, H.; Ghorbani-Vaghei, R.; Hemmati, S.; Mahmoodi, J. Convenient one-pot synthesis of sulfonamides and sulfonyl azides from thiols using N-chlorosuccinimide. Synlett, 2011, 2011(16), 2315-2320.
[http://dx.doi.org/10.1055/s-0030-1261232]
[38]
Rad, M.N.S.; Khalafi-Nezhad, A.; Asrari, Z.; Behrouz, S.; Amini, Z.; Behrouz, Mz. One-pot synthesis of sulfonamides from primary and secondary amine derived sulfonate salts using cyanuric chloride. Synthesis, 2009, 2009(23), 3983-3988.
[http://dx.doi.org/10.1055/s-0029-1217020]
[39]
Mukherjee, P.; Woroch, C.P.; Cleary, L.; Rusznak, M.; Franzese, R.W.; Reese, M.R.; Tucker, J.W.; Humphrey, J.M.; Etuk, S.M.; Kwan, S.C.; Am Ende, C.W.; Ball, N.D. am Ende, C.W. Sulfonamide synthesis via calcium triflimide activation of sulfonyl fluorides. Org. Lett., 2018, 20(13), 3943-3947.
[http://dx.doi.org/10.1021/acs.orglett.8b01520] [PMID: 29888600]
[40]
Shyam, P.K.; Jang, H.Y. Synthesis of sulfones and sulfonamides via sulfinate anions: revisiting the utility of thiosulfonates. J. Org. Chem., 2017, 82(3), 1761-1767.
[http://dx.doi.org/10.1021/acs.joc.6b03016] [PMID: 28078894]
[41]
Zhang, W.; Xie, J.; Rao, B.; Luo, M. Iron-catalyzed N-arylsulfonamide formation through directly using nitroarenes as nitrogen sources. J. Org. Chem., 2015, 80(7), 3504-3511.
[http://dx.doi.org/10.1021/acs.joc.5b00130] [PMID: 25742395]
[42]
Flegeau, E.F.; Harrison, J.M.; Willis, M.C. One-pot sulfonamide synthesis exploiting the palladium-catalyzedsulfination of aryl iodides. Synlett, 2016, 27(01), 101-105.
[43]
Woolven, H.; González-Rodríguez, C.; Marco, I.; Thompson, A.L.; Willis, M.C. DABCO-bis(sulfur dioxide), DABSO, as a convenient source of sulfur dioxide for organic synthesis: utility in sulfonamide and sulfamide preparation. Org. Lett., 2011, 13(18), 4876-4878.
[http://dx.doi.org/10.1021/ol201957n] [PMID: 21866926]
[44]
Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; Myers, M.F.; George, D.B.; Jaenisch, T.; Wint, G.R.; Simmons, C.P.; Scott, T.W.; Farrar, J.J.; Hay, S.I. The global distribution and burden of dengue. Nature, 2013, 496(7446), 504-507.
[http://dx.doi.org/10.1038/nature12060] [PMID: 23563266]
[45]
Brady, O.J.; Gething, P.W.; Bhatt, S.; Messina, J.P.; Brownstein, J.S.; Hoen, A.G.; Moyes, C.L.; Farlow, A.W.; Scott, T.W.; Hay, S.I. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl. Trop. Dis., 2012, 6(8)e1760
[http://dx.doi.org/10.1371/journal.pntd.0001760] [PMID: 22880140]
[46]
Gallichotte, E.N.; Baric, T.J.; Nivarthi, U.; Delacruz, M.J.; Graham, R.; Widman, D.G.; Yount, B.L.; Durbin, A.P.; Whitehead, S.S.; de Silva, A.M.; Baric, R.S. Genetic variation between Dengue virus type 4 strains impacts human antibody binding and neutralization. Cell Rep., 2018, 25(5), 1214-1224.
[http://dx.doi.org/10.1016/j.celrep.2018.10.006] [PMID: 30380413]
[47]
De Francesco, R.; Carfí, A. Advances in the development of new therapeutic agents targeting the NS3-4A serine protease or the NS5B RNA-dependent RNA polymerase of the hepatitis C virus. Adv. Drug Deliv. Rev., 2007, 59(12), 1242-1262.
