Irreversible Kinase Inhibitors Targeting Cysteine Residues and their Applications in Cancer Therapy

Author(s): Debasis Das*, Jian Hong

Journal Name: Mini-Reviews in Medicinal Chemistry

Volume 20 , Issue 17 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Protein kinases are conserved enzymes that catalyse the phosphorylation process in cells. They are recognized as the targets for many diseases. The FDA has approved many kinase inhibitors for the treatment of cancer and confirmed kinases as relevant targets for drug discovery. Major approved drugs are ATP competitive reversible non-covalent inhibitors that achieve selectivity by recognition of specific binding pockets of targeted kinases. In recent years, scientists have paid attention on developing irreversible covalent kinase inhibitors to achieve better selectivity, less toxicity and side effects. Since 2013, seven Irreversible Kinase Inhibitors (IKIs), including; afatinib, ibrutinib, neratinib, dacomitinib, osimertinib, acalabrutinib and zanubrutinib have been approved by the FDA for treatment of severe diseases, like; Metastatic Non-Small Cell Lung Cancer (NSCLC), Mantle Cell Lymphoma (MCL) and HER2-positive breast cancer. These inhibitors target the cysteine residues of kinases. Many IKIs that target cysteine residues are in clinical trials for different diseases and are yet to be approved. We have reviewed the research done and efforts made for finding novel cysteine targeted IKIs as drugs in the recent years.

Keywords: Kinase, inhibitor, irreversible, cancer, EGFR, HER, CDK, BTK, FGFR, JAK.

