Natural Lipids as Structural Components of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Topical Delivery

Author(s): Mirena Dobreva*, Stefan Stefanov, Velichka Andonova

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 36 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Background: Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) are useful drug delivery systems for dermal application. Thanks to their biocompatible and biodegradable profile, these carriers offer many advantages such as enhanced bioavailability, low toxicity, viable drug targeting and controlled release. SLN and NLC are composed of well-tolerated lipids, including natural fats and oils that are successfully used in the pharmaceutical and cosmetic dermal formulation.

Objective: This article presents an overview of the benefits of selecting natural fats and oils as structural components of SLN and NLC for topical application.

Methods: This review is based on data published over the past 20 years about the development of stable and nontoxic lipid nanoparticles with natural lipids. We shed light on the role of natural fats in skin restoration, as well as on the contributed penetration and occlusive properties of SLN and NLC.

Results: The deliberate selection of excipients (type and lipid ratio) influences the quality of the final dermal formulation. Natural lipids show good compatibility with different active molecules and are able to create stable lipid matrices that facilitate the biopharmaceutical properties of lipid nanoparticles. Patents involving natural fats and oils in SLN and NLC composition are listed, yet it is important to note that the approved marketed formulations are mainly cosmetic, not pharmaceutical, products.

Conclusion: Natural lipids can enhance topical drug delivery by adding their ability of improving skin penetration and hydration to the permeation and occlusion properties of SLN and NLC.

Keywords: Dermal application, fats, recrystallization behavior, skin penetration, skin hydration, vegetable oils, waxes.

[1]
Molecules 2017; 22(9): 1536.
[http://dx.doi.org/10.3390/MOLECULES22091536 ] [PMID: 28895890]
[2]
PETERSSON K, NIELSEN HM. IN VITRO PENETRATION PROPERTIES OF SOLID LIPID NANOPARTICLES IN INTACT AND BARRIER-IMPAIRED SKIN. Eur J Pharm Biopharm 2011; 79(1): 68-75.
[http://dx.doi.org/10.1016/J.EJPB.2011.05.012 ] [PMID: 21664463]
[3]
NANOPARTICLES AND MICROPARTICLES FOR SKIN DRUG DELIVERY. Adv Drug Deliv Rev 2011; 63(6): 470-91.
[http://dx.doi.org/10.1016/J.ADDR.2011.01.012 ] [PMID: 21315122]
[4]
CONWAY BR. SOLID LIPID NANOPARTICLES: A POTENTIAL APPROACH FOR DERMAL DRUG DELIVERY. Am J Pharmacol Sci 2014; 2(5A): 1-7.
[http://dx.doi.org/10.12691/AJPS-2-5A-1]
[5]
[6]
Singhvi G, Patil SH, Girdhar V. DUBEY SK. NANOCARRIERS FOR TOPICAL DRUG DELIVERY: APPROACHES AND ADVANCEMENTS. Nanosci Nanotechnol Asia 2019; 9(3): 329-36.
[http://dx.doi.org/10.2174/2210681208666180320122534]
[7]
Desai P. PATLOLLA RR, SINGH M. INTERACTION OF NANOPARTICLES AND CELL-PENETRATING PEPTIDES WITH SKIN FOR TRANSDERMAL DRUG DELIVERY. Mol Membr Biol 2010; 27(7): 247-59.
[http://dx.doi.org/10.3109/09687688.2010.522203 ] [PMID: 21028936]
[8]
Pardeshi C, Rajput P, Belgamwar V. SOLID LIPID BASED NANOCARRIERS: AN OVERVIEW. Acta Pharm 2012; 62(4): 433-72.
[http://dx.doi.org/10.2478/V10007-012-0040-Z ] [PMID: 23333884]
[9]
Waghule T, Rapalli VK, Singhvi G. VORICONAZOLE LOADED NANOSTRUCTURED LIPID CARRIERS BASED TOPICAL DELIVERY SYSTEM: QBD BASED DESIGNING, CHARACTERIZATION, IN-VITRO AND EX-VIVO EVALUATION. J Drug Deliv Sci Technol 2019; 52: 303-15.
[http://dx.doi.org/10.1016/J.JDDST.2019.04.026]
[10]
MÄDER K, GOHLA S. SOLID LIPID NANOPARTICLES (SLN) FOR CONTROLLED DRUG DELIVERY - A REVIEW OF THE STATE OF THE ART. Eur J Pharm Biopharm 2000; 50(1): 161-77.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4 ] [PMID: 10840199]
[11]
CHOU WL, WANG PW, YANG SCH, FANG JY. THE USE OF THERAPEUTIC NANOPARTICULATE SYSTEMS FOR TREATING ATOPIC DERMATITIS. Curr Nanosci 2018; 14(1): 3-16.