[http://dx.doi.org/10.1016/j.addr.2007.04.016] [PMID: 17869377]
[48]
Rawlinson, S.M.; Pryor, M.J.; Wright, P.J.; Jans, D.A. Dengue virus RNA polymerase NS5: a potential therapeutic target? Curr. Drug Targets, 2006, 7(12), 1623-1638.
[http://dx.doi.org/10.2174/138945006779025383] [PMID: 17168837]
[49]
Yin, Z.; Chen, Y.L.; Kondreddi, R.R.; Chan, W.L.; Wang, G.; Ng, R.H.; Lim, J.Y.; Lee, W.Y.; Jeyaraj, D.A.; Niyomrattanakit, P.; Wen, D.; Chao, A.; Glickman, J.F.; Voshol, H.; Mueller, D.; Spanka, C.; Dressler, S.; Nilar, S.; Vasudevan, S.G.; Shi, P.Y.; Keller, T.H. N-sulfonylanthranilic acid derivatives as allosteric inhibitors of dengue viral RNA-dependent RNA polymerase. J. Med. Chem., 2009, 52(24), 7934-7937.
[http://dx.doi.org/10.1021/jm901044z] [PMID: 20014868]
[50]
Niyomrattanakit, P.; Chen, Y.L.; Dong, H.; Yin, Z.; Qing, M.; Glickman, J.F.; Lin, K.; Mueller, D.; Voshol, H.; Lim, J.Y.; Nilar, S.; Keller, T.H.; Shi, P.Y. Inhibition of dengue virus polymerase by blocking of the RNA tunnel. J. Virol., 2010, 84(11), 5678-5686.
[http://dx.doi.org/10.1128/JVI.02451-09] [PMID: 20237086]
[51]
Lim, S.P.; Noble, C.G.; Seh, C.C.; Soh, T.S.; El Sahili, A.; Chan, G.K.Y.; Lescar, J.; Arora, R.; Benson, T.; Nilar, S.; Manjunatha, U.; Wan, K.F.; Dong, H.; Xie, X.; Shi, P.Y.; Yokokawa, F. Potent allosteric dengue virus NS5 polymerase inhibitors: mechanism of action and resistance profiling. PLoS Pathog., 2016, 12(8)e1005737
[http://dx.doi.org/10.1371/journal.ppat.1005737] [PMID: 27500641]
[52]
Pelliccia, S.; Wu, Y.H.; Coluccia, A.; La Regina, G.; Tseng, C.K.; Famiglini, V.; Masci, D.; Hiscott, J.; Lee, J.C.; Silvestri, R. Inhibition of dengue virus replication by novel inhibitors of RNA-dependent RNA polymerase and protease activities. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 1091-1101.
[http://dx.doi.org/10.1080/14756366.2017.1355791] [PMID: 28776445]
[53]
Cannalire, R.; Tarantino, D.; Astolfi, A.; Barreca, M.L.; Sabatini, S.; Massari, S.; Tabarrini, O.; Milani, M.; Querat, G.; Mastrangelo, E.; Manfroni, G.; Cecchetti, V. Functionalized 2,1-benzothiazine 2,2-dioxides as new inhibitors of Dengue NS5 RNA-dependent RNA polymerase. Eur. J. Med. Chem., 2018, 143, 1667-1676.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.064] [PMID: 29137867]
[54]
Henchal, E.A.; Putnak, J.R. The dengue viruses. Clin. Microbiol. Rev., 1990, 3(4), 376-396.
[http://dx.doi.org/10.1128/CMR.3.4.376] [PMID: 2224837]
[55]
Holmes, E.C.; Burch, S.S. The causes and consequences of genetic variation in dengue virus. Trends Microbiol., 2000, 8(2), 74-77.
[http://dx.doi.org/10.1016/S0966-842X(99)01669-8] [PMID: 10664600]
[56]
Pugachev, K.V.; Guirakhoo, F.; Trent, D.W.; Monath, T.P. Traditional and novel approaches to flavivirus vaccines. Int. J. Parasitol., 2003, 33(5-6), 567-582.
