Effect of Green Tea and (-)-Epigallocatechin Gallate on the Pharmacokinetics of Rosuvastatin

Author(s): Shenjia Huang, Qingqing Xu, Linsheng Liu, Yicong Bian, Shichao Zhang, Chenrong Huang*, Liyan Miao*

Journal Name: Current Drug Metabolism

Volume 21 , Issue 6 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Green tea can inhibit OATPs, so it may interact with the substrate of OATPs, such as rosuvastatin.

Objective: This study aimed to investigate the effects of green tea on the pharmacokinetics of rosuvastatin and its mechanism.

Methods: Male Sprague-Dawley rats received different doses of green tea extract (GTE) and (-)- epigallocatechin-3- gallate (EGCG). Caco-2 cells and OATP1B1-HEK293T cells were used in drug uptake and transport assay. The matrix concentrations of rosuvastatin and catechins were determined by ultra-performance liquid chromatographytandem mass spectrometry (UPLC-MS/MS).

Results: GTE and EGCG were both found to increase the area under the plasma concentration-time curve (AUC0-∞) of rosuvastatin ((p<0.050). In the Caco-2 cell model, the uptake and transport of rosuvastatin in the GTE groups were 1.94-fold (p<0.001) and 2.11-fold (p<0.050) higher, respectively, than those of the control group. However, in the EGCG group, the uptake and transport of rosuvastatin were decreased by 22.62% and 44.19%, respectively (p<0.050). In the OATP1B1- HEK293T cell model, the OATP1B1-mediated rosuvastatin uptake was decreased by GTE to 35.02% of that in the control (p<0.050) and was decreased by EGCG to 45.61% of that in the control (p<0.050).

Conclusion: GTE increased the systemic rosuvastatin exposure in rats. The mechanism may include an increase in rosuvastatin absorption and a decrease in liver distribution by inhibiting OATP1B1. EGCG may be the main ingredient of green tea that affects the pharmacokinetic parameters of rosuvastatin. Our results showed the importance of conducting green tea-rosuvastatin study.

Keywords: EGCG, green tea extract, OATP1B1, pharmacokinetics, rosuvastatin, gallate.