[12]
Abbasalipourkabir R, Salehzadeh A, Abdullah R. SOLID LIPID NANOPARTICLES AS NEW DRUG DELIVERY SYSTEM. Int J Biotechnol Mol Biol Res 2011; 2(13): 252-61.
[http://dx.doi.org/10.5897/IJBMBRX11.004]
[13]
Teeranachaideekul V, Boonme P. SOUTO EB, MÜLLER RH, JUNYAPRASERT VB. INFLUENCE OF OIL CONTENT ON PHYSICOCHEMICAL PROPERTIES AND SKIN DISTRIBUTION OF NILE RED-LOADED NLC. J Control Release 2008; 128(2): 134-41.
[http://dx.doi.org/10.1016/J.JCONREL.2008.02.011 ] [PMID: 18423768]
[14]
Singh S, Singh S, Kaur D, Katual M, Kumar R. A DESCRIPTIVE REVIEW ON VARIOUS LIPIDS AND TECHNIQUES USED IN FORMULATION OF SOLID LIPID NANOPARTICLES. Int J Drug Deliv 2016; 8: 66-76.
[15]
Shah R, Eldridge D, Palombo E, Harding I. 2015.
[16]
Naseri N, Valizadeh H, Zakeri-Milani P. SOLID LIPID NANOPARTICLES AND NANOSTRUCTURED LIPID CARRIERS: STRUCTURE, PREPARATION AND APPLICATION. Adv Pharm Bull 2015; 5(3): 305-13.
[http://dx.doi.org/10.15171/APB.2015.043 ] [PMID: 26504751]
[17]
Pan Y. TIKEKAR RV, NITIN N. DISTRIBUTION OF A MODEL BIOACTIVE WITHIN SOLID LIPID NANOPARTICLES AND NANOSTRUCTURED LIPID CARRIERS INFLUENCES ITS LOADING EFFICIENCY AND OXIDATIVE STABILITY. Int J Pharm 2016; 511(1): 322-30.
[http://dx.doi.org/10.1016/J.IJPHARM.2016.07.019 ] [PMID: 27418566]
[18]
Andonova V, Peneva P. CHARACTERIZATION METHODS FOR SOLID LIPID NANOPARTICLES (SLN) AND NANOSTRUCTURED LIPID CARRIERS (NLC). Curr Pharm Des 2017; 23(43): 6630-42.
[http://dx.doi.org/10.2174/1381612823666171115105721 ] [PMID: 29141534]
[19]
Doktorovova S, Shegokar R. SOUTO EB ROLE OF EXCIPIENTS IN FORMULATION DEVELOPMENT AND BIOCOMPATIBILITY OF LIPID NANOPARTICLES (SLNS/NLCS). IN: MICRO AND NANO TECHNOLOGIES NANOSTRUCTURES FOR NOVEL THERAPY ELSEVIER 2017; pp. 811-43.
[20]
RODRÌGUEZ MLG. LIPIDS IN PHARMACEUTICAL AND COSMETIC PREPARATIONS. Grasas Aceites 2000; 51(1-2): 74-96.
[21]
Rajabi M. MOUSA SA. LIPID NANOPARTICLES AND THEIR APPLICATION IN NANOMEDICINE. Curr Pharm Biotechnol 2016; 17(8): 662-72.
[http://dx.doi.org/10.2174/1389201017666160415155457 ] [PMID: 27087491]
[22]
CRYSTALLIZATION BEHAVIOUR OF FATS AND LIPIDS - A REVIEW. Chem Eng Sci 2000; 56(7): 2255-65.
[23]
Manjunath K. REDDY JS, VENKATESWARLU V. SOLID LIPID NANOPARTICLES AS DRUG DELIVERY SYSTEMS. Methods Find Exp Clin Pharmacol 2005; 27(2): 127-44.
[http://dx.doi.org/10.1358/MF.2005.27.2.876286 ] [PMID: 15834465]
[24]
Joshi M, Patravale V. NANOSTRUCTURED LIPID CARRIER (NLC) BASED GEL OF CELECOXIB. Int J Pharm 2008; 346(1-2): 124-32.
[http://dx.doi.org/10.1016/J.IJPHARM.2007.05.060 ] [PMID: 17651933]
[25]
FANG CL, LIU CH, SU YH. LIPID NANOPARTICLES AS VEHICLES FOR TOPICAL PSORALEN DELIVERY: SOLID LIPID NANOPARTICLES (SLN) VERSUS NANOSTRUCTURED LIPID CARRIERS (NLC). Eur J Pharm Biopharm 2008; 70(2): 633-40.