[http://dx.doi.org/10.1016/S0020-7519(03)00063-8] [PMID: 12782056]
[57]
Timiri, A.K.; Selvarasu, S.; Kesherwani, M.; Vijayan, V.; Sinha, B.N.; Devadasan, V.; Jayaprakash, V. Synthesis and molecular modelling studies of novel sulphonamide derivatives as dengue virus 2 protease inhibitors. Bioorg. Chem., 2015, 62, 74-82.
[http://dx.doi.org/10.1016/j.bioorg.2015.07.005] [PMID: 26247308]
[58]
Koff, W.C.; Elm, J.L.; Halstead, S.B. Inhibition of dengue virus replication by amantadine hydrochloride. Antimicrob. Agents Chemother., 1980, 18(1), 125-129.
[http://dx.doi.org/10.1128/AAC.18.1.125] [PMID: 7416739]
[59]
Joubert, J.; Foxen, E.B.; Malan, S.F. Microwave optimized synthesis of N-(adamantan-1-yl)-4-[(adamantan-1-yl)-sulfamoyl]benzamide and its derivatives for anti-dengue virus activity. Molecules, 2018, 23(7), 1678.
[http://dx.doi.org/10.3390/molecules23071678] [PMID: 29996497]
[60]
Berube, G.; Bouzide, A.; Cote, A.; Sauve, G.; Soucy, P.; Stranix, B.R.; Yelle, J.; Zhao, Y. Hiv protease inhibitors based on amino acid derivatives Eur. Patent, 1377542A1, 2002.
[61]
Lampa, A.K.; Bergman, S.M.; Gustafsson, S.S.; Alogheli, H.; Akerblom, E.B.; Lindeberg, G.G.; Svensson, R.M.; Artursson, P.; Danielson, U.H.; Karlén, A.; Sandström, A. Novel peptidomimetic Hepatitis C Virus NS3/4A Protease inhibitors spanning the P2-P1′ region. ACS Med. Chem. Lett., 2013, 5(3), 249-254.
[http://dx.doi.org/10.1021/ml400217r] [PMID: 24900813]
[62]
de Bont, D.B.; Bol, K.M.S.; Hofmeyer, L.J.; Liskamp, R.M. Increased stability of peptidesulfonamide peptidomimetics towards protease catalyzed degradation. Bioorg. Med. Chem., 1999, 7(6), 1043-1047.
[http://dx.doi.org/10.1016/S0968-0896(99)00021-8] [PMID: 10428372]
[63]
Kuno, G.; Chang, G.J.J.; Tsuchiya, K.R.; Karabatsos, N.; Cropp, C.B. Phylogeny of the genus Flavivirus. J. Virol., 1998, 72(1), 73-83.
[http://dx.doi.org/10.1128/JVI.72.1.73-83.1998] [PMID: 9420202]
[64]
Mehrjardi, M.Z. Is Zika virus an emerging TORCH agent? An invited commentary.Virology: research and treatment; , 2017, 8, p. 1178122X17708993.
[http://dx.doi.org/10.1177/1178122X17708993]
[65]
Meaney-Delman, D.; Hills, S.L.; Williams, C.; Galang, R.R.; Iyengar, P.; Hennenfent, A.K.; Rabe, I.B.; Panella, A.; Oduyebo, T.; Honein, M.A.; Zaki, S.; Lindsey, N.; Lehman, J.A.; Kwit, N.; Bertolli, J.; Ellington, S.; Igbinosa, I.; Minta, A.A.; Petersen, E.E.; Mead, P.; Rasmussen, S.A.; Jamieson, D.J. Zika virus infection among US pregnant travelers-August 2015-February 2016. MMWR Morb. Mortal. Wkly. Rep., 2016, 65(8), 211-214.
[http://dx.doi.org/10.15585/mmwr.mm6508e1] [PMID: 26938703]
[66]
Shiryaev, S.A.; Farhy, C.; Pinto, A.; Huang, C.T.; Simonetti, N.; Elong Ngono, A.; Dewing, A.; Shresta, S.; Pinkerton, A.B.; Cieplak, P.; Strongin, A.Y.; Terskikh, A.V. Characterization of the Zika virus two-component NS2B-NS3 protease and structure-assisted identification of allosteric small-molecule antagonists. Antiviral Res., 2017, 143, 218-229.
