A Systematic Review of Current Progresses in the Nucleic Acid-Based Therapies for Neurodegeneration with Implications for Alzheimer’s Disease

Author(s): Maryam Ghaffari, Nima Sanadgol*, Mohammad Abdollahi

Journal Name: Mini-Reviews in Medicinal Chemistry

Volume 20 , Issue 15 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Recently, manipulation of gene expression and switching genes on or off highlight the potential of nucleic acid-based therapies (NA-BTs). Alzheimer’s Disease (AD) is a common devastating neurodegenerative disease (NDs) responsible for 60-80% of all cases of dementia and predicted as a main public health concern among aged populations. The aim of this study was to outline the current research in the field of NA-BTs for the treatment of AD disabilities, including strategies to suppress the memory and learning defects, to promote recovery processes, and to reinforce social relationships in these patients. This review was performed via evaluating PubMed reported studies from January 2010 to November 2019. Also, reference lists were checked to find additional studies. All intermediation or complementarity of animal models, case-control and cohort studies, and controlled trials (CTs) on specific NA-BTs to AD were acceptable, although in vitro studies were excluded due to the considerable diversities and heterogeneities. After removing the duplicates according to preferred reporting items for systematic reviews and meta-analyses (PRISMA) instruction, we merged remaining titles across search databases. There are 48 ongoing studies related to the application of nucleic acids in the treatment and diagnosis of AD where more consideration is given to DNA targeting strategies (18 targets for vectors and aptamers), antisense oligonucleotides (10 targets), micro-RNAs mimics (7 targets), antagomiRs (6 targets), small interferences-RNAs (5 targets), as well as mRNAs (2 targets) respectively. All of these targets are grouped into 4 categories according to their role in molecular pathways where amyloid-β (18 targets), neural survival (11 targets), memory and cognition (8 targets), and tau (3 targets) are more targeted pathways, respectively. With recent successes in the systemic delivery of nucleic acids via intravenous injection; it is worth investing in the production of new-generation medicines. There are still several challenges for NA-BTs including, their delivery to the effective modulators, mass production at low cost, sustaining efficacy and minimizing off‐target effects. Regarding miRNA-based therapies, given the obvious involvement of miRNAs in numerous facets of brain disease, and the many sophisticated techniques for delivery to the brain, miRNA-based therapies will make new hope for the treatment of neurological diseases such as AD.

Keywords: Aptamers, Dementia, Oligonucleotide-based therapies, siRNAs, miRNAs, Alzheimer's Disease (AD).

[1]
Sengoku, R. Aging and Alzheimer’s Disease Pathology. Neuropathology, 2019.
[PMID: 31863504]
[2]
Palasí, A.; Gutiérrez-Iglesias, B.; Alegret, M.; Pujadas, F.; Olabarrieta, M.; Liébana, D.; Quintana, M.; Álvarez-Sabín, J.; Boada, M. Differentiated clinical presentation of early and late-onset Alzheimer’s disease: Is 65 years of age providing a reliable threshold? J. Neurol., 2015, 262(5), 1238-1246.
[http://dx.doi.org/10.1007/s00415-015-7698-3] [PMID: 25791224]
[3]
Dubois, B.; Hampel, H.; Feldman, H.H.; Scheltens, P.; Aisen, P.; Andrieu, S.; Bakardjian, H.; Benali, H.; Bertram, L.; Blennow, K.; Broich, K.; Cavedo, E.; Crutch, S.; Dartigues, J.F.; Duyckaerts, C.; Epelbaum, S.; Frisoni, G.B.; Gauthier, S.; Genthon, R.; Gouw, A.A.; Habert, M.O.; Holtzman, D.M.; Kivipelto, M.; Lista, S.; Molinuevo, J.L.; O’Bryant, S.E.; Rabinovici, G.D.; Rowe, C.; Salloway, S.; Schneider, L.S.; Sperling, R.; Teichmann, M.; Carrillo, M.C.; Cummings, J.; Jack, C.R., Jr Proceedings of the Meeting of the International Working Group (IWG) and the American Alzheimer’s Association on “The Preclinical State of AD”; July 23, 2015; Washington DC, USA. Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimers Dement., 2016, 12(3), 292-323.
[http://dx.doi.org/10.1016/j.jalz.2016.02.002] [PMID: 27012484]
[4]
Dorszewska, J.; Prendecki, M.; Oczkowska, A.; Dezor, M.; Kozubski, W. Molecular Basis of Familial and Sporadic Alzheimer’s Disease. Curr. Alzheimer Res., 2016, 13(9), 952-963.
[http://dx.doi.org/10.2174/1567205013666160314150501] [PMID: 26971934]
[5]
Briggs, R.; Kennelly, S.P.; O’Neill, D. Drug treatments in Alzheimer’s disease. Clin. Med. (Lond.), 2016, 16(3), 247-253.
[http://dx.doi.org/10.7861/clinmedicine.16-3-247] [PMID: 27251914]
[6]
Scannevin, R.H. Therapeutic strategies for targeting neurodegenerative protein misfolding disorders. Curr. Opin. Chem. Biol., 2018, 44, 66-74.
[http://dx.doi.org/10.1016/j.cbpa.2018.05.018] [PMID: 29902695]
[7]
Pihlstrøm, L.; Wiethoff, S.; Houlden, H. Genetics of Neurodegenerative Diseases: An Overview. Handbook of Clinical Neurology; Elsevier, 2017, Vol. 145, pp. 309-323.
[8]
Yacoubian, T.A. Neurodegenerative Disorders: Why Do We Need New Therapies?Drug Discovery Approaches for the Treatment of Neurodegenerative Disorders: Alzheimer’s Disease; Elsevier, 2017, pp. 1-16.
[http://dx.doi.org/10.1016/B978-0-12-802810-0.00001-5]
[9]
Longhena, F.; Spano, P.F.; Bellucci, A. Targeting of Disordered Proteins by Small Molecules in Neurodegenerative Diseases. Handbook of Experimental Pharmacology; Springer, 2018, Vol. 245, pp. 85-110.
[10]
Lista, S.; Dubois, B.; Hampel, H. Paths to Alzheimer’s disease prevention: from modifiable risk factors to biomarker enrichment strategies. J. Nutr. Health Aging, 2015, 19(2), 154-163.
[http://dx.doi.org/10.1007/s12603-014-0515-3] [PMID: 25651440]
[11]
De-Paula, V.J.; Radanovic, M.; Diniz, B.S.; Forlenza, O.V. Alzheimer’s Disease; Springer: Dordrecht, 2012, pp. 329-352.
[12]
Cirrito, J.R.; Yamada, K.A.; Finn, M.B.; Sloviter, R.S.; Bales, K.R.; May, P.C.; Schoepp, D.D.; Paul, S.M.; Mennerick, S.; Holtzman, D.M. Synaptic activity regulates interstitial fluid amyloid-β levels in vivo. Neuron, 2005, 48(6), 913-922.
[http://dx.doi.org/10.1016/j.neuron.2005.10.028] [PMID: 16364896]
[13]
Du, X.; Wang, X.; Geng, M. Alzheimer’s disease hypothesis and related therapies. Transl. Neurodegener., 2018, 7, 2.
[http://dx.doi.org/10.1186/s40035-018-0107-y] [PMID: 29423193]
[14]
Angelopoulou, E.; Piperi, C. DPP-4 inhibitors: A promising therapeutic approach against Alzheimer’s disease. Ann. Transl. Med., 2018, 6(12), 255.
[http://dx.doi.org/10.21037/atm.2018.04.41] [PMID: 30069457]
[15]
Manocha, G.; Ghatak, A.; Puig, K.; Combs, C. Anti-α4β1 Integrin Antibodies Attenuated Brain Inflammatory Changes in a Mouse Model of Alzheimer’s Disease. Curr. Alzheimer Res., 2018, 15(12), 1123-1135.