[1]
Humphrey, S.J.; James, D.E.; Mann, M. Protein phosphorylation: A major switch mechanism for metabolic regulation. Trends Endocrinol. Metab., 2015, 26(12), 676-687.
[http://dx.doi.org/10.1016/j.tem.2015.09.013 ] [PMID: 26498855]
[2]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013 ] [PMID: 21376230]
[3]
Santos, R.; Ursu, O.; Gaulton, A.; Bento, A.P.; Donadi, R.S.; Bologa, C.G.; Karlsson, A.; Al-Lazikani, B.; Hersey, A.; Oprea, T.I.; Overington, J.P. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov., 2017, 16(1), 19-34.
[http://dx.doi.org/10.1038/nrd.2016.230 ] [PMID: 27910877]
[4]
Barf, T.; Kaptein, A. Irreversible protein kinase inhibitors: Balancing the benefits and risks. J. Med. Chem., 2012, 55(14), 6243-6262.
[http://dx.doi.org/10.1021/jm3003203 ] [PMID: 22621397]
[5]
Ferguson, F.M.; Gray, N.S. Kinase inhibitors: the road ahead. Nat. Rev. Drug Discov., 2018, 17(5), 353-377.
[http://dx.doi.org/10.1038/nrd.2018.21 ] [PMID: 29545548]
[6]
Das, D.; Hong, J. Recent advancements of 4-aminoquinazoline derivatives as kinase inhibitors and their applications in medicinal chemistry. Eur. J. Med. Chem., 2019, 170, 55-72.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.004 ] [PMID: 30878832]
[7]
Gilbert, A.M. Recent advances in irreversible kinase inhibitors. Pharm. Pat. Anal., 2014, 3(4), 375-386.
[http://dx.doi.org/10.4155/ppa.14.24 ] [PMID: 25291312]
[8]
FDA Broadens Afatinib Indication to Previously Untreated. Metastatic NSCLC with Other Non-Resistant EGFR Mutations.,
[9]
FDA Approves Dacomitinib for Metastatic Non-Small Cell Lung Cancer.,
[10]
FDA Approves Osimertinib for First-Line Treatment of Metastatic NSCLC with Most Common EGFR Mutations.,
[11]
Swinney, D.C. The role of binding kinetics in therapeutically useful drug action. Curr. Opin. Drug Discov. Devel., 2009, 12(1), 31-39.
[PMID: 19152211]
[12]
Mah, R.; Thomas, J.R.; Shafer, C.M. Drug discovery considerations in the development of covalent inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(1), 33-39.
[http://dx.doi.org/10.1016/j.bmcl.2013.10.003 ] [PMID: 24314671]
[13]
Strelow, J.M. A perspective on the kinetics of covalent and irreversible inhibition SLAS DISCOVERY: Advancing Life Sciences R&D, 2017, 22, 3-20.
[14]
Potashman, M.H.; Duggan, M.E. Covalent modifiers: An orthogonal approach to drug design. J. Med. Chem., 2009, 52(5), 1231-1246.
[http://dx.doi.org/10.1021/jm8008597 ] [PMID: 19203292]
[15]
Santos, M.M.; Moreira, R. Michael acceptors as cysteine protease inhibitors. Mini Rev. Med. Chem., 2007, 7(10), 1040-1050.
[http://dx.doi.org/10.2174/138955707782110105 ] [PMID: 17979807]
[16]
Hoch, D.G.; Abegg, D.; Adibekian, A. Cysteine-reactive probes and their use in chemical proteomics. Chem. Commun. (Camb.), 2018, 54(36), 4501-4512.
[http://dx.doi.org/10.1039/C8CC01485J ] [PMID: 29645055]
[17]
Ábrányi-Balogh, P.; Petri, L.; Imre, T.; Szijj, P.; Scarpino, A.; Hrast, M.; Mitrović, A.; Fonovič, U.P.; Németh, K.; Barreteau, H.; Roper, D.I.; Horváti, K.; Ferenczy, G.G.; Kos, J.; Ilaš, J.; Gobec, S.; Keserű, G.M. A road map for prioritizing warheads for cysteine targeting covalent inhibitors. Eur. J. Med. Chem., 2018, 160, 94-107.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.010 ] [PMID: 30321804]
[18]
Leproult, E.; Barluenga, S.; Moras, D.; Wurtz, J-M.; Winssinger, N. Cysteine mapping in conformationally distinct kinase nucleotide binding sites: Application to the design of selective covalent inhibitors. J. Med. Chem., 2011, 54(5), 1347-1355.
[http://dx.doi.org/10.1021/jm101396q ] [PMID: 21322567]
[19]
Liu, Q.; Sabnis, Y.; Zhao, Z.; Zhang, T.; Buhrlage, S.J.; Jones, L.H.; Gray, N.S. Developing irreversible inhibitors of the protein kinase cysteinome. Chem. Biol., 2013, 20(2), 146-159.
[http://dx.doi.org/10.1016/j.chembiol.2012.12.006 ] [PMID: 23438744]
[20]
Shannon, D.A.; Weerapana, E. Covalent protein modification: The current landscape of residue-specific electrophiles. Curr. Opin. Chem. Biol., 2015, 24, 18-26.
[http://dx.doi.org/10.1016/j.cbpa.2014.10.021 ] [PMID: 25461720]
[21]
Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science, 2002, 298(5600), 1912-1934.
[http://dx.doi.org/10.1126/science.1075762 ] [PMID: 12471243]
[22]
Cohen, M.S.; Zhang, C.; Shokat, K.M.; Taunton, J. Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science, 2005, 308(5726), 1318-1321.
[http://dx.doi.org/10.1126/science1108367 ] [PMID: 15919995]
[23]
Zhao, Z.; Liu, Q.; Bliven, S.; Xie, L.; Bourne, P.E. Determining cysteines available for covalent inhibition across the human kinome. J. Med. Chem., 2017, 60(7), 2879-2889.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01815 ] [PMID: 28326775]
[24]
Solca, F.; Dahl, G.; Zoephel, A.; Bader, G.; Sanderson, M.; Klein, C.; Kraemer, O.; Himmelsbach, F.; Haaksma, E.; Adolf, G.R. Target binding properties and cellular activity of afatinib (BIBW 2992), an irreversible ErbB family blocker. J. Pharmacol. Exp. Ther., 2012, 343(2), 342-350.
[http://dx.doi.org/10.1124/jpet.112.197756 ] [PMID: 22888144]
[25]
Bender, A.T.; Gardberg, A.; Pereira, A.; Johnson, T.; Wu, Y.; Grenningloh, R.; Head, J.; Morandi, F.; Haselmayer, P.; Liu-Bujalski, L. Ability of Bruton’s tyrosine kinase inhibitors to sequester Y551 and prevent phosphorylation determines potency for inhibition of Fc receptor but not B-Cell receptor signaling. Mol. Pharmacol., 2017, 91(3), 208-219.
[http://dx.doi.org/10.1124/mol.116.107037 ] [PMID: 28062735]
[26]
Yun, C-H.; Mengwasser, K.E.; Toms, A.V.; Woo, M.S.; Greulich, H.; Wong, K-K.; Meyerson, M.; Eck, M.J. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl. Acad. Sci. USA, 2008, 105(6), 2070-2075.
[http://dx.doi.org/10.1073/pnas.0709662105 ] [PMID: 18227510]
[27]
Gajiwala, K.S.; Feng, J.; Ferre, R.; Ryan, K.; Brodsky, O.; Weinrich, S.; Kath, J.C.; Stewart, A. Insights into the aberrant activity of mutant EGFR kinase domain and drug recognition. Structure, 2013, 21(2), 209-219.
[http://dx.doi.org/10.1016/j.str.2012.11.014 ] [PMID: 23273428]
[28]
Yosaatmadja, Y.; Silva, S.; Dickson, J.M.; Patterson, A.V.; Smaill, J.B.; Flanagan, J.U.; McKeage, M.J.; Squire, C.J. Binding mode of the breakthrough inhibitor AZD9291 to epidermal growth factor receptor revealed. J. Struct. Biol., 2015, 192(3), 539-544.
[http://dx.doi.org/10.1016/j.jsb.2015.10.018 ] [PMID: 26522274]
[29]
Olayioye, M.A.; Neve, R.M.; Lane, H.A.; Hynes, N.E. The ErbB signaling network: Receptor heterodimerization in development and cancer. EMBO J., 2000, 19(13), 3159-3167.
[http://dx.doi.org/10.1093/emboj/19.13.3159 ] [PMID: 10880430]
[30]
Herbst, R.S.; Heymach, J.V.; Lippman, S.M. Lung cancer. N. Engl. J. Med., 2008, 359(13), 1367-1380.
[http://dx.doi.org/10.1056/NEJMra0802714 ] [PMID: 18815398]
[31]
Hynes, N.E.; Lane, H.A. ERBB receptors and cancer: The complexity of targeted inhibitors. Nat. Rev. Cancer, 2005, 5(5), 341-354.
[http://dx.doi.org/10.1038/nrc1609 ] [PMID: 15864276]
[32]
Lee, C.K.; Wu, Y-L.; Ding, P.N.; Lord, S.J.; Inoue, A.; Zhou, C.; Mitsudomi, T.; Rosell, R.; Pavlakis, N.; Links, M.; Gebski, V.; Gralla, R.J.; Yang, J.C-H. Impact of specific epidermal growth factor receptor (EGFR) mutations and clinical characteristics on outcomes after treatment with egfr tyrosine kinase inhibitors versus chemotherapy in EGFR-mutant lung cancer: A meta-analysis. J. Clin. Oncol., 2015, 33(17), 1958-1965.
[http://dx.doi.org/10.1200/JCO.2014.58.1736 ] [PMID: 25897154]
[33]
Lynch, T.J.; Bell, D.W.; Sordella, R.; Gurubhagavatula, S.; Okimoto, R.A.; Brannigan, B.W.; Harris, P.L.; Haserlat, S.M.; Supko, J.G.; Haluska, F.G.; Louis, D.N.; Christiani, D.C.; Settleman, J.; Haber, D.A. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med., 2004, 350(21), 2129-2139.
[http://dx.doi.org/10.1056/NEJMoa040938 ] [PMID: 15118073]
[34]
Rosell, R.; Carcereny, E.; Gervais, R.; Vergnenegre, A.; Massuti, B.; Felip, E.; Palmero, R.; Garcia-Gomez, R.; Pallares, C.; Sanchez, J.M.; Porta, R.; Cobo, M.; Garrido, P.; Longo, F.; Moran, T.; Insa, A.; De Marinis, F.; Corre, R.; Bover, I.; Illiano, A.; Dansin, E.; de Castro, J.; Milella, M.; Reguart, N.; Altavilla, G.; Jimenez, U.; Provencio, M.; Moreno, M.A.; Terrasa, J.; Muñoz-Langa, J.; Valdivia, J.; Isla, D.; Domine, M.; Molinier, O.; Mazieres, J.; Baize, N.; Garcia-Campelo, R.; Robinet, G.; Rodriguez-Abreu, D.; Lopez-Vivanco, G.; Gebbia, V.; Ferrera-Delgado, L.; Bombaron, P.; Bernabe, R.; Bearz, A.; Artal, A.; Cortesi, E.; Rolfo, C.; Sanchez-Ronco, M.; Drozdowskyj, A.; Queralt, C.; de Aguirre, I.; Ramirez, J.L.; Sanchez, J.J.; Molina, M.A.; Taron, M.; Paz-Ares, L. Spanish Lung Cancer Group in collaboration with Groupe Français de Pneumo-Cancérologie and Associazione Italiana Oncologia Toracica. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): A multicentre, open-label, randomised phase 3 trial. Lancet Oncol., 2012, 13(3), 239-246.
[http://dx.doi.org/10.1016/S1470-2045(11)70393-X ] [PMID: 22285168]
[35]
Ohashi, K.; Maruvka, Y.E.; Michor, F.; Pao, W. Epidermal growth factor receptor tyrosine kinase inhibitor-resistant disease. J. Clin. Oncol., 2013, 31(8), 1070-1080.
[http://dx.doi.org/10.1200/JCO.2012.43.3912 ] [PMID: 23401451]
[36]
Pallis, A.; Briasoulis, E.; Linardou, H.; Papadimitriou, C.; Bafaloukos, D.; Kosmidis, P.; Murray, S. Mechanisms of resistance to epidermal growth factor receptor tyrosine kinase inhibitors in patients with advanced non-small-cell lung cancer: clinical and molecular considerations. Curr. Med. Chem., 2011, 18(11), 1613-1628.
[http://dx.doi.org/10.2174/092986711795471383 ] [PMID: 21428885]
[37]
Passiglia, F.; Rizzo, S.; Di Maio, M.; Galvano, A.; Badalamenti, G.; Listì, A.; Gulotta, L.; