Cisplatin Changes Expression of SEMA3B in Endometrial Cancer

Author(s): Wojciech Peszek*, Piotr Kras, Beniamin O. Grabarek, Dariusz Boroń, Marcin Oplawski

Journal Name: Current Pharmaceutical Biotechnology

Volume 21 , Issue 13 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Semaphorin 3B (SEMA3B) is characterized as a strong suppressing factor of the proliferation of cancerous cells and also by its anti-angiogenic effect. However, the knowledge on the changes in the expression profile of SEMA3B under the influence of cisplatin in endometrial cancer remains fragmented. The aim of this work was to note the changes in expression of SEMA3B when under the influence of cisplatin in the endometrial cancer cell line.

Methods: Ishikawa cell line cells were exposed to three different concentrations of cisplatin: 2.5μM; 5μM; 10μM for 12, 24 and 48 hours and were compared to cells untreated by the drug. Changes in the expression profile of SEMA3B were determined based upon RtqPCR (mRNA) alongside the ELISA assay (protein). The Statistica 13.0 PL program was used for statistical analysis (p<0.05).

Results: Changes on the transcriptome level seem to be more dynamic than on the proteome level. Regardless of the concentration given or the exposition period, the expression of semaphorin 3B was, in fact, higher in cells exposed to cisplatin. Statistically substantial differences (p<0.05) in the expression of SEMA3B mRNA and protein were seen for all incubation periods at the given cisplatin level when compared to the control.

Conclusion: Cisplatin causes a growth in the expression of SEMA3B in an endometrial cancer cell culture, this results in the restoration in the state of cell homeostasis and shows the effectiveness of pharmacotherapy, including a low risk of drug resistance.

Keywords: Endometrial cancer cell line, SEMA3B, cisplatin, RTqPCR, semaphoring, ELISA.