[http://dx.doi.org/10.2174/1567205015666180801111033] [PMID: 30068274]
[16]
Cebers, G.; Alexander, R.C.; Haeberlein, S.B.; Han, D.; Goldwater, R.; Ereshefsky, L.; Olsson, T.; Ye, N.; Rosen, L.; Russell, M.; Maltby, J.; Eketjäll, S.; Kugler, A.R. AZD3293: Pharmacokinetic and Pharmacodynamic Effects in Healthy Subjects and Patients with Alzheimer’s Disease. J. Alzheimers Dis., 2017, 55(3), 1039-1053.
[http://dx.doi.org/10.3233/JAD-160701] [PMID: 27767991]
[17]
Sakamoto, K.; Matsuki, S.; Matsuguma, K.; Yoshihara, T.; Uchida, N.; Azuma, F.; Russell, M.; Hughes, G.; Haeberlein, S.B.; Alexander, R.C.; Eketjäll, S.; Kugler, A.R. BACE1 inhibitor lanabecestat (AZD3293) in a phase 1 study of healthy japanese subjects: Pharmacokinetics and effects on plasma and cerebrospinal fluid Aβ peptides. J. Clin. Pharmacol., 2017, 57(11), 1460-1471.
[http://dx.doi.org/10.1002/jcph.950] [PMID: 28618005]
[18]
Zetterberg, H. Review: Tau in biofluids - relation to pathology, imaging and clinical features. Neuropathol. Appl. Neurobiol., 2017, 43(3), 194-199.
[http://dx.doi.org/10.1111/nan.12378] [PMID: 28054371]
[19]
Brier, M.R.; Gordon, B.; Friedrichsen, K.; McCarthy, J.; Stern, A.; Christensen, J.; Owen, C.; Aldea, P.; Su, Y.; Hassenstab, J. Tau and Aβ imaging, csf measures, and cognition in alzheimer’s disease. Sci. Transl. Med., 2016, 8, 338ra66-338ra66.
[20]
Chong, F.P.; Ng, K.Y.; Koh, R.Y.; Chye, S.M. Tau proteins and tauopathies in alzheimer’s disease. Cell. Mol. Neurobiol., 2018, 38(5), 965-980.
[http://dx.doi.org/10.1007/s10571-017-0574-1] [PMID: 29299792]
[21]
Jouanne, M.; Rault, S.; Voisin-Chiret, A-S.S. Tau protein aggregation in Alzheimer’s disease: An attractive target for the development of novel therapeutic agents. Eur. J. Med. Chem., 2017, 139, 153-167.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.070] [PMID: 28800454]
[22]
Congdon, E.E.; Sigurdsson, E.M. Tau-targeting therapies for Alzheimer disease. Nat. Rev. Neurol., 2018, 14(7), 399-415.
[http://dx.doi.org/10.1038/s41582-018-0013-z] [PMID: 29895964]
[23]
Iqbal, K.; Gong, C-X.; Liu, F. Microtubule-associated protein tau as a therapeutic target in Alzheimer’s disease. Expert Opin. Ther. Targets, 2014, 18(3), 307-318.
[http://dx.doi.org/10.1517/14728222.2014.870156] [PMID: 24387228]
[24]
Prabakaran, S.; Gough, N.R. PP2A to Alzheimer’s rescue. Sci. Signal., 2016, 9 ec71 LP-ec71.
[http://dx.doi.org/10.1126/scisignal.aaf7580]
[25]
Kontsekova, E.; Zilka, N.; Kovacech, B.; Skrabana, R.; Novak, M. Identification of structural determinants on tau protein essential for its pathological function: Novel therapeutic target for tau immunotherapy in Alzheimer’s disease. Alzheimers Res. Ther., 2014, 6(4), 45.
[http://dx.doi.org/10.1186/alzrt277] [PMID: 25478018]
[26]
Heneka, M.T.; O’Banion, M.K.; Terwel, D.; Kummer, M.P. Neuroinflammatory processes in Alzheimer’s disease. J. Neural Transm. (Vienna), 2010, 117(8), 919-947.
[http://dx.doi.org/10.1007/s00702-010-0438-z] [PMID: 20632195]
[27]
Spangenberg, E.E.; Green, K.N. Inflammation in Alzheimer’s disease: Lessons learned from microglia-depletion models. Brain Behav. Immun., 2017, 61, 1-11.
[http://dx.doi.org/10.1016/j.bbi.2016.07.003] [PMID: 27395435]
[28]
Ramesh, G.; MacLean, A.G.; Philipp, M.T. Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators Inflamm., 2013, 2013, 480739.
[http://dx.doi.org/10.1155/2013/480739] [PMID: 23997430]
[29]
Bolós, M.; Perea, J.R.; Avila, J. Alzheimer’s disease as an inflammatory disease. Biomol. Concepts, 2017, 8(1), 37-43.
[http://dx.doi.org/10.1515/bmc-2016-0029] [PMID: 28231054]
[30]
Chen, J.; Sun, Z.; Jin, M.; Tu, Y.; Wang, S. X.Y.-J. of; 2017, U. AGEs/RAGE/Rho/ROCK Pathway inhibition suppresses nonspecific neuroinflammation by regulating BV2 microglial M1/M2 Polarization through the NF- ΚB pathway jingkao chen. jnijournal. com., 2017.
[31]
Hirbec, H., E.; Noristani, H.N.; Perrin, F.E. Microglia responses in acute and chronic neurological diseases: What microglia-specific transcriptomic studies taught (and Did Not Teach) Us. Front. Aging Neurosci., 2017, 9
[32]
Saresella, M.; Calabrese, E.; Marventano, I.; Piancone, F.; Gatti, A.; Farina, E.; Alberoni, M.; Clerici, M. A potential role for the PD1/PD-L1 pathway in the neuroinflammation of Alzheimer’s disease. Neurobiol. Aging, 2012, 33(3), 624.e11-624.e22.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.03.004] [PMID: 21514692]
[33]
Saresella, M.; Calabrese, E.; Marventano, I.; Piancone, F.; Gatti, A.; Calvo, M.G.; Nemni, R.; Clerici, M. PD1 negative and PD1 positive CD4+ T regulatory cells in mild cognitive impairment and Alzheimer’s disease. J. Alzheimers Dis., 2010, 21(3), 927-938.
[http://dx.doi.org/10.3233/JAD-2010-091696] [PMID: 20634592]
[34]
Baruch, K.; Deczkowska, A.; Rosenzweig, N.; Tsitsou-Kampeli, A.; Sharif, A.M.; Matcovitch-Natan, O.; Kertser, A.; David, E.; Amit, I.; Schwartz, M. PD-1 immune checkpoint blockade reduces pathology and improves memory in mouse models of Alzheimer’s disease. Nat. Med., 2016, 22(2), 135-137.
[http://dx.doi.org/10.1038/nm.4022] [PMID: 26779813]
[35]
Zhao, L.; Zhao, Q.; Zhou, Y.; Zhao, Y.; Wan, Q. Atorvastatin may correct dyslipidemia in adult patients at risk for alzheimer’s disease through an anti-inflammatory pathway. CNS Neurol. Disord. Drug Targets, 2016, 15(1), 80-85.
[http://dx.doi.org/10.2174/1871527315999160111160143] [PMID: 26666876]
[36]
Berk, M.; Woods, R.L.; Nelson, M.R.; Shah, R.C.; Reid, C.M.; Storey, E.; Fitzgerald, S.M.; Lockery, J.E.; Wolfe, R.; Mohebbi, M.; Murray, A.M.; Kirpach, B.; Grimm, R.; McNeil, J.J. ASPREE-D: Aspirin for the prevention of depression in the elderly. Int. Psychogeriatr., 2016, 28(10), 1741-1748.