[http://dx.doi.org/10.1016/j.antiviral.2017.04.015] [PMID: 28461069]
[67]
Chan, J.F.W.; Chik, K.K.H.; Yuan, S.; Yip, C.C.Y.; Zhu, Z.; Tee, K.M.; Tsang, J.O.L.; Chan, C.C.S.; Poon, V.K.M.; Lu, G.; Zhang, A.J.; Lai, K.K.; Chan, K.H.; Kao, R.Y.; Yuen, K.Y. Novel antiviral activity and mechanism of bromocriptine as a Zika virus NS2B-NS3 protease inhibitor. Antiviral Res., 2017, 141, 29-37.
[http://dx.doi.org/10.1016/j.antiviral.2017.02.002] [PMID: 28185815]
[68]
Lee, H.; Ren, J.; Nocadello, S.; Rice, A.J.; Ojeda, I.; Light, S.; Minasov, G.; Vargas, J.; Nagarathnam, D.; Anderson, W.F.; Johnson, M.E. Identification of novel small molecule inhibitors against NS2B/NS3 serine protease from Zika virus. Antiviral Res., 2017, 139, 49-58.
[http://dx.doi.org/10.1016/j.antiviral.2016.12.016] [PMID: 28034741]
[69]
Yu, Y.; Deng, Y.Q.; Zou, P.; Wang, Q.; Dai, Y.; Yu, F.; Du, L.; Zhang, N.N.; Tian, M.; Hao, J.N.; Meng, Y.; Li, Y.; Zhou, X.; Fuk-Woo Chan, J.; Yuen, K.Y.; Qin, C.F.; Jiang, S.; Lu, L. A peptide-based viral inactivator inhibits Zika virus infection in pregnant mice and fetuses. Nat. Commun., 2017, 8(1), 15672.
[http://dx.doi.org/10.1038/ncomms15672] [PMID: 28742068]
[70]
Kuno, G.; Chang, G.J. Full-length sequencing and genomic characterization of Bagaza, Kedougou, and Zika viruses. Arch. Virol., 2007, 152(4), 687-696.
[http://dx.doi.org/10.1007/s00705-006-0903-z] [PMID: 17195954]
[71]
Sampath, A.; Padmanabhan, R. Molecular targets for flavivirus drug discovery. Antiviral Res., 2009, 81(1), 6-15.
[http://dx.doi.org/10.1016/j.antiviral.2008.08.004] [PMID: 18796313]
[72]
Lee, H.; Zhu, T.; Patel, K.; Zhang, Y.Y.; Truong, L.; Hevener, K.E.; Gatuz, J.L.; Subramanya, G.; Jeong, H.Y.; Uprichard, S.L.; Johnson, M.E. High-Throughput Screening (HTS) and hit validation to identify small molecule inhibitors with activity against NS3/4A proteases from multiple hepatitis C virus genotypes. PLoS One, 2013, 8(10)e75144
[http://dx.doi.org/10.1371/journal.pone.0075144] [PMID: 24130685]
[73]
Micewicz, E.D.; Khachatoorian, R.; French, S.W.; Ruchala, P. Identification of novel small-molecule inhibitors of Zika virus infection. Bioorg. Med. Chem. Lett., 2018, 28(3), 452-458.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.019] [PMID: 29258771]
[74]
Zeller, H.G.; Schuffenecker, I. West Nile virus: an overview of its spread in Europe and the Mediterranean basin in contrast to its spread in the Americas. Eur. J. Clin. Microbiol. Infect. Dis., 2004, 23(3), 147-156.
[http://dx.doi.org/10.1007/s10096-003-1085-1] [PMID: 14986160]
[75]
Tyler, K.L.; Pape, J.; Goody, R.J.; Corkill, M.; Kleinschmidt-DeMasters, B.K. CSF findings in 250 patients with serologically confirmed West Nile virus meningitis and encephalitis. Neurology, 2006, 66(3), 361-365.
[http://dx.doi.org/10.1212/01.wnl.0000195890.70898.1f] [PMID: 16382032]
[76]
Gandelman-Marton, R.; Kimiagar, I.; Itzhaki, A.; Klein, C.; Theitler, J.; Rabey, J.M. Electroencephalography findings in adult patients with West Nile virus-associated meningitis and meningoencephalitis. Clin. Infect. Dis., 2003, 37(11), 1573-1578.