[1]
Bailey, D.G. Fruit juice inhibition of uptake transport: a new type of food-drug interaction. Br. J. Clin. Pharmacol., 2010, 70(5), 645-655.
[http://dx.doi.org/10.1111/j.1365-2125.2010.03722.x] [PMID: 21039758]
[2]
Liu, X.L.; Liu, H.Q.; Li, J.; Yang, L.; Zhao, X. [Experimental study on anti-tumor effect and mechanism of green tea extract] Zhongguo Zhong Xi Yi Jie He Za Zhi, 2014, 34(11), 1369-1373.
[PMID: 25566631]
[3]
Kuriyama, S.; Shimazu, T.; Ohmori, K.; Kikuchi, N.; Nakaya, N.; Nishino, Y.; Tsubono, Y.; Tsuji, I. Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: the Ohsaki study. JAMA, 2006, 296(10), 1255-1265.
[http://dx.doi.org/10.1001/jama.296.10.1255] [PMID: 16968850]
[4]
Pang, J.; Zhang, Z.; Zheng, T.; Yang, Y.J.; Li, N.; Bai, M.; Peng, Y.; Zhang, J.; Li, Q.; Zhang, B. Association of green tea consumption with risk of coronary heart disease in Chinese population. Int. J. Cardiol., 2015, 179, 275-278.
[http://dx.doi.org/10.1016/j.ijcard.2014.11.093] [PMID: 25464464]
[5]
Misaka, S.; Kawabe, K.; Onoue, S.; Werba, J.P.; Giroli, M.; Tamaki, S.; Kan, T.; Kimura, J.; Watanabe, H.; Yamada, S. Effects of green tea catechins on cytochrome P450 2B6, 2C8, 2C19, 2D6 and 3A activities in human liver and intestinal microsomes. Drug Metab. Pharmacokinet., 2013, 28(3), 244-249.
[http://dx.doi.org/10.2133/dmpk.DMPK-12-RG-101] [PMID: 23268924]
[6]
Roth, M.; Timmermann, B.N.; Hagenbuch, B. Interactions of green tea catechins with organic anion-transporting polypeptides. Drug Metab. Dispos., 2011, 39(5), 920-926.
[http://dx.doi.org/10.1124/dmd.110.036640] [PMID: 21278283]
[7]
Knop, J.; Misaka, S.; Singer, K.; Hoier, E.; Müller, F.; Glaeser, H.; König, J.; Fromm, M.F. Inhibitory effects of green tea and (-)-epigallocatechin gallate on transport by OATP1B1, OATP1B3, OCT1, OCT2, MATE1, MATE2-K and P-glycoprotein. PLoS One, 2015, 10(10)e0139370
[http://dx.doi.org/10.1371/journal.pone.0139370] [PMID: 26426900]
[8]
Misaka, S.; Miyazaki, N.; Fukushima, T.; Yamada, S.; Kimura, J. Effects of green tea extract and (-)-epigallocatechin-3-gallate on pharmacokinetics of nadolol in rats. Phytomedicine, 2013, 20(14), 1247-1250.
[http://dx.doi.org/10.1016/j.phymed.2013.07.003] [PMID: 23920278]
[9]
Misaka, S.; Yatabe, J.; Müller, F.; Takano, K.; Kawabe, K.; Glaeser, H.; Yatabe, M.S.; Onoue, S.; Werba, J.P.; Watanabe, H.; Yamada, S.; Fromm, M.F.; Kimura, J. Green tea ingestion greatly reduces plasma concentrations of nadolol in healthy subjects. Clin. Pharmacol. Ther., 2014, 95(4), 432-438.
[http://dx.doi.org/10.1038/clpt.2013.241] [PMID: 24419562]
[10]
Jones, P.H.; Davidson, M.H.; Stein, E.A.; Bays, H.E.; McKenney, J.M.; Miller, E.; Cain, V.A.; Blasetto, J.W.; Group, S.S. STELLAR Study Group. Comparison of the efficacy and safety of rosuvastatin versus atorvastatin, simvastatin, and pravastatin across doses (STELLAR* Trial). Am. J. Cardiol., 2003, 92(2), 152-160.
[http://dx.doi.org/10.1016/S0002-9149(03)00530-7] [PMID: 12860216]
[11]
Davidson, M.; Ma, P.; Stein, E.A.; Gotto, A.M., Jr; Raza, A.; Chitra, R.; Hutchinson, H. Comparison of effects on low-density lipoprotein cholesterol and high-density lipoprotein cholesterol with rosuvastatin versus atorvastatin in patients with type IIa or IIb hypercholesterolemia. Am. J. Cardiol., 2002, 89(3), 268-275.
[http://dx.doi.org/10.1016/S0002-9149(01)02226-3] [PMID: 11809427]
[12]
Bosgra, S.; van de Steeg, E.; Vlaming, M.L.; Verhoeckx, K.C.; Huisman, M.T.; Verwei, M.; Wortelboer, H.M. Predicting carrier-mediated hepatic disposition of rosuvastatin in man by scaling from individual transfected cell-lines in vitro using absolute transporter protein quantification and PBPK modeling. Eur. J. Pharm. Sci., 2014, 65, 156-166.
[http://dx.doi.org/10.1016/j.ejps.2014.09.007] [PMID: 25261337]
[13]
Hua, W.J.; Hua, W.X.; Fang, H.J. The role of OATP1B1 and BCRP in pharmacokinetics and DDI of novel statins. Cardiovasc. Ther., 2012, 30(5), e234-e241.
[http://dx.doi.org/10.1111/j.1755-5922.2011.00290.x] [PMID: 21884024]
[14]
Hu, M.; Tomlinson, B. Evaluation of the pharmacokinetics and drug interactions of the two recently developed statins, rosuvastatin and pitavastatin. Expert Opin. Drug Metab. Toxicol., 2014, 10(1), 51-65.
[http://dx.doi.org/10.1517/17425255.2014.851667] [PMID: 24156555]
[15]
Lee, H.K.; Hu, M.; Lui, S.Sh.; Ho, C.S.; Wong, C.K.; Tomlinson, B. Effects of polymorphisms in ABCG2, SLCO1B1, SLC10A1 and CYP2C9/19 on plasma concentrations of rosuvastatin and lipid response in Chinese patients. Pharmacogenomics, 2013, 14(11), 1283-1294.
[http://dx.doi.org/10.2217/pgs.13.115] [PMID: 23930675]
[16]
Sui, S.M.; Wen, J.H.; Li, X.H.; Xiong, Y.Q. [Effect of OATP1B1 521T --> C heterogenesis on pharmacokinetic characterstics of rosuvastatin in Chinese volunteers] Yao Xue Xue Bao, 2011, 46(6), 695-700.