[http://dx.doi.org/10.1017/S104161021600079X] [PMID: 27587328]
[37]
Brazier, D.; Perry, R.; Keane, J.; Barrett, K.; Elmaleh, D.R. pharmacokinetics of cromolyn and ibuprofen in healthy elderly volunteers. Clin. Drug Investig., 2017, 37(11), 1025-1034.
[http://dx.doi.org/10.1007/s40261-017-0549-5] [PMID: 28856569]
[38]
Moussa, C.; Hebron, M.; Huang, X.; Ahn, J.; Rissman, R.A.; Aisen, P.S.; Turner, R.S. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J. Neuroinflammation, 2017, 14(1), 1.
[http://dx.doi.org/10.1186/s12974-016-0779-0] [PMID: 28086917]
[39]
Huang, W.; Li, Z.; Zhao, L.; Zhao, W. Simvastatin ameliorate memory deficits and inflammation in clinical and mouse model of Alzheimer’s disease via modulating the expression of miR-106b. Biomed. Pharmacother., 2017, 92, 46-57.
[http://dx.doi.org/10.1016/j.biopha.2017.05.060] [PMID: 28528185]
[40]
Webster, S.P.; McBride, A.; Binnie, M.; Sooy, K.; Seckl, J.R.; Andrew, R.; Pallin, T.D.; Hunt, H.J.; Perrior, T.R.; Ruffles, V.S.; Ketelbey, J.W.; Boyd, A.; Walker, B.R. Selection and early clinical evaluation of the brain-penetrant 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitor UE2343 (Xanamem™). Br. J. Pharmacol., 2017, 174(5), 396-408.
[http://dx.doi.org/10.1111/bph.13699] [PMID: 28012176]
[41]
Tan, C.C.; Yu, J.T.; Wang, H.F.; Tan, M.S.; Meng, X.F.; Wang, C.; Jiang, T.; Zhu, X.C.; Tan, L. Efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease: A systematic review and meta-analysis. J. Alzheimers Dis., 2014, 41(2), 615-631.
[http://dx.doi.org/10.3233/JAD-132690] [PMID: 24662102]
[42]
Shao, Z-Q. Comparison of the efficacy of four cholinesterase inhibitors in combination with memantine for the treatment of Alzheimer’s disease. Int. J. Clin. Exp. Med., 2015, 8(2), 2944-2948.
[PMID: 25932260]
[43]
Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol., 2018, 14, 450-464.
[http://dx.doi.org/10.1016/j.redox.2017.10.014] [PMID: 29080524]
[44]
Sultana, R.; Butterfield, D.A. Redox proteomics studies of in vivo amyloid beta-peptide animal models of Alzheimer’s disease: Insight into the role of oxidative stress. Proteomics Clin. Appl., 2008, 2(5), 685-696.
[http://dx.doi.org/10.1002/prca.200780024] [PMID: 21136866]
[45]
Butterfield, D.A.; Reed, T.; Newman, S.F.; Sultana, R. Roles of amyloid beta-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment. Free Radic. Biol. Med., 2007, 43(5), 658-677.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.05.037] [PMID: 17664130]
[46]
Gibson, G.L.; Allsop, D.; Austen, B.M. Induction of cellular oxidative stress by the beta-amyloid peptide involved in Alzheimer’s disease. Protein Pept. Lett., 2004, 11(3), 257-270.
[http://dx.doi.org/10.2174/0929866043407101] [PMID: 15182227]
[47]
Mohmmad Abdul, H.; Sultana, R.; Keller, J.N.; St. Clair, D.K.; Markesbery, W.R.; Butterfield, D.A. Mutations in amyloid precursor protein and presenilin-1 genes increase the basal oxidative stress in murine neuronal cells and lead to increased sensitivity to oxidative stress mediated by amyloid β-Peptide (1-42), H2O2 and kainic acid: Implications for A. J. Neurochem., 2006, 96, 1322-1335.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03647.x] [PMID: 16478525]
[48]
Butterfield, D.A.; Griffin, S.; Munch, G.; Pasinetti, G.M. Amyloid β-peptide and amyloid pathology are central to the oxidative stress and inflammatory cascades under which Alzheimer’s disease brain exists. J. Alzheimers Dis., 2002, 4(3), 193-201.
[http://dx.doi.org/10.3233/JAD-2002-4309] [PMID: 12226538]
[49]
Butterfield, D.A.; Lauderback, C.M. Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid β-peptide-associated free radical oxidative stress. Free Radic. Biol. Med., 2002, 32(11), 1050-1060.
[http://dx.doi.org/10.1016/S0891-5849(02)00794-3] [PMID: 12031889]
[50]
Persson, T.; Popescu, B.O.; Cedazo-Minguez, A. Oxidative stress in Alzheimer’s disease: Why did antioxidant therapy fail? Oxid. Med. Cell. Longev., 2014, 2014, 427318.
[http://dx.doi.org/10.1155/2014/427318] [PMID: 24669288]
[51]
Teixeira, J.; Silva, T.; Andrade, P.B.; Borges, F. Alzheimer’s disease and antioxidant therapy: How long how far? Curr. Med. Chem., 2013, 20(24), 2939-2952.
[http://dx.doi.org/10.2174/1871523011320240001] [PMID: 23409717]
[52]
Markowicz-Piasecka, M.; Sikora, J.; Szydłowska, A.; Skupień, A.; Mikiciuk-Olasik, E.; Huttunen, K.M. Metformin - a Future Therapy for Neurodegenerative Diseases : Theme: Drug Discovery, Development and Delivery in Alzheimer’s Disease Guest Editor: Davide Brambilla. Pharm. Res., 2017, 34(12), 2614-2627.
[http://dx.doi.org/10.1007/s11095-017-2199-y] [PMID: 28589443]
[53]
Amin, F.U.; Shah, S.A.; Badshah, H.; Khan, M.; Kim, M.O. Anthocyanins encapsulated by PLGA@PEG nanoparticles potentially improved its free radical scavenging capabilities via p38/JNK pathway against Aβ1-42-induced oxidative stress. J. Nanobiotechnology, 2017, 15(1), 12.
[http://dx.doi.org/10.1186/s12951-016-0227-4] [PMID: 28173812]
[54]
Zhao, C.Y.; Lei, H.; Zhang, Y.; Li, L.; Xu, S.F.; Cai, J.; Li, P.P.; Wang, L.; Wang, X.L.; Peng, Y. L-3-n-Butylphthalide attenuates neuroinflammatory responses by downregulating JNK activation and upregulating Heme oxygenase-1 in lipopolysaccharide-treated mice. J. Asian Nat. Prod. Res., 2016, 18(3), 289-302.
[http://dx.doi.org/10.1080/10286020.2015.1099524] [PMID: 26675131]
[55]
Sanchez-Mut, J.V.; Gräff, J. Epigenetic alterations in Alzheimer’s disease. Front. Behav. Neurosci., 2015, 9, 347.
[http://dx.doi.org/10.3389/fnbeh.2015.00347] [PMID: 26734709]
[56]
James, B.D.; Bennett, D.A. Causes and patterns of dementia: An update in the era of redefining Alzheimer’s Disease. Annu. Rev. Public Health, 2019, 40, 65-84.
[http://dx.doi.org/10.1146/annurev-publhealth-040218-043758] [PMID: 30642228]
[57]
Kovacs, G.G. Molecular pathological classification of neurodegenerative diseases: Turning towards precision medicine. Int. J. Mol. Sci., 2016, 17(2), 17.
[http://dx.doi.org/10.3390/ijms17020189] [PMID: 26848654]
[58]
Kim, J.; Eltorai, A.E.M.; Jiang, H.; Liao, F.; Verghese, P.B.; Kim, J.; Stewart, F.R.; Basak, J.M.; Holtzman, D.M. Anti-apoE immunotherapy inhibits amyloid accumulation in a transgenic mouse model of Aβ amyloidosis. J. Exp. Med., 2012, 209(12), 2149-2156.