[1]
Franzolin, G.; Tamagnone, L. Semaphorin signaling in cancer-associated inflammation. Int. J. Mol. Sci., 2019, 20(2), 377.
[http://dx.doi.org/10.3390/ijms20020377] [PMID: 30658382]
[2]
van der Klaauw, A.A.; Croizier, S.; Mendes de Oliveira, E.; Stadler, L.K.J.; Park, S.; Kong, Y.; Banton, M.C.; Tandon, P.; Hendricks, A.E.; Keogh, J.M.; Riley, S.E.; Papadia, S.; Henning, E.; Bounds, R.; Bochukova, E.G.; Mistry, V.; O’Rahilly, S.; Simerly, R.B.; Minchin, J.E.N.; Barroso, I.; Jones, E.Y.; Bouret, S.G.; Farooqi, I.S. INTERVAL; UK10K Consortium. human semaphorin 3 variants link melanocortin circuit development and energy balance. Cell, 2019, 176(4), 729-742.e18.
[http://dx.doi.org/10.1016/j.cell.2018.12.009] [PMID: 30661757]
[3]
Toledano, S.; Nir-Zvi, I.; Engelman, R.; Kessler, O.; Neufeld, G. Class-3 semaphorins and their receptors: Potent multifunctional modulators of tumor progression. Int. J. Mol. Sci., 2019, 20(3), 556.
[http://dx.doi.org/10.3390/ijms20030556] [PMID: 30696103]
[4]
Gurrapu, S.; Pupo, E.; Franzolin, G.; Lanzetti, L.; Tamagnone, L. Sema4C/PlexinB2 signaling controls breast cancer cell growth, hormonal dependence and tumorigenic potential. Cell Death Differ., 2018, 25(7), 1259-1275.
[http://dx.doi.org/10.1038/s41418-018-0097-4] [PMID: 29555978]
[5]
Junqueira Alves, C.; Yotoko, K.; Zou, H.; Friedel, R.H. Origin and evolution of plexins, semaphorins, and Met receptor tyrosine kinases. Sci. Rep., 2019, 9(1), 1970.
[http://dx.doi.org/10.1038/s41598-019-38512-y] [PMID: 30760850]
[6]
Neufeld, G.; Kigel, B.; Kessler, O.; Varshavsky, A.U.S. Patent Application 15,803 2018. 790
[7]
Hei Yuan, H.S.; Katyal, S.; Anderson, J.E. A mechanism for semaphorin-induced apoptosis: DNA damage of endothelial and myogenic cells in primary cultures from skeletal muscle. Oncotarget, 2018, 9(32), 22618-22630.
[PMID: 29854302]
[8]
Ding, W.; Cao, Y.; Xing, F.; Tao, M.; Fu, H.; Luo, H.; Yang, X. A preliminary study of the effect of semaphorin 3a and acitretin on the proliferation, migration, and apoptosis of HaCaT cells. Indian J. Dermatol., 2019, 64(3), 250.
[http://dx.doi.org/10.4103/ijd.IJD_179_18] [PMID: 31148871]
[9]
Solmaz, M.; Lane, A.; Gonen, B.; Akmamedova, O.; Gunes, M.H.; Komurov, K. Graphical data mining of cancer mechanisms with SEMA. Bioinformatics, 2019, 35(21), 4413-4418.
[http://dx.doi.org/10.1093/bioinformatics/btz303] [PMID: 31070723]
[10]
Shen, C.Y.; Chang, Y.C.; Chen, L.H.; Lin, W.C.; Lee, Y.H.; Yeh, S.T.; Chen, H.K.; Fang, W.; Hsu, C.P.; Lee, J.M.; Lu, T.P.; Hsiao, P.W.; Lai, L.C.; Tsai, M.H.; Chuang, E.Y. The extracellular SEMA domain attenuates intracellular apoptotic signaling of semaphorin 6A in lung cancer cells. Oncogenesis, 2018, 7(12), 95.
[http://dx.doi.org/10.1038/s41389-018-0105-z] [PMID: 30518871]
[11]
Dziobek, K.; Opławski, M.; Grabarek, B.O.; Zmarzły, N.; Kieszkowski, P.; Januszyk, P.; Kiełbasiński, K.; Kiełbasiński, R.; Boroń, D. Assessment of the usefulness of the SEMA5A concentration profile changes as a molecular marker in endometrial cancer. Curr. Pharm. Biotechnol., 2020, 21(1), 45-51.
[http://dx.doi.org/10.2174/1389201020666190911113611] [PMID: 31544715]
[12]
Nair, M.; Sandhu, S.S.; Sharma, A.K. Cancer molecular markers: A guide to cancer detection and management. Semin. Cancer Biol., 2018, 52(Pt 1), 39-55.
[http://dx.doi.org/10.1016/j.semcancer.2018.02.002] [PMID: 29428478]
[13]