[http://dx.doi.org/10.1016/J.EJPB.2008.05.008 ] [PMID: 18577447]
[26]
IN VITRO ANTI-INFLAMMATORY AND SKIN PROTECTIVE PROPERTIES OF VIRGIN COCONUT OIL. J Tradit Complement Med 2018; 9(1): 5-14.
[http://dx.doi.org/10.1016/J.JTCME.2017.06.012 ] [PMID: 30671361]
[27]
SCHICKE BC, PAEPENMÜLLER T, MÜLLER-GOYMANN CC. SOLID LIPID NANODISPERSIONS CONTAINING MIXED LIPID CORE AND A POLAR HETEROLIPID: CHARACTERIZATION. Eur J Pharm Biopharm 2007; 67(1): 48-57.
[http://dx.doi.org/10.1016/J.EJPB.2006.12.004 ] [PMID: 17276663]
[28]
SCHICKE BC, MÜLLER-GOYMANN CC. FURTHER CHARACTERIZATION OF THEOBROMA OIL-BEESWAX ADMIXTURES AS LIPID MATRICES FOR IMPROVED DRUG DELIVERY SYSTEMS. Eur J Pharm Biopharm 2006; 64(3): 294-306.
[http://dx.doi.org/10.1016/J.EJPB.2006.06.010 ] [PMID: 16949805]
[29]
RADTKE M, WISSING SA. SOLID LIPID NANOPARTICLES (SLN) AND NANOSTRUCTURED LIPID CARRIERS (NLC) IN COSMETIC AND DERMATOLOGICAL PREPARATIONS. Adv Drug Deliv Rev 2002; 54(Suppl. 1): S131-55.
[http://dx.doi.org/10.1016/S0169-409X(02)00118-7 ] [PMID: 12460720]
[30]
PETERSEN RD, HOMMOSS A, PARDEIKE J. NANOSTRUCTURED LIPID CARRIERS (NLC) IN COSMETIC DERMAL PRODUCTS. Adv Drug Deliv Rev 2007; 59(6): 522-30.
[http://dx.doi.org/10.1016/J.ADDR.2007.04.012 ] [PMID: 17602783]
[31]
PATRAVALE VB. DEVELOPMENT OF SLNS FROM NATURAL LIPIDS: APPLICATION TO TOPICAL DELIVERY OF TRETINOIN. Int J Pharm 2008; 363(1-2): 132-8.
[http://dx.doi.org/10.1016/J.IJPHARM.2008.06.028 ] [PMID: 18657601]
[32]
Saporito F, Sandri G. ESSENTIAL OIL-LOADED LIPID NANOPARTICLES FOR WOUND HEALING. Int J Nanomedicine 2017; 13: 175-86.
[http://dx.doi.org/10.2147/IJN.S152529 ] [PMID: 29343956]
[33]
Schäfer-Korting M, Mehnert W, Korting H-C. LIPID NANOPARTICLES FOR IMPROVED TOPICAL APPLICATION OF DRUGS FOR SKIN DISEASES. Adv Drug Deliv Rev 2007; 59(6): 427-43.
[http://dx.doi.org/10.1016/J.ADDR.2007.04.006 ] [PMID: 17544165]
[34]
VALDÉS K, MORALES J, OYARZUN-AMPUERO F. LIPID NANOPARTICLES FOR THE TOPICAL DELIVERY OF RETINOIDS AND DERIVATIVES. Nanomedicine (Lond) 2015; 10(2): 253-69.
[http://dx.doi.org/10.2217/NNM.14.159 ] [PMID: 25600970]
[35]
Chantaburanan T, Teeranachaideekul V, Chantasart D, Jintapattanakit A. JUNYAPRASERT VB. EFFECT OF BINARY SOLID LIPID MATRIX OF WAX AND TRIGLYCERIDE ON LIPID CRYSTALLINITY, DRUG-LIPID INTERACTION AND DRUG RELEASE OF IBUPROFEN-LOADED SOLID LIPID NANOPARTICLES (SLN) FOR DERMAL DELIVERY. J Colloid Interface Sci 2017; 504: 247-56.
[http://dx.doi.org/10.1016/J.JCIS.2017.05.038 ] [PMID: 28551519]
[36]
López-García R, Ganem-Rondero A. SOLID LIPID NANOPARTICLES (SLN) AND NANOSTRUCTURED LIPID CARRIERS (NLC): OCCLUSIVE EFFECT AND PENETRATION ENHANCEMENT ABILITY. J COSMETICS DERMATOLOGICAL SCIENCES APPLICATIONS 2015; 5: 62-72.