[http://dx.doi.org/10.1084/jem.20121274] [PMID: 23129750]
[59]
Liao, F.; Hori, Y.; Hudry, E.; Bauer, A.Q.; Jiang, H.; Mahan, T.E.; Lefton, K.B.; Zhang, T.J.; Dearborn, J.T.; Kim, J.; Culver, J.P.; Betensky, R.; Wozniak, D.F.; Hyman, B.T.; Holtzman, D.M. Anti-ApoE antibody given after plaque onset decreases Aβ accumulation and improves brain function in a mouse model of Aβ amyloidosis. J. Neurosci., 2014, 34(21), 7281-7292.
[http://dx.doi.org/10.1523/JNEUROSCI.0646-14.2014] [PMID: 24849360]
[60]
Kim, J.; Jiang, H.; Park, S.; Eltorai, A.E.M.; Stewart, F.R.; Yoon, H.; Basak, J.M.; Finn, M.B.; Holtzman, D.M. Haploinsufficiency of human APOE reduces amyloid deposition in a mouse model of amyloid-β amyloidosis. J. Neurosci., 2011, 31(49), 18007-18012.
[http://dx.doi.org/10.1523/JNEUROSCI.3773-11.2011] [PMID: 22159114]
[61]
Kim, J.; Castellano, J.M.; Jiang, H.; Basak, J.M.; Parsadanian, M.; Pham, V.; Mason, S.M.; Paul, S.M.; Holtzman, D.M. Overexpression of low-density lipoprotein receptor in the brain markedly inhibits amyloid deposition and increases extracellular A β clearance. Neuron, 2009, 64(5), 632-644.
[http://dx.doi.org/10.1016/j.neuron.2009.11.013] [PMID: 20005821]
[62]
Stefanova, N.A.; Muraleva, N.A.; Korbolina, E.E.; Kiseleva, E.; Maksimova, K.Y.; Kolosova, N.G. Amyloid accumulation is a late event in sporadic Alzheimer’s disease-like pathology in nontransgenic rats. Oncotarget, 2015, 6(3), 1396-1413.
[http://dx.doi.org/10.18632/oncotarget.2751] [PMID: 25595891]
[63]
Castellano, J.M.; Kim, J.; Stewart, F.R.; Jiang, H.; DeMattos, R.B.; Patterson, B.W.; Fagan, A.M.; Morris, J.C.; Mawuenyega, K.G.; Cruchaga, C.; Goate, A.M.; Bales, K.R.; Paul, S.M.; Bateman, R.J.; Holtzman, D.M. Human ApoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci. Transl. Med., 2011, 3, 89ra57-89ra57.
[http://dx.doi.org/10.1126/scitranslmed.3002156]
[64]
Chin-Chan, M.; Navarro-Yepes, J.; Quintanilla-Vega, B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front. Cell. Neurosci., 2015, 9, 124.
[http://dx.doi.org/10.3389/fncel.2015.00124] [PMID: 25914621]
[65]
Yegambaram, M.; Manivannan, B.; Beach, T.G.; Halden, R.U. Role of environmental contaminants in the etiology of Alzheimer’s disease: A review. Curr. Alzheimer Res., 2015, 12(2), 116-146.
[http://dx.doi.org/10.2174/1567205012666150204121719] [PMID: 25654508]
[66]
Huat, T.J.; Camats-Perna, J.; Newcombe, E.A.; Valmas, N.; Kitazawa, M.; Medeiros, R. Metal toxicity links to Alzheimer’s disease and neuroinflammation. J. Mol. Biol., 2019, 431(9), 1843-1868.
[http://dx.doi.org/10.1016/j.jmb.2019.01.018] [PMID: 30664867]
[67]
Delgado-Morales, R.; Agís-Balboa, R.C.; Esteller, M.; Berdasco, M. Epigenetic mechanisms during ageing and neurogenesis as novel therapeutic avenues in human brain disorders. Clin. Epigenetics, 2017, 9, 67.
[http://dx.doi.org/10.1186/s13148-017-0365-z] [PMID: 28670349]
[68]
Cacabelos, R.; Torrellas, C. Epigenetic drug discovery for alzheimer’s disease.Expert Opinion on Drug Discovery; Elsevier, 2014, Vol. 9, pp. 1059-1086.
[69]
Cui, D.; Xu, X. DNA Methyltransferases, DNA Methylation, and Age-Associated cognitive function. Int. J. Mol. Sci., 2018, 19(5), 19.
[http://dx.doi.org/10.3390/ijms19051315] [PMID: 29710796]
[70]
Stoccoro, A.; Coppedè, F. Role of epigenetics in Alzheimer’s disease pathogenesis. Neurodegener. Dis. Manag., 2018, 8(3), 181-193.
[http://dx.doi.org/10.2217/nmt-2018-0004] [PMID: 29888987]
[71]
Chatterjee, P.; Roy, D.; Rathi, N. epigenetic drug repositioning for alzheimer’s disease based on epigenetic targets in human interactome. J. Alzheimers Dis., 2018, 61(1), 53-65.
[http://dx.doi.org/10.3233/JAD-161104] [PMID: 29199645]
[72]
Chakravarthy, M.; Chen, S.; Dodd, P.R.; Veedu, R.N. nucleic acid-based theranostics for tackling alzheimer’s disease. Theranostics, 2017, 7(16), 3933-3947.
[http://dx.doi.org/10.7150/thno.21529] [PMID: 29109789]
[73]
Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669), 806-811.
[http://dx.doi.org/10.1038/35888] [PMID: 9486653]
[74]
Fort, A.; Hashimoto, K.; Yamada, D.; Salimullah, M.; Keya, C.A.; Saxena, A.; Bonetti, A.; Voineagu, I.; Bertin, N.; Kratz, A.; Noro, Y.; Wong, C.H.; de Hoon, M.; Andersson, R.; Sandelin, A.; Suzuki, H.; Wei, C.L.; Koseki, H.; Hasegawa, Y.; Forrest, A.R.R.; Carninci, P. FANTOM Consortium. Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance. Nat. Genet., 2014, 46(6), 558-566.
[http://dx.doi.org/10.1038/ng.2965] [PMID: 24777452]
[75]
Kapranov, P.; Ozsolak, F.; Kim, S.W.S. Nature - 2010 New Class of Gene-Termini-Associated Human RNAs Suggests a Novel RNA Copying Mechanism.Pdf. nature.com, 2010, 466, 642-646.
[76]
Faulkner, G.J.; Kimura, Y.; Daub, C.O.; Wani, S.; Plessy, C.; Irvine, K.M.; Schroder, K.; Cloonan, N.; Steptoe, A.L.; Lassmann, T.; Waki, K.; Hornig, N.; Arakawa, T.; Takahashi, H.; Kawai, J.; Forrest, A.R.R.; Suzuki, H.; Hayashizaki, Y.; Hume, D.A.; Orlando, V.; Grimmond, S.M.; Carninci, P. The regulated retrotransposon transcriptome of mammalian cells. Nat. Genet., 2009, 41(5), 563-571.
[http://dx.doi.org/10.1038/ng.368] [PMID: 19377475]
[77]
Katayama, S.; Tomaru, Y.; Kasukawa, T.; Waki, K.; Nakanishi, M.; Nakamura, M.; Nishida, H.; Yap, C.C.; Suzuki, M.; Kawai, J.; Suzuki, H.; Carninci, P.; Hayashizaki, Y.; Wells, C.; Frith, M.; Ravasi, T.; Pang, K.C.; Hallinan, J.; Mattick, J.; Hume, D.A.; Lipovich, L.; Batalov, S.; Engstrom, P.G.; Mizuno, Y.; Faghihi, M.A.; Sandelin, A.; Chalk, A.M.; Mottagui-Tabar, S.; Liang, Z.; Lenhard, B.; Wahlestedt, C. antisense transcription in the mammalian transcriptome. Science (80-.)., 2005, 309, 1564-1566.
[78]
Derrien, T.; Johnson, R.; Bussotti, G.; Tanzer, A.; Djebali, S.; Tilgner, H.; Guernec, G.; Martin, D.; Merkel, A.; Knowles, D.G.; Lagarde, J.; Veeravalli, L.; Ruan, X.; Ruan, Y.; Lassmann, T.; Carninci, P.; Brown, J.B.; Lipovich, L.; Gonzalez, J.M.; Thomas, M.; Davis, C.A.; Shiekhattar, R.; Gingeras, T.R.; Hubbard, T.J.; Notredame, C.; Harrow, J.; Guigó, R. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res., 2012, 22(9), 1775-1789.
[http://dx.doi.org/10.1101/gr.132159.111] [PMID: 22955988]
[79]
Alvarez-Erviti, L.; Seow, Y.; Yin, H.; Betts, C.; Lakhal, S.; Wood, M.J.A. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol., 2011, 29(4), 341-345.
[http://dx.doi.org/10.1038/nbt.1807] [PMID: 21423189]
[80]
Hutcherson, S.L.; Lanz, R. Vitravene Study Group. A randomized controlled clinical trial of intravitreous fomivirsen for treatment of newly diagnosed peripheral cytomegalovirus retinitis in patients with AIDS. Am. J. Ophthalmol., 2002, 133(4), 467-474.
[PMID: 11931780]
[81]
Baumal, C. A Phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema. Evidence-Based Ophthalmol., 2006, 7, 69-70. [Commentary].
[82]
Mendell, J.R.; Goemans, N.; Lowes, L.P.; Alfano, L.N.; Berry, K.; Shao, J.; Kaye, E.M.; Mercuri, E. Eteplirsen study group and telethon foundation dmd italian network. longitudinal effect of eteplirsen versus historical control on ambulation in duchenne muscular dystrophy. Ann. Neurol., 2016, 79(2), 257-271.
[http://dx.doi.org/10.1002/ana.24555] [PMID: 26573217]
[83]
Crooke, S.T.; Geary, R.S. Clinical pharmacological properties of mipomersen (Kynamro), a second generation antisense inhibitor of apolipoprotein B. Br. J. Clin. Pharmacol., 2013, 76(2), 269-276.
[http://dx.doi.org/10.1111/j.1365-2125.2012.04469.x] [PMID: 23013161]
[84]
Perche, F.; Uchida, S.; Akiba, H.; Lin, C-Y.; Ikegami, M.; Dirisala, A.; Nakashima, T.; Itaka, K.; Tsumoto, K.; Kataoka, K. Improved Brain Expression of Anti-Amyloid β ScFv by Complexation of MRNA Including a Secretion Sequence with PEG-Based Block Catiomer. Curr. Alzheimer Res., 2016, 13, 1-1.
[http://dx.doi.org/10.2174/1567205013666161108110031] [PMID: 27829339]
[85]
Lin, C.Y.; Perche, F.; Ikegami, M.; Uchida, S.; Kataoka, K.; Itaka, K. Messenger RNA-based therapeutics for brain diseases: An animal study for augmenting clearance of beta-amyloid by intracerebral administration of neprilysin mRNA loaded in polyplex nanomicelles. J. Control. Release, 2016, 235, 268-275.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.001] [PMID: 27282413]
[86]
Kurita, H.; Okuda, R.; Yokoo, K.; Inden, M.; Hozumi, I. Protective roles of SLC30A3 against endoplasmic reticulum stress via ERK1/2 activation. Biochem. Biophys. Res. Commun., 2016, 479(4), 853-859.
[http://dx.doi.org/10.1016/j.bbrc.2016.09.119] [PMID: 27678294]
[87]
Geary, R.S.; Norris, D.; Yu, R.; Bennett, C.F. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv. Drug Deliv. Rev., 2015, 87, 46-51.
[http://dx.doi.org/10.1016/j.addr.2015.01.008] [PMID: 25666165]
[88]
Evers, M.M.; Toonen, L.J.A.; van Roon-Mom, W.M.C. Antisense oligonucleotides in therapy for neurodegenerative disorders. Adv. Drug Deliv. Rev., 2015, 87, 90-103.
[http://dx.doi.org/10.1016/j.addr.2015.03.008] [PMID: 25797014]
[89]
Bennett, C.F.; Swayze, E.E. RNA targeting therapeutics: Molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu. Rev. Pharmacol. Toxicol., 2010, 50, 259-293.
[http://dx.doi.org/10.1146/annurev.pharmtox.010909.105654] [PMID: 20055705]
[90]
Miller, T.M.; Pestronk, A.; David, W.; Rothstein, J.; Simpson, E.; Appel, S.H.; Andres, P.L.; Mahoney, K.; Allred, P.; Alexander, K.; Ostrow, L.W.; Schoenfeld, D.; Macklin, E.A.; Norris, D.A.; Manousakis, G.; Crisp, M.; Smith, R.; Bennett, C.F.; Bishop, K.M.; Cudkowicz, M.E. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol., 2013, 12(5), 435-442.
[http://dx.doi.org/10.1016/S1474-4422(13)70061-9] [PMID: 23541756]
[91]
Huynh, T.V.; Liao, F.; Francis, C.M.; Robinson, G.O.; Serrano, J.R.; Jiang, H.; Roh, J.; Finn, M.B.; Sullivan, P.M.; Esparza, T.J.; Stewart, F.R.; Mahan, T.E.; Ulrich, J.D.; Cole, T.; Holtzman, D.M. Age-Dependent effects of apoe reduction using antisense oligonucleotides in a model of β-amyloidosis. Neuron, 2017, 96(5), 1013-1023.e4.
[http://dx.doi.org/10.1016/j.neuron.2017.11.014] [PMID: 29216448]
[92]
DeVos, S.L.; Miller, R.L.; Schoch, K.M.; Holmes, B.B.; Kebodeaux, C.S.; Wegener, A.J.; Chen, G.; Shen, T.; Tran, H.; Nichols, B.; Zanardi, T.A.; Kordasiewicz, H.B.; Swayze, E.E.; Bennett, C.F.; Diamond, M.I.; Miller, T.M. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci. Transl. Med., 2017, 9(374), 9.
[http://dx.doi.org/10.1126/scitranslmed.aag0481] [PMID: 28123067]
[93]
Sud, R.; Geller, E.T.; Schellenberg, G.D. Antisense-mediated exon skipping decreases tau protein expression: A potential therapy for tauopathies. Mol. Ther. Nucleic Acids, 2014, 3, e180.
[http://dx.doi.org/10.1038/mtna.2014.30] [PMID: 25072694]
[94]
Self, W.K.; Schoch, K.M.; Alex, J.; Barthélemy, N.; Bollinger, J.G.; Sato, C.; Cole, T.; Kordasiewicz, H.B.; Swayze, E.; Bateman, R.J.; Miller, T.M. Protein production is an early biomarker for RNA-targeted therapies. Ann. Clin. Transl. Neurol., 2018, 5(12), 1492-1504.
[http://dx.doi.org/10.1002/acn3.657] [PMID: 30564616]
[95]
Hinrich, A.J.; Jodelka, F.M.; Chang, J.L.; Brutman, D.; Bruno, A.M.; Briggs, C.A.; James, B.D.; Stutzmann, G.E.; Bennett, D.A.; Miller, S.A.; Rigo, F.; Marr, R.A.; Hastings, M.L. Therapeutic correction of ApoER2 splicing in Alzheimer’s disease mice using antisense oligonucleotides. EMBO Mol. Med., 2016, 8(4), 328-345.
[http://dx.doi.org/10.15252/emmm.201505846] [PMID: 26902204]
[96]
Farr, S.A.; Erickson, M.A.; Niehoff, M.L.; Banks, W.A.; Morley, J.E. Central and peripheral administration of antisense oligonucleotide targeting amyloid-β protein precursor improves learning and memory and reduces neuroinflammatory cytokines in Tg2576 (AβPPswe) mice. J. Alzheimers Dis., 2014, 40(4), 1005-1016.