[http://dx.doi.org/10.1086/379516] [PMID: 14614682]
[77]
Chambers, T.J.; Weir, R.C.; Grakoui, A.; McCourt, D.W.; Bazan, J.F.; Fletterick, R.J.; Rice, C.M. Evidence that the N-terminal domain of nonstructural protein NS3 from yellow fever virus is a serine protease responsible for site-specific cleavages in the viral polyprotein. Proc. Natl. Acad. Sci. USA, 1990, 87(22), 8898-8902.
[http://dx.doi.org/10.1073/pnas.87.22.8898] [PMID: 2147282]
[78]
Chambers, T.J.; Hahn, C.S.; Galler, R.; Rice, C.M. Flavivirus genome organization, expression, and replication. Annu. Rev. Microbiol., 1990, 44(1), 649-688.
[http://dx.doi.org/10.1146/annurev.mi.44.100190.003245] [PMID: 2174669]
[79]
Nall, T.A.; Chappell, K.J.; Stoermer, M.J.; Fang, N.X.; Tyndall, J.D.; Young, P.R.; Fairlie, D.P. Enzymatic characterization and homology model of a catalytically active recombinant West Nile virus NS3 protease. J. Biol. Chem., 2004, 279(47), 48535-48542.
[http://dx.doi.org/10.1074/jbc.M406810200] [PMID: 15322074]
[80]
Johnston, P.A.; Phillips, J.; Shun, T.Y.; Shinde, S.; Lazo, J.S.; Huryn, D.M.; Myers, M.C.; Ratnikov, B.I.; Smith, J.W.; Su, Y.; Dahl, R.; Cosford, N.D.; Shiryaev, S.A.; Strongin, A.Y. HTS identifies novel and specific uncompetitive inhibitors of the two-component NS2B-NS3 proteinase of West Nile virus. Assay Drug Dev. Technol., 2007, 5(6), 737-750.
[http://dx.doi.org/10.1089/adt.2007.101] [PMID: 18181690]
[81]
Sidique, S.; Shiryaev, S.A.; Ratnikov, B.I.; Herath, A.; Su, Y.; Strongin, A.Y.; Cosford, N.D. Structure-activity relationship and improved hydrolytic stability of pyrazole derivatives that are allosteric inhibitors of West Nile Virus NS2B-NS3 proteinase. Bioorg. Med. Chem. Lett., 2009, 19(19), 5773-5777.
[http://dx.doi.org/10.1016/j.bmcl.2009.07.150] [PMID: 19703770]
[82]
Gu, B.; Ouzunov, S.; Wang, L.; Mason, P.; Bourne, N.; Cuconati, A.; Block, T.M. Discovery of small molecule inhibitors of West Nile virus using a high-throughput sub-genomic replicon screen. Antiviral Res., 2006, 70(2), 39-50.
[http://dx.doi.org/10.1016/j.antiviral.2006.01.005] [PMID: 16724398]
[83]
Noueiry, A.O.; Olivo, P.D.; Slomczynska, U.; Zhou, Y.; Buscher, B.; Geiss, B.; Engle, M.; Roth, R.M.; Chung, K.M.; Samuel, M.; Diamond, M.S. Identification of novel small-molecule inhibitors of West Nile virus infection. J. Virol., 2007, 81(21), 11992-12004.
[http://dx.doi.org/10.1128/JVI.01358-07] [PMID: 17715228]
[84]
Echeverría, F.V.; Hermoso, M.A.; Rifo, R.S. RNA helicase DDX3: at the crossroad of viral replication and antiviral immunity. Rev. Med. Virol., 2015, 25(5), 286-299.
[http://dx.doi.org/10.1002/rmv.1845] [PMID: 26174373]
[85]
Tintori, C.; Brai, A.; Fallacara, A.L.; Fazi, R.; Schenone, S.; Botta, M. Protein-protein interactions and human cellular cofactors as new targets for HIV therapy. Curr. Opin. Pharmacol., 2014, 18, 1-8.