Shahi, P.; Wang, C.Y.; Chou, J.; Hagerling, C.; Gonzalez Velozo, H.; Ruderisch, A.; Yu, Y.; Lai, M.D.; Werb, Z. GATA3 targets semaphorin 3B in mammary epithelial cells to suppress breast cancer progression and metastasis. Oncogene, 2017, 36(40), 5567-5575.
[http://dx.doi.org/10.1038/onc.2017.165] [PMID: 28581515]
[14]
Pang, C.H.; Du, W.; Long, J.; Song, L.J. Mechanism of SEMA3B gene silencing and clinical significance in glioma. Genet. Mol. Res., 2016, 15(1)gmr-15017664
[http://dx.doi.org/10.4238/gmr.15017664] [PMID: 27050958]
[15]
Tang, H.; Wu, Y.; Liu, M.; Qin, Y.; Wang, H.; Wang, L.; Li, S.; Zhu, H.; He, Z.; Luo, J.; Wang, H.; Wang, Q.; Luo, S. SEMA3B improves the survival of patients with esophageal squamous cell carcinoma by upregulating p53 and p21. Oncol. Rep., 2016, 36(2), 900-908.
[http://dx.doi.org/10.3892/or.2016.4901] [PMID: 27349960]
[16]
Samara, T.D.; Liem, I.K.; Prijanti, A.R. Andrijono, SEMA3B but not CUL1 as marker for pre-eclampsia progression. Malays. J. Med. Sci., 2019, 26(1), 66-72.
[http://dx.doi.org/10.21315/mjms2019.26.1.6] [PMID: 30914894]
[17]
Choi, S.; Hsu, I.C.J. Endometrial cancer. Handbook of Evidence-Based Radiation Oncology; Springer: Cham, 2018, pp. 653-677.
[http://dx.doi.org/10.1007/978-3-319-62642-0_30]
[18]
Croxtall, J.D.; Elder, M.G.; White, J.O. Hormonal control of proliferation in the Ishikawa endometrial adenocarcinoma cell line. J. Steroid Biochem., 1990, 35(6), 665-669.
[http://dx.doi.org/10.1016/0022-4731(90)90306-D] [PMID: 2362428]
[19]
Trimble, C.L.; Method, M.; Leitao, M.; Lu, K.; Ioffe, O.; Hampton, M.; Higgins, R.; Zaino, R.; Mutter, G.L. Society of Gynecologic Oncology Clinical Practice Committee. Management of endometrial precancers. Obstet. Gynecol., 2012, 120(5), 1160-1175.
[http://dx.doi.org/10.1097/AOG.0b013e31826bb121] [PMID: 23090535]
[20]
Kölbl, A.C.; Birk, A.E.; Kuhn, C.; Jeschke, U.; Andergassen, U. Influence of VEGFR and LHCGR on endometrial adenocarcinoma. Oncol. Lett., 2016, 12(3), 2092-2098.
[http://dx.doi.org/10.3892/ol.2016.4906] [PMID: 27625708]
[21]
Grabarek, B.O.; Wcisło-Dziadecka, D.; Bednarek, K.; Kruszniewska-Rajs, C.; Gola, J. Assessment of transcriptional activity genes associated with the IL-17 signaling pathway in skin fibroblasts under the influence of adalimumab. Dermatol. Ther. (Heidelb.), 2019, 32(6)e13112
[http://dx.doi.org/10.1111/dth.13112] [PMID: 31605567]
[22]
Kim, W.H.; Lee, S.H.; Jung, M.H.; Seo, J.H.; Kim, J.; Kim, M.A.; Lee, Y.M. Neuropilin2 expressed in gastric cancer endothelial cells increases the proliferation and migration of endothelial cells in response to VEGF. Exp. Cell Res., 2009, 315(13), 2154-2164.
[http://dx.doi.org/10.1016/j.yexcr.2009.04.018] [PMID: 19409892]
[23]
Dressler, L.G.; Bell, G.C.; Schuetze, D.P.; Steciuk, M.R.; Binns, O.A.; Raab, R.E.; Abernathy, P.M.; Wilson, C.M.; Kunutsor, S.E.; Loveless, M.C.; Ahearne, P.M.; Messino, M.J. Implementing a personalized medicine cancer program in a community cancer system. Per. Med., 2019, 16(3), 221-232.
[http://dx.doi.org/10.2217/pme-2018-0112] [PMID: 31109249]
[24]
Tannock, I.F.; Hickman, J.A. Limits to personalized cancer medicine. N. Engl. J. Med., 2016, 375(13), 1289-1294.
[http://dx.doi.org/10.1056/NEJMsb1607705] [PMID: 27682039]
[25]