[http://dx.doi.org/10.3233/JAD-131883] [PMID: 24577464]
[97]
Erickson, M.A.; Niehoff, M.L.; Farr, S.A.; Morley, J.E.; Dillman, L.A.; Lynch, K.M.; Banks, W.A. Peripheral administration of antisense oligonucleotides targeting the amyloid-β protein precursor reverses AβPP and LRP-1 overexpression in the aged SAMP8 mouse brain. J. Alzheimers Dis., 2012, 28(4), 951-960.
[http://dx.doi.org/10.3233/JAD-2011-111517] [PMID: 22179572]
[98]
Erickson, M.A.; Farr, S.A.; Niehoff, M.L.; Morley, J.E.; Banks, W.A. 95. Antisense directed against the amyloid precursor protein reduces cytokine expression in the brain and improves learning and memory in the Tg2576 mouse model of alzheimer’s disease. Brain Behav. Immun., 2012, 26, S27.
[http://dx.doi.org/10.1016/j.bbi.2012.07.119]
[99]
Fiorini, A.; Sultana, R.; Förster, S.; Perluigi, M.; Cenini, G.; Cini, C.; Cai, J.; Klein, J.B.; Farr, S.A.; Niehoff, M.L.; Morley, J.E.; Kumar, V.B.; Butterfield, D.A. Antisense directed against PS-1 gene decreases brain oxidative markers in aged senescence accelerated mice (SAMP8) and reverses learning and memory impairment: a proteomics study. Free Radic. Biol. Med., 2013, 65, 1-14.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.06.017] [PMID: 23777706]
[100]
Farr, S.A.; Ripley, J.L.; Sultana, R.; Zhang, Z.; Niehoff, M.L.; Platt, T.L.; Murphy, M.P.; Morley, J.E.; Kumar, V.; Butterfield, D.A. Antisense oligonucleotide against GSK-3β in brain of SAMP8 mice improves learning and memory and decreases oxidative stress: Involvement of transcription factor Nrf2 and implications for Alzheimer disease. Free Radic. Biol. Med., 2014, 67, 387-395.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.11.014] [PMID: 24355211]
[101]
Chen, S.; Ge, X.; Chen, Y.; Lv, N.; Liu, Z.; Yuan, W. Advances with RNA interference in Alzheimer’s disease research. Drug Des. Devel. Ther., 2013, 7, 117-125.
[PMID: 23459401]
[102]
Bobbin, M.L.; Rossi, J.J. RNA Interference (RNAi)-Based Therapeutics: Delivering on the Promise? Annu. Rev. Pharmacol. Toxicol., 2016, 56, 103-122.
[http://dx.doi.org/10.1146/annurev-pharmtox-010715-103633] [PMID: 26738473]
[103]
Sierant, M.; Piotrzkowska, D.; Nawrot, B. RNAi mediated silencing of cyclin-dependent kinases of G1 phase slows down the cell-cycle progression and reduces apoptosis. Acta Neurobiol. Exp. (Warsz.), 2015, 75(1), 36-47.
[PMID: 25856521]
[104]
Zhang, Q.; Li, N.; Jiao, X.; Qin, X.; Kaur, R.; Lu, X.; Song, J.; Wang, L.; Wang, J.; Niu, Q. Caspase-3 short hairpin RNAs: a potential therapeutic agent in neurodegeneration of aluminum-exposed animal model. Curr. Alzheimer Res., 2014, 11(10), 961-970.
[http://dx.doi.org/10.2174/1567205011666141107150938] [PMID: 25387335]
[105]
Liu, G.P.; Wei, W.; Zhou, X.; Shi, H.R.; Liu, X.H.; Chai, G.S.; Yao, X.Q.; Zhang, J.Y.; Peng, C.X.; Hu, J.; Li, X.C.; Wang, Q.; Wang, J.Z. Silencing PP2A inhibitor by lenti-shRNA interference ameliorates neuropathologies and memory deficits in tg2576 mice. Mol. Ther., 2013, 21(12), 2247-2257.
[http://dx.doi.org/10.1038/mt.2013.189] [PMID: 23922015]
[106]
Murphy, S.R.; Chang, C.C.Y.; Dogbevia, G.; Bryleva, E.Y.; Bowen, Z.; Hasan, M.T.; Chang, T.Y. Acat1 knockdown gene therapy decreases amyloid-β in a mouse model of Alzheimer’s disease. Mol. Ther., 2013, 21(8), 1497-1506.
[http://dx.doi.org/10.1038/mt.2013.118] [PMID: 23774792]
[107]
Jabłkowski, M.; Szemraj, M.; Oszajca, K.; Janiszewska, G.; Bartkowiak, J.; Szemraj, J. New type of BACE1 siRNA delivery to cells. Med. Sci. Monit., 2014, 20, 2598-2606.
[http://dx.doi.org/10.12659/MSM.891219] [PMID: 25491230]
[108]
Peng, K.A.; Masliah, E. Lentivirus-expressed siRNA vectors against Alzheimer disease. Methods Mol. Biol., 2010, 614, 215-224.
[http://dx.doi.org/10.1007/978-1-60761-533-0_15] [PMID: 20225047]
[109]
Gao, Y.; Wang, Z.Y.; Zhang, J.; Zhang, Y.; Huo, H.; Wang, T.; Jiang, T.; Wang, S. RVG-peptide-linked trimethylated chitosan for delivery of siRNA to the brain. Biomacromolecules, 2014, 15(3), 1010-1018.
[http://dx.doi.org/10.1021/bm401906p] [PMID: 24547943]
[110]
Lee, D.Y.; Moon, J.; Lee, S.T.; Jung, K.H.; Park, D.K.; Yoo, J.S.; Sunwoo, J.S.; Byun, J.I.; Shin, J.W.; Jeon, D.; Jung, K.Y.; Kim, M.; Lee, S.K.; Chu, K. Distinct expression of long non-coding rnas in an alzheimer’s disease model. J. Alzheimers Dis., 2015, 45(3), 837-849.
[http://dx.doi.org/10.3233/JAD-142919] [PMID: 25624420]
[111]
Santa-Maria, I.; Alaniz, M.E.; Renwick, N.; Cela, C.; Fulga, T.A.; Van Vactor, D.; Tuschl, T.; Clark, L.N.; Shelanski, M.L.; McCabe, B.D.; Crary, J.F. Dysregulation of microRNA-219 promotes neurodegeneration through post-transcriptional regulation of tau. J. Clin. Invest., 2015, 125(2), 681-686.
[http://dx.doi.org/10.1172/JCI78421] [PMID: 25574843]
[112]
Pereira, P.A.; Tomás, J.F.; Queiroz, J.A.; Figueiras, A.R.; Sousa, F. Recombinant pre-miR-29b for Alzheimer’s disease therapeutics. Sci. Rep., 2016, 6, 19946.
[http://dx.doi.org/10.1038/srep19946] [PMID: 26818210]
[113]
Zhu, H.C.; Wang, L.M.; Wang, M.; Song, B.; Tan, S.; Teng, J.F.; Duan, D.X. MicroRNA-195 downregulates Alzheimer’s disease amyloid-β production by targeting BACE1. Brain Res. Bull., 2012, 88(6), 596-601.
[http://dx.doi.org/10.1016/j.brainresbull.2012.05.018] [PMID: 22721728]
[114]
Zhang, Y.; Li, Q.; Liu, C.; Gao, S.; Ping, H.; Wang, J.; Wang, P. MiR-214-3p attenuates cognition defects via the inhibition of autophagy in SAMP8 mouse model of sporadic Alzheimer’s disease. Neurotoxicology, 2016, 56, 139-149.