[http://dx.doi.org/10.1016/j.coph.2014.06.005] [PMID: 24993074]
[86]
Radi, M.; Falchi, F.; Garbelli, A.; Samuele, A.; Bernardo, V.; Paolucci, S.; Baldanti, F.; Schenone, S.; Manetti, F.; Maga, G.; Botta, M. Discovery of the first small molecule inhibitor of human DDX3 specifically designed to target the RNA binding site: towards the next generation HIV-1 inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(5), 2094-2098.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.135] [PMID: 22300661]
[87]
Brai, A.; Fazi, R.; Tintori, C.; Zamperini, C.; Bugli, F.; Sanguinetti, M.; Stigliano, E.; Esté, J.; Badia, R.; Franco, S.; Martinez, M.A.; Martinez, J.P.; Meyerhans, A.; Saladini, F.; Zazzi, M.; Garbelli, A.; Maga, G.; Botta, M. Human DDX3 protein is a valuable target to develop broad spectrum antiviral agents. Proc. Natl. Acad. Sci. USA, 2016, 113(19), 5388-5393.
[http://dx.doi.org/10.1073/pnas.1522987113] [PMID: 27118832]
[88]
Brai, A.; Martelli, F.; Riva, V.; Garbelli, A.; Fazi, R.; Zamperini, C.; Pollutri, A.; Falsitta, L.; Ronzini, S.; Maccari, L.; Maga, G.; Giannecchini, S.; Botta, M. DDX3X Helicase inhibitors as a new strategy to fight the West Nile Virus infection. J. Med. Chem., 2019, 62(5), 2333-2347.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01403] [PMID: 30721061]
[89]
Fazi, R.; Tintori, C.; Brai, A.; Botta, L.; Selvaraj, M.; Garbelli, A.; Maga, G.; Botta, M. Homology model-based virtual screening for the identification of human helicase DDX3 inhibitors. J. Chem. Inf. Model., 2015, 55(11), 2443-2454.
[http://dx.doi.org/10.1021/acs.jcim.5b00419] [PMID: 26544088]
[90]
Pager, C.T.; Dutch, R.E. Cathepsin L is involved in proteolytic processing of the Hendra virus fusion protein. J. Virol., 2005, 79(20), 12714-12720.
[http://dx.doi.org/10.1128/JVI.79.20.12714-12720.2005] [PMID: 16188974]
[91]
Pager, C.T.; Craft, W.W., Jr; Patch, J.; Dutch, R.E. A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L. Virology, 2006, 346(2), 251-257.
[http://dx.doi.org/10.1016/j.virol.2006.01.007] [PMID: 16460775]
[92]
Simmons, G.; Gosalia, D.N.; Rennekamp, A.J.; Reeves, J.D.; Diamond, S.L.; Bates, P. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc. Natl. Acad. Sci. USA, 2005, 102(33), 11876-11881.
[http://dx.doi.org/10.1073/pnas.0505577102] [PMID: 16081529]
[93]
Kaletsky, R.L.; Simmons, G.; Bates, P. Proteolysis of the Ebola virus glycoproteins enhances virus binding and infectivity. J. Virol., 2007, 81(24), 13378-13384.
[http://dx.doi.org/10.1128/JVI.01170-07] [PMID: 17928356]
[94]
Qian, Z.; Dominguez, S.R.; Holmes, K.V. Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation. PLoS One, 2013, 8(10)e76469
[http://dx.doi.org/10.1371/journal.pone.0076469] [PMID: 24098509]
[95]
Elshabrawy, H.A.; Fan, J.; Haddad, C.S.; Ratia, K.; Broder, C.C.; Caffrey, M.; Prabhakar, B.S. Identification of a broad-spectrum antiviral small molecule against severe acute respiratory syndrome coronavirus and Ebola, Hendra, and Nipah viruses by using a novel high-throughput screening assay. J. Virol., 2014, 88(8), 4353-4365.
[http://dx.doi.org/10.1128/JVI.03050-13] [PMID: 24501399]
[96]
Basu, A.; Li, B.; Mills, D.M.; Panchal, R.G.; Cardinale, S.C.; Butler, M.M.; Peet, N.P.; Majgier-Baranowska, H.; Williams, J.D.; Patel, I.; Moir, D.T.; Bavari, S.; Ray, R.; Farzan, M.R.; Rong, L.; Bowlin, T.L. Identification of a small-molecule entry inhibitor for filoviruses. J. Virol., 2011, 85(7), 3106-3119.