Randall, M.E.; Filiaci, V.L.; Muss, H.; Spirtos, N.M.; Mannel, R.S.; Fowler, J.; Thigpen, J.T.; Benda, J.A. Gynecologic Oncology Group Study. Randomized phase III trial of whole-abdominal irradiation versus doxorubicin and cisplatin chemotherapy in advanced endometrial carcinoma: a Gynecologic Oncology Group Study. J. Clin. Oncol., 2006, 24(1), 36-44.
[http://dx.doi.org/10.1200/JCO.2004.00.7617] [PMID: 16330675]
[26]
Oki, S.; Sone, K.; Oda, K.; Hamamoto, R.; Ikemura, M.; Maeda, D.; Takeuchi, M.; Tanikawa, M.; Mori-Uchino, M.; Nagasaka, K.; Miyasaka, A.; Kashiyama, T.; Ikeda, Y.; Arimoto, T.; Kuramoto, H.; Wada-Hiraike, O.; Kawana, K.; Fukayama, M.; Osuga, Y.; Fujii, T. Oncogenic histone methyltransferase EZH2: A novel prognostic marker with therapeutic potential in endometrial cancer. Oncotarget, 2017, 8(25), 40402-40411.
[http://dx.doi.org/10.18632/oncotarget.16316] [PMID: 28418882]
[27]
Huang, T.; Gong, W.H.; Li, X.C.; Zou, C.P.; Jiang, G.J.; Li, X.H.; Qian, H. Efficient killing effect of osteosarcoma cells by cinobufacini and cisplatin in combination. Asian Pac. J. Cancer Prev., 2012, 13(6), 2847-2851.
[http://dx.doi.org/10.7314/APJCP.2012.13.6.2847] [PMID: 22938471]
[28]
Skolekova, S.; Matuskova, M.; Bohac, M.; Toro, L.; Durinikova, E.; Tyciakova, S.; Demkova, L.; Gursky, J.; Kucerova, L. Cisplatin-induced mesenchymal stromal cells-mediated mechanism contributing to decreased antitumor effect in breast cancer cells. Cell Commun. Signal., 2016, 14(1), 4.
[http://dx.doi.org/10.1186/s12964-016-0127-0] [PMID: 26759169]
[29]
Busch, C.J.; Becker, B.; Kriegs, M.; Gatzemeier, F.; Krüger, K.; Möckelmann, N.; Fritz, G.; Petersen, C.; Knecht, R.; Rothkamm, K.; Rieckmann, T. Similar cisplatin sensitivity of HPV-positive and -negative HNSCC cell lines. Oncotarget, 2016, 7(24), 35832-35842.
[http://dx.doi.org/10.18632/oncotarget.9028] [PMID: 27127883]
[30]
Butti, R.; Kumar, T.V.; Nimma, R.; Kundu, G.C. Impact of semaphorin expression on prognostic characteristics in breast cancer. Breast Cancer (Dove Med. Press), 2018, 10, 79-88.
[http://dx.doi.org/10.2147/BCTT.S135753] [PMID: 29910635]
[31]
Cai, J.; Huang, S.; Yi, Y.; Bao, S. Downregulation of PTPN18 can inhibit proliferation and metastasis and promote apoptosis of endometrial cancer. Clin. Exp. Pharmacol. Physiol., 2019, 46(8), 734-742.
[http://dx.doi.org/10.1111/1440-1681.13098] [PMID: 31034093]
[32]
Kartalou, M.; Essigmann, J.M. Mechanisms of resistance to cisplatin. Mutat. Res., 2001, 478(1-2), 23-43.
[http://dx.doi.org/10.1016/S0027-5107(01)00141-5] [PMID: 11406167]
[33]
Zhai, J.; Shen, J.; Xie, G.; Wu, J.; He, M.; Gao, L.; Zhang, Y.; Yao, X.; Shen, L. Cancer-associated fibroblasts-derived IL-8 mediates resistance to cisplatin in human gastric cancer. Cancer Lett., 2019, 454, 37-43.
[http://dx.doi.org/10.1016/j.canlet.2019.04.002] [PMID: 30978440]
[34]
Grabarek, B.; Wcisło-Dziadecka, D.; Strzałka-Mrozik, B.; Adamska, J.; Mazurek, U.; Brzezińska-Wcisło, L. The capability to forecast response to therapy with regard to the time and intensity of the inflammatory process in vitro in dermal fibroblasts induced by IL-12. Curr. Pharm. Biotechnol., 2018, 19(15), 1232-1240.
[http://dx.doi.org/10.2174/1389201020666190111163312] [PMID: 30636601]
[35]
Gurrapu, S.; Tamagnone, L. Semaphorins as regulators of phenotypic plasticity and functional reprogramming of cancer cells. Trends Mol. Med., 2019, 25(4), 303-314.
[http://dx.doi.org/10.1016/j.molmed.2019.01.010] [PMID: 30824197]
[36]
Merlos Rodrigo, M.A.; Dostalova, S.; Buchtelova, H.; Strmiska, V.; Michalek, P.; Krizkova, S.; Vicha, A.; Jencova, P.; Eckschlager, T.; Stiborova, M.; Heger, Z.; Adam, V. Comparative gene expression profiling of human metallothionein-3 up-regulation in neuroblastoma cells and its impact on susceptibility to cisplatin. Oncotarget, 2017, 9(4), 4427-4439.
[PMID: 29435113]
[37]
Cai, G.; Qiao, S.; Chen, K. Suppression of miR-221 inhibits glioma cells proliferation and invasion via targeting SEMA3B. Biol. Res., 2015, 48, 37.
[http://dx.doi.org/10.1186/s40659-015-0030-y] [PMID: 26197878]
[38]
Quintanilha, J.C.F.; Saavedra, K.F.; Visacri, M.B.; Moriel, P.; Salazar, L.A. Role of epigenetic mechanisms in cisplatin-induced toxicity. Crit. Rev. Oncol. Hematol., 2019, 137, 131-142.
[http://dx.doi.org/10.1016/j.critrevonc.2019.03.004] [PMID: 31014509]
[39]
Klutstein, M.; Nejman, D.; Greenfield, R.; Cedar, H. DNA methylation in cancer and aging. Cancer Res., 2016, 76(12), 3446-3450.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3278] [PMID: 27256564]
[40]
Xie, W.; Baylin, S.B.; Easwaran, H. DNA methylation in senescence, aging and cancer. Oncoscience, 2019, 6(1-2), 291-293.
[PMID: 30800716]
[41]
Dong, Z.; Liang, X.; Wu, X.; Kang, X.; Guo, Y.; Shen, S.; Liang, J.; Guo, W. Promoter hypermethylation-mediated downregulation of tumor suppressor gene SEMA3B and lncRNA SEMA3B-AS1 correlates with progression and prognosis of esophageal squamous cell carcinoma. Clin. Exp. Metastasis, 2019, 36(3), 225-241.
[http://dx.doi.org/10.1007/s10585-019-09964-3] [PMID: 30915595]
[42]
Cao, R.; Xiao, W.; Yi, X.; Pan, F.; Yao, T.; Li, X. Drug resistance detection of endometrial cancer cell lines using digital holographic microscopy. Quantitative Phase Imaging V. International Society for Optics and Photonics, 2019, Vol. 10887, p. 1088721
[http://dx.doi.org/10.1117/12.2510821]
[43]
Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials. Lancet Oncol., 2018, 19(1), 27-39.
[http://dx.doi.org/10.1016/S1470-2045(17)30777-5] [PMID: 29242041]
[44]
Barrington, D.A.; Dilley, S.E.; Smith, H.J.; Straughn, J.M., Jr Pembrolizumab in advanced recurrent endometrial cancer: A cost-effectiveness analysis. Gynecol. Oncol., 2019, 153(2), 381-384.
[http://dx.doi.org/10.1016/j.ygyno.2019.02.013] [PMID: 30808517]
[45]
Dziobek, K.; Opławski, M.; Grabarek, B.; Zmarzły, N.; Januszyk, P.; Adwent, I.; Dąbruś, D.; Leśniak, E.; Kiełbasiński, R.; Kieszkowski, P.; Boroń, D. Expression of semaphorin 3B (SEMA3B) in various grades of endometrial cancer. Med. Sci. Monit., 2019, 25(25), 4569-4574.
[http://dx.doi.org/10.12659/MSM.916762] [PMID: 31217417]
[46]
Grabarek, B.O.; Wcisło-Dziadecka, D.; Michalska-Bańkowska, A.; Gola, J. Evaluation of expression pattern of selected genes associated with IL12/23 signaling paths in psoriatic patients during cyclosporine A therapy. Dermatol. Ther. (Heidelb.), 2019, 32(6)e13129
[http://dx.doi.org/10.1111/dth.13129] [PMID: 31631469]
[47]
Kozak, J.; Wdowiak, P.; Maciejewski, R.; Torres, A. A guide for endometrial cancer cell lines functional assays using the measurements of electronic impedance. Cytotechnology, 2018, 70(1), 339-350.
[http://dx.doi.org/10.1007/s10616-017-0149-5] [PMID: 28988392]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 13
Year: 2020
Published on: 14 May, 2020
Page: [1368 - 1376]
Pages: 9
DOI: 10.2174/1389201021666200514215839

Article Metrics

PDF: 32
HTML: 8
EPUB: 1
PRC: 1