[http://dx.doi.org/10.1016/j.neuro.2016.07.004] [PMID: 27397902]
[115]
Zhang, Y.; Liu, C.; Wang, J.; Li, Q.; Ping, H.; Gao, S.; Wang, P. MiR-299-5p regulates apoptosis through autophagy in neurons and ameliorates cognitive capacity in APPswe/PS1dE9 mice. Sci. Rep., 2016, 6, 24566.
[http://dx.doi.org/10.1038/srep24566] [PMID: 27080144]
[116]
Salta, E.; De Strooper, B. microRNA-132: A key noncoding RNA operating in the cellular phase of Alzheimer’s disease. FASEB J., 2017, 31(2), 424-433.
[http://dx.doi.org/10.1096/fj.201601308] [PMID: 28148775]
[117]
Roshan, R.; Shridhar, S.; Sarangdhar, M.A.; Banik, A.; Chawla, M.; Garg, M.; Singh, V.P.; Pillai, B. Brain-specific knockdown of miR-29 results in neuronal cell death and ataxia in mice. RNA, 2014, 20(8), 1287-1297.
[http://dx.doi.org/10.1261/rna.044008.113] [PMID: 24958907]
[118]
Kim, J.; Yoon, H.; Horie, T.; Burchett, J.M.; Restivo, J.L.; Rotllan, N.; Ramírez, C.M.; Verghese, P.B.; Ihara, M.; Hoe, H.S.; Esau, C.; Fernández-Hernando, C.; Holtzman, D.M.; Cirrito, J.R.; Ono, K.; Kim, J. microRNA-33 Regulates ApoE lipidation and amyloid-β metabolism in the brain. J. Neurosci., 2015, 35(44), 14717-14726.
[http://dx.doi.org/10.1523/JNEUROSCI.2053-15.2015] [PMID: 26538644]
[119]
Wang, C.N.; Wang, Y.J.; Wang, H.; Song, L.; Chen, Y.; Wang, J.L.; Ye, Y.; Jiang, B. The Anti-dementia effects of donepezil involve miR-206-3p in the hippocampus and cortex. Biol. Pharm. Bull., 2017, 40(4), 465-472.
[http://dx.doi.org/10.1248/bpb.b16-00898] [PMID: 28123152]
[120]
Wang, L.L.; Huang, Y.; Wang, G.; Chen, S.D. The potential role of microRNA-146 in Alzheimer’s disease: Biomarker or therapeutic target? Med. Hypotheses, 2012, 78(3), 398-401.
[http://dx.doi.org/10.1016/j.mehy.2011.11.019] [PMID: 22209051]
[121]
Liu, Z.; Wang, C.; Wang, X.; Xu, S. Therapeutic Effects of Transplantation of As-MiR-937-Expressing mesenchymal stem cells in murine model of alzheimer’s disease. Cell. Physiol. Biochem., 2015, 37(1), 321-330.
[http://dx.doi.org/10.1159/000430356] [PMID: 26316079]
[122]
Gustincich, S.; Zucchelli, S.; Mallamaci, A. The Yin and Yang of nucleic acid-based therapy in the brain. Prog. Neurobiol., 2017, 155, 194-211.
[http://dx.doi.org/10.1016/j.pneurobio.2016.11.001] [PMID: 27887908]
[123]
Lukiw, W.J.; Alexandrov, P.N.; Zhao, Y.; Hill, J.M.; Bhattacharjee, S. Spreading of Alzheimer’s disease inflammatory signaling through soluble micro-RNA. Neuroreport, 2012, 23(10), 621-626.
[http://dx.doi.org/10.1097/WNR.0b013e32835542b0] [PMID: 22660168]
[124]
Lee, S.T.; Chu, K.; Jung, K.H.; Kim, J.H.; Huh, J.Y.; Yoon, H.; Park, D.K.; Lim, J.Y.; Kim, J.M.; Jeon, D.; Ryu, H.; Lee, S.K.; Kim, M.; Roh, J.K. miR-206 regulates brain-derived neurotrophic factor in Alzheimer disease model. Ann. Neurol., 2012, 72(2), 269-277.
[http://dx.doi.org/10.1002/ana.23588] [PMID: 22926857]
[125]
György, B.; Lööv, C.; Zaborowski, M.P.; Takeda, S.; Kleinstiver, B.P.; Commins, C.; Kastanenka, K.; Mu, D.; Volak, A.; Giedraitis, V.; Lannfelt, L.; Maguire, C.A.; Joung, J.K.; Hyman, B.T.; Breakefield, X.O.; Ingelsson, M. Crispr/Cas9 mediated disruption of the swedish app allele as a therapeutic approach for early-onset Alzheimer’s disease. Mol. Ther. Nucleic Acids, 2018, 11, 429-440.
[http://dx.doi.org/10.1016/j.omtn.2018.03.007] [PMID: 29858078]
[126]
Shimamura, M.; Sato, N.; Morishita, R. Experimental and clinical application of plasmid DNA in the field of central nervous diseases. Curr. Gene Ther., 2011, 11(6), 491-500.
[http://dx.doi.org/10.2174/156652311798192833] [PMID: 22023479]
[127]
Tuszynski, M.H.; Yang, J.H.; Barba, D. U, H.S.; Bakay, R.A.E.; Pay, M.M.; Masliah, E.; Conner, J.M.; Kobalka, P.; Roy, S.; Nagahara, A.H. Nerve growth factor gene therapy: Activation of neuronal responses in Alzheimer disease. JAMA Neurol., 2015, 72(10), 1139-1147.
[http://dx.doi.org/10.1001/jamaneurol.2015.1807] [PMID: 26302439]
[128]
Ren, J.; Chen, Y.I.; Liu, C.H.; Chen, P.C.; Prentice, H.; Wu, J.Y.; Liu, P.K. Noninvasive tracking of gene transcript and neuroprotection after gene therapy. Gene Ther., 2016, 23(1), 1-9.
[http://dx.doi.org/10.1038/gt.2015.81] [PMID: 26207935]
[129]
Li, Y.; Wang, J.; Grebogi, C.; Foote, M.; Liu, F. A syringe-focused ultrasound device for simultaneous injection of DNA and gene transfer. J. Gene Med., 2012, 14(1), 54-61.
[http://dx.doi.org/10.1002/jgm.1633] [PMID: 22114052]
[130]
Rafii, M.S.; Baumann, T.L.; Bakay, R.A.E.; Ostrove, J.M.; Siffert, J.; Fleisher, A.S.; Herzog, C.D.; Barba, D.; Pay, M.; Salmon, D.P.; Chu, Y.; Kordower, J.H.; Bishop, K.; Keator, D.; Potkin, S.; Bartus, R.T.A. A phase1 study of stereotactic gene delivery of AAV2-NGF for Alzheimer’s disease. Alzheimers Dement., 2014, 10(5), 571-581.
[http://dx.doi.org/10.1016/j.jalz.2013.09.004] [PMID: 24411134]
[131]
Mandel, R.J. CERE-110, an adeno-associated virus-based gene delivery vector expressing human nerve growth factor for the treatment of Alzheimer’s disease. Curr. Opin. Mol. Ther., 2010, 12(2), 240-247.
[PMID: 20373268]
[132]
Rafii, M.S.; Tuszynski, M.H.; Thomas, R.G.; Barba, D.; Brewer, J.B.; Rissman, R.A.; Siffert, J.; Aisen, P.S.; Mintzer, J.; Lerner, A.; Levey, A.; Burke, J.; Sano, M.; Turner, S.; Zamrini, E.; Grill, J.; Marson, D. AAV2-NGF Study Team. Adeno-Associated viral Vector (Serotype 2)-Nerve growth factor for patients with alzheimer disease: A randomized clinical trial. JAMA Neurol., 2018, 75(7), 834-841.