[PMID: 21882531]
[17]
Zhou, Q.; Ruan, Z.R.; Yuan, H.; Xu, D.H.; Zeng, S. ABCB1 gene polymorphisms, ABCB1 haplotypes and ABCG2 c.421c>A are determinants of inter-subject variability in rosuvastatin pharmacokinetics. Pharmazie, 2013, 68(2), 129-134.
[PMID: 23469685]
[18]
Joy, T.R.; Monjed, A.; Zou, G.Y.; Hegele, R.A.; McDonald, C.G.; Mahon, J.L. N-of-1 (single-patient) trials for statin-related myalgia. Ann. Intern. Med., 2014, 160(5), 301-310.
[http://dx.doi.org/10.7326/M13-1921] [PMID: 24737272]
[19]
De Vera, M.A.; Bhole, V.; Burns, L.C.; Lacaille, D. Mortality outcomes: a systematic review. Br. J. Clin. Pharmacol., 2014, 78(4), 684-698.
[http://dx.doi.org/10.1111/bcp.12339]
[20]
Norata, G.D.; Tibolla, G.; Catapano, A.L. Statins and skeletal muscles toxicity: from clinical trials to everyday practice. Pharmacol. Res., 2014, 88, 107-113.
[http://dx.doi.org/10.1016/j.phrs.2014.04.012] [PMID: 24835295]
[21]
Ward, N.C.; Watts, G.F.; Eckel, R.H. Statin Toxicity. Circ. Res., 2019, 124(2), 328-350.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.312782] [PMID: 30653440]
[22]
Xu, Q.; Huang, C.; Wang, Z.; Zhang, S.; Miao, L. Determination of uptake of rosuvastatin in Caco-2 cells by LC-MS/MS. Zhongguo Xin Yao Zazhi, 2016, (13), 1550-1554.
[23]
Pfeifer, N.D.; Bridges, A.S.; Ferslew, B.C.; Hardwick, R.N.; Brouwer, K.L. Hepatic basolateral efflux contributes significantly to rosuvastatin disposition II: characterization of hepatic elimination by basolateral, biliary, and metabolic clearance pathways in rat isolated perfused liver. J. Pharmacol. Exp. Ther., 2013, 347(3), 737-745.
[http://dx.doi.org/10.1124/jpet.113.208314] [PMID: 24080682]
[24]
Iijima, R.; Watanabe, T.; Ishiuchi, K.; Matsumoto, T.; Watanabe, J.; Makino, T. Interactions between crude drug extracts used in Japanese traditional Kampo medicines and organic anion-transporting polypeptide 2B1. J. Ethnopharmacol., 2018, 214, 153-159.
[http://dx.doi.org/10.1016/j.jep.2017.12.016] [PMID: 29248449]
[25]
Netsch, M.I.; Gutmann, H.; Luescher, S.; Brill, S.; Schmidlin, C.B.; Kreuter, M.H.; Drewe, J. Inhibitory activity of a green tea extract and some of its constituents on multidrug resistance-associated protein 2 functionality. Planta Med., 2005, 71(2), 135-141.
[http://dx.doi.org/10.1055/s-2005-837780] [PMID: 15729621]
[26]
Fleisher, B.; Unum, J.; Shao, J.; An, G. Ingredients in fruit juices interact with dasatinib through inhibition of BCRP: a new mechanism of beverage-drug interaction. J. Pharm. Sci., 2015, 104(1), 266-275.
[http://dx.doi.org/10.1002/jps.24289] [PMID: 25418056]
[27]
Farabegoli, F.; Papi, A.; Bartolini, G.; Ostan, R.; Orlandi, M. (-)-Epigallocatechin-3-gallate downregulates Pg-P and BCRP in a tamoxifen resistant MCF-7 cell line. Phytomedicine, 2010, 17(5), 356-362.
[http://dx.doi.org/10.1016/j.phymed.2010.01.001] [PMID: 20149610]
[28]
Sugihara, N.; Kuroda, N.; Watanabe, F.; Choshi, T.; Kamishikiryo, J.; Seo, M. Effects of catechins and their related compounds on cellular accumulation and efflux transport of mitoxantrone in Caco-2 cell monolayers. J. Food Sci., 2017, 82(5), 1224-1230.
[http://dx.doi.org/10.1111/1750-3841.13680] [PMID: 28346686]
[29]
Morris, M.E.; Zhang, S. Flavonoid-drug interactions: effects of flavonoids on ABC transporters. Life Sci., 2006, 78(18), 2116-2130.
[http://dx.doi.org/10.1016/j.lfs.2005.12.003] [PMID: 16455109]
[30]
DeGorter, M.K.; Urquhart, B.L.; Gradhand, U.; Tirona, R.G.; Kim, R.B. Disposition of atorvastatin, rosuvastatin, and simvastatin in oatp1b2-/- mice and intraindividual variability in human subjects. J. Clin. Pharmacol., 2012, 52(11), 1689-1697.
[http://dx.doi.org/10.1177/0091270011422815] [PMID: 22167570]
[31]
Evers, R.; Chu, X.Y. Role of the murine organic anion-transporting polypeptide 1b2 (Oatp1b2) in drug disposition and hepatotoxicity. Mol. Pharmacol., 2008, 74(2), 309-311.
[http://dx.doi.org/10.1124/mol.108.048991] [PMID: 18492796]
[32]
Kim, T.E.; Ha, N.; Kim, Y.; Kim, H.; Lee, J.W.; Jeon, J.Y.; Kim, M.G. Effect of epigallocatechin-3-gallate, major ingredient of green tea, on the pharmacokinetics of rosuvastatin in healthy volunteers. Drug Des. Devel. Ther., 2017, 11, 1409-1416.
[http://dx.doi.org/10.2147/DDDT.S130050] [PMID: 28533679]
[33]
Turner, R.M.; Pirmohamed, M. Statin-related myotoxicity: a comprehensive review of pharmacokinetic, pharmacogenomic and muscle components. J. Clin. Med., 2019, 9(1)E22
[http://dx.doi.org/10.3390/jcm9010022] [PMID: 31861911]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 6
Year: 2020
Page: [471 - 478]
Pages: 8
DOI: 10.2174/1389200221666200514133355
Price: $65

Article Metrics

PDF: 27
HTML: 3