[http://dx.doi.org/10.4236/JCDSA.2015.52008]
[37]
González-Mira E, Nikolić S. GARCÍA ML, EGEA MA, SOUTO EB, CALPENA AC. POTENTIAL USE OF NANOSTRUCTURED LIPID CARRIERS FOR TOPICAL DELIVERY OF FLURBIPROFEN. J Pharm Sci 2011; 100(1): 242-51.
[http://dx.doi.org/10.1002/JPS.22271 ] [PMID: 20575052]
[38]
SIMÕES S, ARAÚJO MM, CARVALHO T, ARRUDA C, MARCATO PD. DEVELOPMENT OF NANOPARTICLES FROM NATURAL LIPIDS FOR TOPICAL DELIVERY OF THYMOL: INVESTIGATION OF ITS ANTI-INFLAMMATORY PROPERTIES. Colloids Surf B Biointerfaces 2018; 164: 281-90.
[http://dx.doi.org/10.1016/J.COLSURFB.2018.01.053 ] [PMID: 29413607]
[39]
SINGH S. INVESTIGATION OF EFFECTS OF TERPENE SKIN PENETRATION ENHANCERS ON STABILITY AND BIOLOGICAL ACTIVITY OF LYSOZYME. AAPS PharmSciTech 2012; 13(4): 1084-90.
[http://dx.doi.org/10.1208/S12249-012-9840-1 ] [PMID: 22930344]
[40]
Krasodomska O, Paolicelli P, Cesa S. CASADEI MA, JUNGNICKEL C. PROTECTION AND VIABILITY OF FRUIT SEEDS OILS BY NANOSTRUCTURED LIPID CARRIER (NLC) NANOSUSPENSIONS. J Colloid Interface Sci 2016; 479: 25-33.
[http://dx.doi.org/10.1016/J.JCIS.2016.06.041 ] [PMID: 27348480]
[41]
Lacatusu I, Badea N, Niculae G, Bordei N, Stan R, Meghea A. LIPID NANOCARRIERS BASED ON NATURAL COMPOUNDS: AN EVOLVING ROLE IN PLANT EXTRACT DELIVERY. Eur J Lipid Sci Technol 2014; 116: 1708-17.
[http://dx.doi.org/10.1002/EJLT.201300488]
[42]
A NEW CONCEPT FOR THE TREATMENT OF ATOPIC DERMATITIS: SILVER-NANOLIPID COMPLEX (SNLC). Int J Pharm 2014; 462(1-2): 44-51.
[http://dx.doi.org/10.1016/J.IJPHARM.2013.12.044 ] [PMID: 24378329]
[43]
Loo CH, Basri M, Ismail R. EFFECT OF COMPOSITIONS IN NANOSTRUCTURED LIPID CARRIERS (NLC) ON SKIN HYDRATION AND OCCLUSION. Int J Nanomedicine 2013; 8: 13-22.
[44]
Wissing S, Müller R. THE INFLUENCE OF THE CRYSTALLINITY OF LIPID NANOPARTICLES ON THEIR OCCLUSIVE PROPERTIES. Int J Pharm 2002; 242(1-2): 377-9.
[http://dx.doi.org/10.1016/S0378-5173(02)00220-X ] [PMID: 12176283]
[45]
SILVA AC, SOUSA LOBO JM, AMARAL MH. DESIGN, CHARACTERIZATION, AND CLINICAL EVALUATION OF ARGAN OIL NANOSTRUCTURED LIPID CARRIERS TO IMPROVE SKIN HYDRATION. Int J Nanomedicine 2014; 9: 3855-64.
[46]
Aziz A, Sarmidi M, Aziz R, Mohamed Noor N. 2013.
[47]
Siepmann J, Faham A. LIPIDS AND POLYMERS IN PHARMACEUTICAL TECHNOLOGY: LIFELONG COMPANIONS. Int J Pharm 2019; 558: 128-42.
[http://dx.doi.org/10.1016/J.IJPHARM.2018.12.080 ] [PMID: 30639218]
[48]
Yang Y. CORONA A III, SCHUBERT B, REEDER R, HENSON MA. THE EFFECT OF OIL TYPE ON THE AGGREGATION STABILITY OF NANOSTRUCTURED LIPID CARRIERS. J Colloid Interface Sci 2014; 418: 261-72.
[http://dx.doi.org/10.1016/J.JCIS.2013.12.024 ] [PMID: 24461844]
[49]
RAMPAZO CAD, COSTA AF, RODRIGUES T, WATASHI CM, DURÁN N. NATURAL LIPIDS IN NANOSTRUCTURED LIPID CARRIERS AND ITS CYTOTOXICITY. J Phys Conf Ser 2017; 838(01): 2027.
[http://dx.doi.org/10.1088/1742-6596/838/1/012027]
[50]
Saedi A, Rostamizadeh K, Parsa M, Dalali N, Ahmadi N. PREPARATION AND CHARACTERIZATION OF NANOSTRUCTURED LIPID CARRIERS AS DRUG DELIVERY SYSTEM: INFLUENCE OF LIQUID LIPID TYPES ON LOADING AND CYTOTOXICITY. Chem Phys Lipids 2018; 216: 65-72.
[http://dx.doi.org/10.1016/J.CHEMPHYSLIP.2018.09.007 ] [PMID: 30219661]
[51]
Lasoń E, Sikora E, Ogonowski J. FORMULATION AND CHARACTERIZATION: OF NANOSTRUCTURED LIPID CARRIERS DEMONSTRATING THE STABILIZING EFFECT AGAINST PEROXIDATION OF STRAWBERRY AND BLACKCURRANT SEED OILS. Agro Food Ind Hi-Tech 2015; 26(6): 44-8.
[52]
Srivastava Y. SEMWAL AD, SAJEEVKUMAR VA, SHARMA GK. MELTING, CRYSTALLIZATION AND STORAGE STABILITY OF VIRGIN COCONUT OIL AND ITS BLENDS BY DIFFERENTIAL SCANNING CALORIMETRY (DSC) AND FOURIER TRANSFORM INFRARED SPECTROSCOPY (FTIR). J Food Sci Technol 2017; 54(1): 45-54.
[http://dx.doi.org/10.1007/S13197-016-2427-1 ] [PMID: 28242902]
[53]
Faizatun F, Anwar E. MERDIYAH LI. IN VIVO ANALYSIS OF THE EFFECT OF NANOSTRUCTURED LIPID CARRIER-BASED GEL OF MULBERRY ROOT EXTRACT AGAINST ULTRAVIOLET LIGHT. INT J APP PHARM 2018; 10(1): 257-9.
[http://dx.doi.org/10.22159/IJAP.2018.V10S1.57]
[54]
MUSA U, ZINAT A, ARIS MI, ALIYU AM, SALIHU Y. EXTRACTION AND CHARACTERIZATION OF NIGERIA SHEA BUTTER OIL. JOSTMED 2012; 8(2): 66-73.
[55]
NATURAL LIPID NANOPARTICLES CONTAINING NIMESULIDE: SYNTHESIS, CHARACTERIZATION AND IN VIVO ANTIEDEMATOGENIC AND ANTINOCICEPTIVE ACTIVITIES. J Biomed Nanotechnol 2012; 8(2): 309-15.
[http://dx.doi.org/10.1166/JBN.2012.1377 ] [PMID: 22515082]
[56]
Hajj Ali H, Michaux F. BOUELET NTSAMA IS, DURAND P, JASNIEWSKI J, LINDER M. SHEA BUTTER SOLID NANOPARTICLES FOR CURCUMIN ENCAPSULATION: INFLUENCE OF NANOPARTICLES SIZE ON DRUG LOADING. Eur J Lipid Sci Technol 2016; 118: 1168-78.
[http://dx.doi.org/10.1002/EJLT.201500348]
[57]
AMRITKAR AS, CHAUDHARI HS, JAIN DK. MODULATION OF DRUG RELEASE FROM NANOCARRIERS LOADED WITH A POORLY WATER SOLUBLE DRUG (FLURBIPROFEN) COMPRISING NATURAL WAXES. Pharmazie 2012; 67(8): 701-5.
[58]
MÜLLER-GOYMANN CC. EFFECT OF BEESWAX MODIFICATION ON THE LIPID MATRIX AND SOLID LIPID NANOPARTICLE CRYSTALLINITY. Colloids Surf A Physicochem Eng Asp 2008; 315(1-3): 189-95.
[http://dx.doi.org/10.1016/J.COLSURFA.2007.07.035]
[59]
NATURAL LIPIDS-BASED NLC CONTAINING LIDOCAINE: FROM PRE-FORMULATION TO IN VIVO STUDIES. Eur J Pharm Sci 2017; 106: 102-12.
[http://dx.doi.org/10.1016/J.EJPS.2017.05.060 ] [PMID: 28558981]
[60]
Mitri K, Shegokar R, Gohla S, Anselmi C. MÜLLER RH. LIPID NANOCARRIERS FOR DERMAL DELIVERY OF LUTEIN: PREPARATION, CHARACTERIZATION, STABILITY AND PERFORMANCE. Int J Pharm 2011; 414(1-2): 267-75.
[http://dx.doi.org/10.1016/J.IJPHARM.2011.05.008 ] [PMID: 21596122]
[61]
Fang CL. AL-SUWAYEH SA, FANG JY. NANOSTRUCTURED LIPID CARRIERS (NLCS) FOR DRUG DELIVERY AND TARGETING. Recent Pat Nanotechnol 2013; 7(1): 41-55.
[http://dx.doi.org/10.2174/187221013804484827 ] [PMID: 22946628]
[62]
Li B. GE ZQ. NANOSTRUCTURED LIPID CARRIERS IMPROVE SKIN PERMEATION AND CHEMICAL STABILITY OF IDEBENONE. AAPS PharmSciTech 2012; 13(1): 276-83.
[http://dx.doi.org/10.1208/S12249-011-9746-3 ] [PMID: 22234598]
[63]
Mei Z, Chen H, Weng T, Yang Y, Yang X. SOLID LIPID NANOPARTICLE AND MICROEMULSION FOR TOPICAL DELIVERY OF TRIPTOLIDE. Eur J Pharm Biopharm 2003; 56(2): 189-96.
[http://dx.doi.org/10.1016/S0939-6411(03)00067-5 ] [PMID: 12957632]
[64]
Zeb A, Arif ST, Malik M. POTENTIAL OF NANOPARTICULATE CARRIERS FOR IMPROVED DRUG DELIVERY VIA SKIN. J Pharm Investig 2019; 49: 485-517.
[http://dx.doi.org/10.1007/S40005-018-00418-8]
[65]
Kamal‐Eldin A. EFFECT OF FATTY ACIDS AND TOCOPHEROLS ON THE OXIDATIVE STABILITY OF VEGETABLE OILS. Eur J Lipid Sci Technol 2006; 108: 1051-61.
[http://dx.doi.org/10.1002/EJLT.200600090]
[66]
Baştürk A, Javidipour I, Boyaci I. OXIDATIVE STABILITY OF NATURAL AND CHEMICALLY INTERESTERIFIED COTTONSEED, PALM AND SOYBEAN OILS. J Food Lipids 2007; 14: 170-88.
[http://dx.doi.org/10.1111/J.1745-4522.2007.00078.X]
[67]
Wan Y, Li H, Fu G, Chen X, Chen F, Xie M. THE RELATIONSHIP OF ANTIOXIDANT COMPONENTS AND ANTIOXIDANT ACTIVITY OF SESAME SEED OIL. J Sci Food Agric 2015; 95(13): 2571-8.
[http://dx.doi.org/10.1002/JSFA.7035 ] [PMID: 25472416]
[68]
Badea G, Lăcătuşu I, Badea N, Ott C, Meghea A. USE OF VARIOUS VEGETABLE OILS IN DESIGNING PHOTOPROTECTIVE NANOSTRUCTURED FORMULATIONS FOR UV PROTECTION AND ANTIOXIDANT ACTIVITY. Ind Crops Prod 2015; 67: 18-24.
[http://dx.doi.org/10.1016/J.INDCROP.2014.12.049]
[69]
Shahidi F, Zhong Y. LIPID OXIDATION AND IMPROVING THE OXIDATIVE STABILITY. Chem Soc Rev 2010; 39(11): 4067-79.
[http://dx.doi.org/10.1039/B922183M ] [PMID: 20617249]
[70]
Mezni F, Shili S, Ben Ali N, Larbi Khouja M, Khaldi A, Maaroufi A. EVALUATION OF PISTACIA LENTISCUS SEED OIL AND PHENOLIC COMPOUNDS FOR IN VITRO ANTIPROLIFERATIVE EFFECTS AGAINST BHK21 CELLS. Pharm Biol 2016; 54(5): 747-51.
[http://dx.doi.org/10.3109/13880209.2015.1079222 ] [PMID: 26440074]
[71]
MÜLLER RH, POPOV DV, RADNAEVA LD. PHYSICAL AND CHEMICAL STABILITY OF NANOSTRUCTURED LIPID DRUG CARRIERS (NLC) BASED ON NATURAL LIPIDS FROM BAIKAL REGION (SIBERIA, RUSSIA). Pharmazie 2011; 66(5): 348-56.
[72]
Prescha A, Grajzer M, Dedyk M, Grajeta H. THE ANTIOXIDANT ACTIVITY AND OXIDATIVE STABILITY OF COLD-PRESSED OILS. J Am Oil Chem Soc 2014; 91: 1291-301.
[http://dx.doi.org/10.1007/S11746-014-2479-1 ] [PMID: 25076788]
[73]
Abuzaytoun R, Shahidi F. OXIDATIVE STABILITY OF FLAX AND HEMP OILS. J Am Oil Chem Soc 2006; 83: 855-61.
[http://dx.doi.org/10.1007/S11746-006-5037-7]
[74]
Nair R, Priya K. KUMAR KS, BADIVADDIN TM, SEVUKARAJAN M. FORMULATION AND EVALUATION OF SOLID LIPID NANOPARTICLES OF WATER SOLUBLE DRUG. ISONIAZID J PHARM SCI & RES 2011; 3(5): 1256-64.
[75]
Azhar Shekoufeh Bahari L, Hamishehkar H. THE IMPACT OF VARIABLES ON PARTICLE SIZE OF SOLID LIPID NANOPARTICLES AND NANOSTRUCTURED LIPID CARRIERS; A COMPARATIVE LITERATURE REVIEW. Adv Pharm Bull 2016; 6(2): 143-51.
[http://dx.doi.org/10.15171/APB.2016.021 ] [PMID: 27478775]
[76]
Göke K, Bunjes H. DRUG SOLUBILITY IN LIPID NANOCARRIERS: INFLUENCE OF LIPID MATRIX AND AVAILABLE INTERFACIAL AREA. Int J Pharm 2017; 529(1-2): 617-28.
[http://dx.doi.org/10.1016/J.IJPHARM.2017.07.025 ] [PMID: 28705617]
[77]
Ganesan P, Narayanasamy D. LIPID NANOPARTICLES: DIFFERENT PREPARATION TECHNIQUES, CHARACTERIZATION, HURDLES, AND STRATEGIES FOR THE PRODUCTION OF SOLID LIPID NANOPARTICLES AND NANOSTRUCTURED LIPID CARRIERS FOR ORAL DRUG DELIVERY. SUSTAIN CHEM PHARM 2017; 6: 37-56.
[http://dx.doi.org/10.1016/J.SCP.2017.07.002]
[78]
Bhupinder K. NEWTON MJ. ACYCLOVIR SOLID LIPID NANOPARTICLES FOR SKIN DRUG DELIVERY: FABRICATION, CHARACTERIZATION AND IN VITRO STUDY. Recent Pat Drug Deliv Formul 2017; 11(2): 132-46.
[http://dx.doi.org/10.2174/1872211311666170117123403 ] [PMID: 28124592]
[79]
Saez V. SOUZA IDL, MANSUR CRE. LIPID NANOPARTICLES (SLN & NLC) FOR DELIVERY OF VITAMIN E: A COMPREHENSIVE REVIEW. Int J Cosmet Sci 2018; 40(2): 103-16.
[http://dx.doi.org/10.1111/ICS.12452 ] [PMID: 29505675]
[80]
DANESHAMOUZ S, SAMANI SM, ZARGARAN A. A NOVEL METHOD TO PRODUCE SOLID LIPID NANOPARTICLES USING N-BUTANOL AS AN ADDITIONAL CO-SURFACTANT ACCORDING TO THE O/W MICROEMULSION QUENCHING TECHNIQUE. Chem Phys Lipids 2013; 174: 32-8.
[http://dx.doi.org/10.1016/J.CHEMPHYSLIP.2013.05.001 ] [PMID: 23743405]
[81]
Rodríguez J. MARTÍN MJ, RUIZ MA, CLARES B. CURRENT ENCAPSULATION STRATEGIES FOR BIOACTIVE OILS: FROM ALIMENTARY TO PHARMACEUTICAL PERSPECTIVES. Food Res Int 2016; 83: 41-59.
[http://dx.doi.org/10.1016/J.FOODRES.2016.01.032]
[82]
Carbone C, Martins-Gomes C, Caddeo C. MEDITERRANEAN ESSENTIAL OILS AS PRECIOUS MATRIX COMPONENTS AND ACTIVE INGREDIENTS OF LIPID NANOPARTICLES. Int J Pharm 2018; 548(1): 217-26.
[http://dx.doi.org/10.1016/J.IJPHARM.2018.06.064 ] [PMID: 29966744]
[83]
NA K, CHOI HK. PREPARATION AND CHARACTERIZATION OF SOLID LIPID NANOPARTICLES (SLN) MADE OF CACAO BUTTER AND CURDLAN. Eur J Pharm Sci 2005; 24(2-3): 199-205.
[http://dx.doi.org/10.1016/J.EJPS.2004.10.008 ] [PMID: 15661491]
[84]
Salminen H, Stübler A, Weiss J. PREPARATION, CHARACTERIZATION, AND PHYSICAL STABILITY OF COCOA BUTTER AND TRISTEARIN NANOPARTICLES CONTAINING B-CAROTENE. Eur Food Res Technol 2020; 246: 599-608.
