Effect of Cabergoline on Cognitive Impairments in Transgenic Drosophila Model of Parkinson’s Disease

Author(s): Yasir Hasan Siddique*, Rahul, Mantasha Idrisi, Mohd. Shahid

Journal Name: Letters in Drug Design & Discovery

Volume 17 , Issue 10 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Parkinson’s disease is a common neurodegenerative disorder characterized by selective loss of dopaminergic neurons in the substantia nigra pars compacta.

Introduction: The effects of alpha synuclein, parkin mutation and pharmacological agents have been studied in the Drosophila model.

Methods: The effect of cabergoline was studied on the cognitive impairments exhibited by the transgenic Drosophila expressing human alpha-synuclein in the neurons. The PD flies were allowed to feed on the diet having 0.5, 1 and 1.5 μM of cabergoline.

Results and Discussion: The exposure of cabergoline not only showed a dose-dependent significant delay in the cognitive impairments but also prevented the loss of dopaminergic neurons. Molecular docking studies showed the positive interaction between cabergoline and alpha-synuclein.

Conclusion: The results suggest a protective effect of cabergoline against the cognitive impairments.

Keywords: Parkinson's disease, cabergoline, drosophila, dopamine agonist, human alpha synuclein, molecular docking.

Widnell, K. Pathophysiology of motor fluctuations in Parkinson’s disease. Mov. Disord., 2005, 20(S11), S17-S22.
[http://dx.doi.org/10.1002/mds.20459] [PMID: 15822108]
Deleu, D.; Northway, M.G.; Hanssens, Y. An evidence-based review of Dopamine receptor agonists in the treatment of Parkinson’s disease. Neurosciences (Riyadh), 2002, 7(4), 221-231.
[PMID: 23978853]
Quinn, N. Drug treatment of Parkinson’s disease. BMJ, 1995, 310(6979), 575-579.
[http://dx.doi.org/10.1136/bmj.310.6979.575] [PMID: 7888935]
Khanam, S.; Siddique, Y.H. Dopamine: Agonists and neurodegenerative disorders. Curr. Drug Targets, 2018, 19(14), 1599-1611.
[http://dx.doi.org/10.2174/1389450118666171117124340] [PMID: 29149825]
Rains, C.P.; Bryson, H.M.; Fitton, A. Cabergoline. A review of its pharmacological properties and therapeutic potential in the treatment of hyperprolactinaemia and inhibition of lactation. Drugs, 1995, 49(2), 255-279.
[http://dx.doi.org/10.2165/00003495-199549020-00009] [PMID: 7729332]
Curran, M.P.; Perry, C.M. Cabergoline: A review of its use in the treatment of Parkinson’s disease. Drugs, 2004, 64(18), 2125-2141.
[http://dx.doi.org/10.2165/00003495-200464180-00015] [PMID: 15341508]
Marco, A.D.; Appiah-Kubi, L.S.; Chaudhuri, K.R. Use of the dopamine agonist cabergoline in the treatment of movement disorders. Expert Opin. Pharmacother., 2002, 3(10), 1481-1487.
[http://dx.doi.org/10.1517/14656566.3.10.1481] [PMID: 12387694]
Brusa, L.; Pavino, V.; Massimetti, M.C.; Bove, R.; Iani, C.; Stanzione, P. The effect of dopamine agonists on cognitive functions in non-demented early-mild Parkinson’s disease patients. Funct. Neurol., 2013, 28(1), 13-17.
[PMID: 23731911]
Schapira, A.H. Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol., 2008, 7(1), 97-109.
[http://dx.doi.org/10.1016/S1474-4422(07)70327-7] [PMID: 18093566]
Bonuccelli, U.; Del Dotto, P.; Rascol, O. Role of dopamine receptor agonists in the treatment of early Parkinson’s disease. Parkinsonism Relat. Disord., 2009, 15(Suppl. 4), S44-S53.