[http://dx.doi.org/10.1128/JVI.01456-10] [PMID: 21270170]
[97]
Basu, A.; Antanasijevic, A.; Wang, M.; Li, B.; Mills, D.M.; Ames, J.A.; Nash, P.J.; Williams, J.D.; Peet, N.P.; Moir, D.T.; Prichard, M.N.; Keith, K.A.; Barnard, D.L.; Caffrey, M.; Rong, L.; Bowlin, T.L. New small molecule entry inhibitors targeting hemagglutinin-mediated influenza a virus fusion. J. Virol., 2014, 88(3), 1447-1460.
[http://dx.doi.org/10.1128/JVI.01225-13] [PMID: 24198411]
[98]
Basu, A.; Mills, D.M.; Mitchell, D.; Ndungo, E.; Williams, J.D.; Herbert, A.S.; Dye, J.M.; Moir, D.T.; Chandran, K.; Patterson, J.L.; Rong, L.; Bowlin, T.L. Novel small molecule entry inhibitors of Ebola virus. J. Infect. Dis., 2015, 212(Suppl. 2), S425-S434.
[http://dx.doi.org/10.1093/infdis/jiv223] [PMID: 26206510]
[99]
Gehring, G.; Rohrmann, K.; Atenchong, N.; Mittler, E.; Becker, S.; Dahlmann, F.; Pöhlmann, S.; Vondran, F.W.; David, S.; Manns, M.P.; Ciesek, S.; von Hahn, T. The clinically approved drugs amiodarone, dronedarone and verapamil inhibit filovirus cell entry. J. Antimicrob. Chemother., 2014, 69(8), 2123-2131.
[http://dx.doi.org/10.1093/jac/dku091] [PMID: 24710028]
[100]
Sokolova, A.S.; Baranova, D.V.; Yarovaya, O.I.; Baev, D.S.; Polezhaeva, O.A.; Zybkina, A.V.; Shcherbakov, D.N.; Tolstikova, T.G.; Salakhutdinov, N.F. Synthesis of (1S)-(+)-camphor-10-sulfonic acid derivatives and investigations in vitro and in silico of their antiviral activity as the inhibitors of fi lovirus infections. Russ. Chem. Bull., 2019, 68(5), 1041-1046.
[http://dx.doi.org/10.1007/s11172-019-2517-0]
[101]
Dong, H.; Chang, D.C.; Xie, X.; Toh, Y.X.; Chung, K.Y.; Zou, G.; Lescar, J.; Lim, S.P.; Shi, P.Y. Biochemical and genetic characterization of dengue virus methyltransferase. Virology, 2010, 405(2), 568-578.
[http://dx.doi.org/10.1016/j.virol.2010.06.039] [PMID: 20655081]
[102]
Züst, R.; Cervantes-Barragan, L.; Habjan, M.; Maier, R.; Neuman, B.W.; Ziebuhr, J.; Szretter, K.J.; Baker, S.C.; Barchet, W.; Diamond, M.S.; Siddell, S.G.; Ludewig, B.; Thiel, V. Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat. Immunol., 2011, 12(2), 137-143.
[http://dx.doi.org/10.1038/ni.1979] [PMID: 21217758]
[103]
Züst, R.; Dong, H.; Li, X.F.; Chang, D.C.; Zhang, B.; Balakrishnan, T.; Toh, Y.X.; Jiang, T.; Li, S.H.; Deng, Y.Q.; Ellis, B.R.; Ellis, E.M.; Poidinger, M.; Zolezzi, F.; Qin, C.F.; Shi, P.Y.; Fink, K. Rational design of a live attenuated dengue vaccine: 2′-o-methyltransferase mutants are highly attenuated and immunogenic in mice and macaques. PLoS Pathog., 2013, 9(8)e1003521
[http://dx.doi.org/10.1371/journal.ppat.1003521] [PMID: 23935499]
[104]
Li, S.H.; Dong, H.; Li, X.F.; Xie, X.; Zhao, H.; Deng, Y.Q.; Wang, X.Y.; Ye, Q.; Zhu, S.Y.; Wang, H.J.; Zhang, B.; Leng, Q.B.; Zuest, R.; Qin, E.D.; Qin, C.F.; Shi, P.Y. Rational design of a flavivirus vaccine by abolishing viral RNA 2′-O methylation. J. Virol., 2013, 87(10), 5812-5819.
[http://dx.doi.org/10.1128/JVI.02806-12] [PMID: 23487465]
[105]
Coutard, B.; Decroly, E.; Li, C.; Sharff, A.; Lescar, J.; Bricogne, G.; Barral, K. Assessment of Dengue virus helicase and methyltransferase as targets for fragment-based drug discovery. Antiviral Res., 2014, 106, 61-70.
[http://dx.doi.org/10.1016/j.antiviral.2014.03.013] [PMID: 24704437]
[106]
Selvam, P.; Murugesh, N.; Chandramohan, M.; Sidwell, R.W.; Wandersee, M.K.; Smee, D.F. Anti-influenza virus activities of 4-[(1,2-dihydro-2-oxo-3H-indol-3-ylidene)amino]-N-(4,6-dimethyl-2-pyrimidin-2-yl)benzenesulphonamide and its derivatives. Antivir. Chem. Chemother., 2006, 17(5), 269-274.
[http://dx.doi.org/10.1177/095632020601700504] [PMID: 17176631]
[107]
Selvam, P.; Vijayalakshimi, P.; Smee, D.F.; Gowen, B.B.; Julander, J.G.; Day, C.W.; Barnard, D.L. Novel 3-sulphonamido-quinazolin-4(3H)-one derivatives: microwave-assisted synthesis and evaluation of antiviral activities against respiratory and biodefense viruses. Antivir. Chem. Chemother., 2007, 18(5), 301-305.
[http://dx.doi.org/10.1177/095632020701800506] [PMID: 18046963]
[108]
Patkar, C.G.; Larsen, M.; Owston, M.; Smith, J.L.; Kuhn, R.J. Identification of inhibitors of yellow fever virus replication using a replicon-based high-throughput assay. Antimicrob. Agents Chemother., 2009, 53(10), 4103-4114.
[http://dx.doi.org/10.1128/AAC.00074-09] [PMID: 19651907]
[109]
Staveness, D.; Abdelnabi, R.; Near, K.E.; Nakagawa, Y.; Neyts, J.; Delang, L.; Leyssen, P.; Wender, P.A. Inhibition of Chikungunya virus-induced cell death by salicylate-derived bryostatin analogues provides additional evidence for a PKC-independent pathway. J. Nat. Prod., 2016, 79(4), 680-684.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01017] [PMID: 26900711]
[110]
Baillargeon, J.; Holmes, H.M.; Lin, Y.L.; Raji, M.A.; Sharma, G.; Kuo, Y.F. Concurrent use of warfarin and antibiotics and the risk of bleeding in older adults. Am. J. Med., 2012, 125(2), 183-189.
[http://dx.doi.org/10.1016/j.amjmed.2011.08.014] [PMID: 22269622]
[111]
Zinner, S.H.; Mayer, K.H. Sulfonamides and trimethoprim. Mandle, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 2015, 1, 410-418.
[112]
Homes, H.N. The effect of sulfa drugs on the excretion of vitamin C; South Medical and Surgery: Chariotte, 1943.
[113]
Visovsky, C.G.; Zambroski, C.H.; Hosier, S.M. Drug Categories. In: Introduction to clinical pharmacology, 9th ed; Mosby: Maryland, 2018.
[114]
Pham, A.Q.T.; Xu, L.H.R.; Moe, O.W. Drug-induced metabolic acidosis. F1000 Res., 2015, 4.
[http://dx.doi.org/10.12688/f1000research.7006.1] [PMID: 26918138]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 24
ISSUE: 9
Year: 2020
Published on: 13 July, 2020
Page: [1018 - 1041]
Pages: 24
DOI: 10.2174/1385272824999200515094100
Price: $58

Article Metrics

PDF: 19
HTML: 2
EPUB: 1
PRC: 1