[http://dx.doi.org/10.1007/S00217-020-03431-0]
[85]
FADEL M, LOUIS D. CURCUMIN-LOADED NANOSTRUCTURED LIPID CARRIERS PREPARED USING PECEOL™ AND OLIVE OIL IN PHOTODYNAMIC THERAPY: DEVELOPMENT AND APPLICATION IN BREAST CANCER CELL LINE. Int J Nanomedicine 2019; 14: 5073-85.
[http://dx.doi.org/10.2147/IJN.S210484 ] [PMID: 31371948]
[86]
MÜLLER RH. COSMETIC FEATURES AND APPLICATIONS OF LIPID NANOPARTICLES (SLN, NLC). Int J Cosmet Sci 2008; 30(3): 157-65.
[http://dx.doi.org/10.1111/J.1468-2494.2008.00433.X ] [PMID: 18452432]
[87]
Puglia C, Bonina F. LIPID NANOPARTICLES AS NOVEL DELIVERY SYSTEMS FOR COSMETICS AND DERMAL PHARMACEUTICALS. Expert Opin Drug Deliv 2012; 9(4): 429-41.
[http://dx.doi.org/10.1517/17425247.2012.666967 ] [PMID: 22394125]
[88]
Puglia C, Offerta A. DESIGN OF SOLID LIPID NANOPARTICLES FOR CAFFEINE TOPICAL ADMINISTRATION. Drug Deliv 2016; 23(1): 36-40.
[http://dx.doi.org/10.3109/10717544.2014.903011 ] [PMID: 24735249]
[89]
Iqbal B, Ali J, Baboota S. RECENT ADVANCES AND DEVELOPMENT IN EPIDERMAL AND DERMAL DRUG DEPOSITION ENHANCEMENT TECHNOLOGY. Int J Dermatol 2018; 57(6): 646-60.
[http://dx.doi.org/10.1111/IJD.13902 ] [PMID: 29430629]
[90]
INFLUENCE OF STEARIC ACID AND BEESWAX AS SOLID LIPID MATRIX OF LIPID NANOPARTICLES CONTAINING TACROLIMUS. J Therm Anal Calorim 2018; 132: 1557-66.
[http://dx.doi.org/10.1007/S10973-018-7072-7]
[91]
Kheradmandnia S, Vasheghani-Farahani E, Nosrati M, Atyabi F. PREPARATION AND CHARACTERIZATION OF KETOPROFEN-LOADED SOLID LIPID NANOPARTICLES MADE FROM BEESWAX AND CARNAUBA WAX. Nanomedicine (Lond) 2010; 6(6): 753-9.
[http://dx.doi.org/10.1016/J.NANO.2010.06.003 ] [PMID: 20599527]
[92]
HUANG ZR, ZHUO RZ, FANG JY. COMBINATION OF CALCIPOTRIOL AND METHOTREXATE IN NANOSTRUCTURED LIPID CARRIERS FOR TOPICAL DELIVERY. Int J Nanomedicine 2010; 5: 117-28.
[93]
SAPINO S, PEIRA E, GALLARATE M, UGAZIO E. ON THE PHOTODEGRADATION OF DITHRANOL IN DIFFERENT TOPICAL FORMULATIONS: USE OF SLN TO INCREASE THE STABILITY OF THE DRUG. J Dispers Sci Technol 2009; 30(10): 1517-24.
[http://dx.doi.org/10.1080/01932690903123726]
[94]
MÜLLER RH. NANOTOXICOLOGICAL CLASSIFICATION SYSTEM (NCS) - A GUIDE FOR THE RISK-BENEFIT ASSESSMENT OF NANOPARTICULATE DRUG DELIVERY SYSTEMS. Eur J Pharm Biopharm 2013; 84(3): 445-8.
[http://dx.doi.org/10.1016/J.EJPB.2013.01.001 ] [PMID: 23333302]
[95]
2010.
[96]
2011.
[97]
2012.
[98]
Kelidari H, Saeedi M. 2017.
[99]
Gainza Lafuente E, Gainza Lucea G, Villullas Rincón S. 2019.
[100]
2017.
[101]
Ujang Z. 2015.
[102]
Keck C. 2010.
[103]
2017.
[104]
Battaglia L, Ugazio E. LIPID NANO- AND MICROPARTICLES: AN OVERVIEW OF PATENT-RELATED RESEARCH. J Nanomater 2019; 20192834941


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 36
Year: 2020
Published on: 22 October, 2020
Page: [4524 - 4535]
Pages: 12
DOI: 10.2174/1381612826666200514221649
Price: $65

Article Metrics

PDF: 27
HTML: 3
EPUB: 1