[http://dx.doi.org/10.1016/S1353-8020(09)70835-1] [PMID: 20123557]
Siddique, Y.H.; Ara, G.; Jyoti, S.; Afzal, M. The dietary supplementation of nordihydroguaiaretic acid (NDGA) delayed the loss of climbing ability in Drosophila model of Parkinson’s disease. J. Diet. Suppl., 2012, 9(1), 1-8.
[http://dx.doi.org/10.3109/19390211.2011.630716] [PMID: 22432798]
Ali, F. Rahul; Jyoti, S.; Naz, F.; Ashafaq, M.; Shahid, M.; Siddique, Y.H. Therapeutic potential of luteolin in transgenic Drosophila model of Alzheimer’s disease. Neurosci. Lett., 2019, 692, 90-99.
[http://dx.doi.org/10.1016/j.neulet.2018.10.053] [PMID: 30420334]
Feany, M.B.; Bender, W.W. A Drosophila model of Parkinson’s disease. Nature, 2000, 404(6776), 394-398.
[http://dx.doi.org/10.1038/35006074] [PMID: 10746727]
Hirth, F. Drosophila melanogaster in the study of human neurodegeneration. CNS Neurol. Disord. Drug Targets, 2010, 9(4), 504-523.
[http://dx.doi.org/10.2174/187152710791556104] [PMID: 20522007]
Nichols, C.D.; Becnel, J.; Pandey, U.B. Drosophila melanogaster in the study of human neurodegeneration. CNS Neurol. Disord. Drug, 2012, 9, 504-523.
Simonnet, M.M.; Berthelot-Grosjean, M.; Grosjean, Y. testing drosophila olfaction with a y-maze assay. J. Vis. Exp., 2014, 88.
Palladino, M.J.; Keegan, L.P.; O’Connell, M.A.; Reenan, R.A. A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integrity. Cell, 2000, 102(4), 437-449.
[http://dx.doi.org/10.1016/S0092-8674(00)00049-0] [PMID: 10966106]
Ritchie, DW; Venkatraman, V Ultra-fast FFT protein docking on graphics processors. Bioinformatics , 2010, 26 2398-405. 19.
Cüneyt. Beydemir S, Küfrevioğlu OI. In vitro and in silico studies on the toxic effects of antibacterial drugs as human serum paraoxonase 1 inhibitor. ChemistrySelect, 2019, 33, 9731-9736.
Türkeş, C.; Beydemir, Ş. Cüneyt, Beydemir S. Inhibition of human serum paraoxonase-I with antimycotic drugs: In vitro and in silico studies. Appl. Biochem. Biotechnol., 2020, 190(1), 252-269.
[http://dx.doi.org/10.1007/s12010-019-03073-3] [PMID: 31342307]
Türkeş, C. Investigation of potential paraoxonase-I inhibitors by kinetic and molecular docking studies: Chemotherapeutic drugs. Protein Pept. Lett., 2019, 26(6), 392-402.
[http://dx.doi.org/10.2174/0929866526666190226162225] [PMID: 30819074]
Türkeş, C. A potential risk factor for paraoxonase 1: In silico and in-vitro analysis of the biological activity of proton-pump inhibitors. J. Pharm. Pharmacol., 2019, 71(10), 1553-1564.
[http://dx.doi.org/10.1111/jphp.13141] [PMID: 31353473]
Saliha, Türkeş. C, Arslan, M, Demir, Y, Beydemir S. . New isoindole-1, 3-dione substituted sulfonamides as potent inhibitors of carbonic anhydrase and acetylcholinesterase: Design, synthesis, and biological evaluation. ChemistrySelect, 2019, 4, 13347-13355.
Khanam, S.; Naz, F.; Ali, F.; Smita Jyoti, R.; Fatima, A.; Khan, W.; Singh, B.R.; Naqvi, A.H.; Siddique, Y.H. Effect of cabergoline alginate nanocomposite on the transgenic Drosophila melanogaster model of Parkinson’s disease. Toxicol. Mech. Methods, 2018, 28(9), 699-708.
[http://dx.doi.org/10.1080/15376516.2018.1502386] [PMID: 30019977]
Meinel, J.; Radad, K.; Rausch, W.D.; Reichmann, H.; Gille, G. Cabergoline protects dopaminergic neurons against rotenone-induced cell death in primary mesencephalic cell culture. Folia Neuropathol., 2015, 53(1), 29-40.
[http://dx.doi.org/10.5114/fn.2015.49972] [PMID: 25909873]