[http://dx.doi.org/10.1001/jamaneurol.2018.0233] [PMID: 29582053]
[133]
Zhao, L.; Gottesdiener, A.J.; Parmar, M.; Li, M.; Kaminsky, S.M.; Chiuchiolo, M.J.; Sondhi, D.; Sullivan, P.M.; Holtzman, D.M.; Crystal, R.G.; Paul, S.M. Intracerebral adeno-associated virus gene delivery of apolipoprotein E2 markedly reduces brain amyloid pathology in Alzheimer’s disease mouse models. Neurobiol. Aging, 2016, 44, 159-172.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.04.020] [PMID: 27318144]
[134]
Sutcliffe, J.G.; Hedlund, P.B.; Thomas, E.A.; Bloom, F.E.; Hilbush, B.S. Peripheral reduction of β-amyloid is sufficient to reduce brain β-amyloid: implications for Alzheimer’s disease. J. Neurosci. Res., 2011, 89(6), 808-814.
[http://dx.doi.org/10.1002/jnr.22603] [PMID: 21374699]
[135]
Katsouri, L.; Lim, Y.M.; Blondrath, K.; Eleftheriadou, I.; Lombardero, L.; Birch, A.M.; Mirzaei, N.; Irvine, E.E.; Mazarakis, N.D.; Sastre, M. PPARγ-coactivator-1α gene transfer reduces neuronal loss and amyloid-β generation by reducing β-secretase in an Alzheimer’s disease model. Proc. Natl. Acad. Sci. USA, 2016, 113(43), 12292-12297.
[http://dx.doi.org/10.1073/pnas.1606171113] [PMID: 27791018]
[136]
Qu, J.; Yu, S.; Zheng, Y.; Zheng, Y.; Yang, H.; Zhang, J. Aptamer and its applications in neurodegenerative diseases. Cell. Mol. Life Sci., 2017, 74(4), 683-695.
[http://dx.doi.org/10.1007/s00018-016-2345-4] [PMID: 27563707]
[137]
McConnell, E.M.; Holahan, M.R.; DeRosa, M.C. Aptamers as promising molecular recognition elements for diagnostics and therapeutics in the central nervous system. Nucleic Acid Ther., 2014, 24(6), 388-404.
[http://dx.doi.org/10.1089/nat.2014.0492] [PMID: 25296265]
[138]
Tannenberg, R.K.; Shamaileh, H.A.; Lauridsen, L.H.; Kanwar, J.R.; Dodd, P.R.; Veedu, R.N. Nucleic acid aptamers as novel class of therapeutics to mitigate Alzheimer’s disease pathology. Curr. Alzheimer Res., 2013, 10(4), 442-448.
[http://dx.doi.org/10.2174/1567205011310040009] [PMID: 23270374]
[139]
Ashrafuzzaman, M. Aptamers as both drugs and drug-carriers. Biomed Res. Int., 2014, 2014
[http://dx.doi.org/10.1155/2014/697923]
[140]
Yamagishi, S.; Taguchi, K.; Fukami, K. DNA-aptamers raised against AGEs as a blocker of various aging-related disorders. Glycoconj. J., 2016, 33(4), 683-690.
[http://dx.doi.org/10.1007/s10719-016-9682-2] [PMID: 27338620]
[141]
Mathew, A.; Aravind, A.; Brahatheeswaran, D.; Fukuda, T.; Nagaoka, Y.; Hasumura, T.; Iwai, S.; Morimoto, H.; Yoshida, Y.; Maekawa, T.; Venugopal, K.; Sakthi Kumar, D. Amyloid-Binding Aptamer Conjugated Curcumin-PLGA Nanoparticle for Potential Use in Alzheimer’s Disease. Bionanoscience, 2012, 2, 83-93.
[http://dx.doi.org/10.1007/s12668-012-0040-y]
[142]
Chakravarthy, M.; AlShamaileh, H.; Huang, H.; Tannenberg, R.K.; Chen, S.; Worrall, S.; Dodd, P.R.; Veedu, R.N. Development of DNA aptamers targeting low-molecular-weight amyloid-β peptide aggregates in vitro. Chem. Commun. (Camb.), 2018, 54(36), 4593-4596.
[http://dx.doi.org/10.1039/C8CC02256A] [PMID: 29670956]
[143]
Liang, H.; Shi, Y.; Kou, Z.; Peng, Y.; Chen, W.; Li, X.; Li, S.; Wang, Y.; Wang, F.; Zhang, X. Inhibition of BACE1 activity by a DNA Aptamer in an alzheimer’s disease cell model. PLoS One, 2015, 10(10) e0140733.
[http://dx.doi.org/10.1371/journal.pone.0140733] [PMID: 26473367]
[144]
Xiang, J.; Zhang, W.; Cai, X.F.; Cai, M.; Yu, Z.H.; Yang, F.; Zhu, W.; Li, X.T.; Wu, T.; Zhang, J.S.; Cai, D.F. DNA Aptamers Targeting BACE1 reduce amyloid levels and rescue neuronal deficiency in cultured cells. Mol. Ther. Nucleic Acids, 2019, 16, 302-312.
[http://dx.doi.org/10.1016/j.omtn.2019.02.025] [PMID: 30959405]
[145]
Janas, T.; Sapoń, K.; Stowell, M.H.B.; Janas, T. Selection of Membrane RNA Aptamers to Amyloid Beta Peptide: Implications for exosome-based antioxidant strategies. Int. J. Mol. Sci., 2019, 20(2), 299.
[http://dx.doi.org/10.3390/ijms20020299] [PMID: 30642129]
[146]
Farrar, C.T.; William, C.M.; Hudry, E.; Hashimoto, T.; Hyman, B.T. RNA aptamer probes as optical imaging agents for the detection of amyloid plaques. PLoS One, 2014, 9(2) e89901.
[http://dx.doi.org/10.1371/journal.pone.0089901] [PMID: 24587111]
[147]
Babu, E.; Muthu Mareeswaran, P.; Sathish, V.; Singaravadivel, S.; Rajagopal, S. Sensing and inhibition of amyloid-β based on the simple luminescent aptamer-ruthenium complex system. Talanta, 2015, 134, 348-353.
[http://dx.doi.org/10.1016/j.talanta.2014.11.020] [PMID: 25618678]
[148]
Kim, J.H.; Kim, E.; Choi, W.H.; Lee, J.; Lee, J.H.; Lee, H.; Kim, D.E.; Suh, Y.H.; Lee, M.J. Inhibitory RNA aptamers of tau oligomerization and their neuroprotective roles against proteotoxic stress. Mol. Pharm., 2016, 13(6), 2039-2048.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00165] [PMID: 27120117]
[149]
Kim, S.; Wark, A.W.; Lee, H.J. Femtomolar detection of tau proteins in undiluted plasma using surface plasmon resonance. Anal. Chem., 2016, 88(15), 7793-7799.
[http://dx.doi.org/10.1021/acs.analchem.6b01825] [PMID: 27399254]
[150]
Shui, B.; Tao, D.; Cheng, J.; Mei, Y.; Jaffrezic-Renault, N.; Guo, Z. A novel electrochemical aptamer-antibody sandwich assay for the detection of tau-381 in human serum. Analyst (Lond.), 2018, 143(15), 3549-3554.
[http://dx.doi.org/10.1039/C8AN00527C] [PMID: 30004544]
[151]
Lee, J.H.; Shin, S.K.; Jiang, Y.; Choi, W.H.; Hong, C.; Kim, D.E.; Lee, M.J. Facilitated tau degradation by usp14 aptamers via enhanced proteasome activity. Sci. Rep., 2015, 5, 10757.
[http://dx.doi.org/10.1038/srep10757] [PMID: 26041011]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 15
Year: 2020
Published on: 13 May, 2020
Page: [1499 - 1517]
Pages: 19
DOI: 10.2174/1389557520666200513122357
Price: $65

Article Metrics

PDF: 40
HTML: 3