Lombardi, G.; Varsaldi, F.; Miglio, G.; Papini, M.G.; Battaglia, A.; Canonico, P.L. Cabergoline prevents necrotic neuronal death in an in vitro model of oxidative stress. Eur. J. Pharmacol., 2002, 457(2-3), 95-98.
[http://dx.doi.org/10.1016/S0014-2999(02)02683-3] [PMID: 12464354]
Siddique, Y.H.; Naz, F.; Jyoti, S.; Fatima, A.; Khanam, S. Rahul; Ali, F.; Mujtaba, S.F.; Faisal, M. Rahul, Ali F. Effect of Centella asiatica leaf extract on the dietary supplementation in transgenic Drosophila model of Parkinson’s disease. Parkinsons Dis., 2014, 2014, 262058
[http://dx.doi.org/10.1155/2014/262058] [PMID: 25538856]
Siddique, Y.H.; Khan, W.; Fatima, A.; Jyoti, S.; Khanam, S.; Naz, F. Rahul; Ali, F.; Singh, B.R.; Naqvi, A.H. Effect of bromocriptine alginate nanocomposite (BANC) on a transgenic Drosophila model of Parkinson’s disease. Dis. Model. Mech., 2016, 9(1), 63-68.
[http://dx.doi.org/10.1242/dmm.022145] [PMID: 26542705]
Pandey, U.B.; Nichols, C.D. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol. Rev., 2011, 63(2), 411-436.
[http://dx.doi.org/10.1124/pr.110.003293] [PMID: 21415126]
Liu, T.; Dartevelle, L.; Yuan, C.; Wei, H.; Wang, Y.; Ferveur, J.F.; Guo, A. Increased dopamine level enhances male-male courtship in Drosophila. J. Neurosci., 2008, 28(21), 5539-5546.
[http://dx.doi.org/10.1523/JNEUROSCI.5290-07.2008] [PMID: 18495888]
Hall, J.C. The mating of a fly. Science, 1994, 264(5166), 1702-1714.
[http://dx.doi.org/10.1126/science.8209251] [PMID: 8209251]
Lasbleiz, C.; Ferveur, J.F.; Everaerts, C. Courtship behavior of Drosophila melanogaster revisited. Anim. Behav., 2002, 72, 1001-1012.
Alekseyenko, O.V.; Lee, C.; Kravitz, E.A. Targeted manipulation of serotonergic neurotransmission affects the escalation of aggression in adult male Drosophila melanogaster. PLoS One, 2010, 5(5), e10806
[http://dx.doi.org/10.1371/journal.pone.0010806] [PMID: 20520823]
Lim, J.; Fernandez, A.I.; Hinojos, S.J.; Aranda, G.P.; James, J.; Seong, C.S.; Han, K.A. The mushroom body D1 dopamine receptor controls innate courtship drive. Genes Brain Behav., 2018, 17(2), 158-167.
[http://dx.doi.org/10.1111/gbb.12425] [PMID: 28902472]
Deeb, J.; Shah, M.; Muhammed, N.; Gunasekera, R.; Gannon, K.; Findley, L.J.; Hawkes, C.H. A basic smell test is as sensitive as a dopamine transporter scan: comparison of olfaction, taste and DaTSCAN in the diagnosis of Parkinson’s disease. QJM, 2010, 103(12), 941-952.
[http://dx.doi.org/10.1093/qjmed/hcq142] [PMID: 20736182]
Doty, R.L. Olfactory dysfunction in Parkinson disease. Nat. Rev. Neurol., 2012, 8(6), 329-339.
[http://dx.doi.org/10.1038/nrneurol.2012.80] [PMID: 22584158]
Pignatelli, A.; Belluzzi, O. Dopaminergic neurones in the main olfactory bulb: An overview from an electrophysiological perspective. Front. Neuroanat., 2017, 11, 7.
[http://dx.doi.org/10.3389/fnana.2017.00007] [PMID: 28261065]
Zhang, W.; Sun, C.; Shao, Y.; Zhou, Z.; Hou, Y.; Li, A. Partial depletion of dopaminergic neurons in the substantia nigra impairs olfaction and alters neural activity in the olfactory bulb. Sci. Rep., 2019, 9(1), 254.
[http://dx.doi.org/10.1038/s41598-018-36538-2] [PMID: 30670747]
Selcho, M.; Pauls, D.; Han, K.A.; Stocker, R.F.; Thum, A.S. The role of dopamine in Drosophila larval classical olfactory conditioning. PLoS One, 2009, 4(6), e5897
[http://dx.doi.org/10.1371/journal.pone.0005897] [PMID: 19521527]
de Belle, J.S.; Heisenberg, M. Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science, 1994, 263(5147), 692-695.
[http://dx.doi.org/10.1126/science.8303280] [PMID: 8303280]
Montastruc, F.; Moulis, F.; Araujo, M.; Chebane, L.; Rascol, O.; Montastruc, J.L. Ergot and non-ergot dopamine agonists and heart failure in patients with Parkinson’s disease. Eur. J. Clin. Pharmacol., 2017, 73(1), 99-103.
[http://dx.doi.org/10.1007/s00228-016-2142-x] [PMID: 27796464]
Caputo, C.; Prior, D.; Inder, W.J. The Third Case of Cabergoline-associated valvulopathy: The value of routine cardiovascular examination for screening. J. Endocr. Soc., 2018, 2(8), 965-969.
[http://dx.doi.org/10.1210/js.2018-00139] [PMID: 30083627]
Nakaoka, S.; Ishizaki, T.; Urushihara, H.; Satoh, T.; Ikeda, S.; Morikawa, K.; Nakayama, T. Echocardiography for the detection of valvulopathy associated with the use of ergot-derived dopamine agonists in patients with Parkinson’s disease. Intern. Med., 2011, 50(7), 687-694.
[http://dx.doi.org/10.2169/internalmedicine.50.4344] [PMID: 21467699]
Inzelberg, R.; Schechtman, E.; Nisipeanu, P. Cabergoline, pramipexole and ropinirole used as monotherapy in early Parkinson’s disease: An evidence-based comparison. Drugs Aging, 2003, 20(11), 847-855.
[http://dx.doi.org/10.2165/00002512-200320110-00006] [PMID: 12964891]
Clarke, C.E.; Guttman, M. Dopamine agonist monotherapy in Parkinson’s disease. Lancet, 2002, 360(9347), 1767-1769.
[http://dx.doi.org/10.1016/S0140-6736(02)11668-0] [PMID: 12480442]
Tabrez, S.; Jabir, N.R.; Shakil, S.; Greig, N.H.; Alam, Q.; Abuzenadah, A.M.; Damanhouri, G.A.; Kamal, M.A. A synopsis on the role of tyrosine hydroxylase in Parkinson’s disease. CNS Neurol. Disord. Drug Targets, 2012, 11(4), 395-409.
[http://dx.doi.org/10.2174/187152712800792785] [PMID: 22483313]
Perez, R.G.; Waymire, J.C.; Lin, E.; Liu, J.J.; Guo, F.; Zigmond, M.J. A role for alpha-synuclein in the regulation of dopamine biosynthesis. J. Neurosci., 2002, 22(8), 3090-3099.
[http://dx.doi.org/10.1523/JNEUROSCI.22-08-03090.2002] [PMID: 11943812]
Türkeş, C.; Arslan, M.; Demir, Y.; Çoçaj, L.; Rifati Nixha, A.; Beydemir, Ş. Synthesis, biological evaluation and in silico studies of novel N-substituted phthalazine sulfonamide compounds as potent carbonic anhydrase and acetylcholinesterase inhibitors. Bioorg. Chem., 2019., 89103004
[http://dx.doi.org/10.1016/j.bioorg.2019.103004] [PMID: 31129502]
Beydemir, Ş.; Türkeş, C.; Yalçın, A. Gadolinium-based contrast agents: In vitro paraoxonase 1 inhibition, in silico studies. Drug Chem. Toxicol., 2019. Epub ahead of print
[http://dx.doi.org/10.1080/01480545.2019.1620266] [PMID: 31179770]
Işık, M.; Demir, Y.; Durgun, M.; Türkeş, C.; Necip, A.; Beydemir, Ş. Molecular docking and investigation of 4-(benzylideneamino)-and 4-(benzylamino)-benzenesulfonamide derivatives as potent AChE inhibitors. Chem. Pap., 2020, 74, 1395-1405.
Işık, M.; Beydemir, Ş.; Demir, Y.; Durgun, M.; Türkeş, C.; Nasır, A.; Necip, A.; Akkuş, M. Benzenesulfonamide derivatives containing imine and amine groups: Inhibition on human paraoxonase and molecular docking studies. Int. J. Biol. Macromol., 2020, 146, 1111-1123.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.237] [PMID: 31739032]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 11 October, 2020
Page: [1261 - 1269]
Pages: 9
DOI: 10.2174/1570180817999200514100917
Price: $65

Article Metrics

PDF: 13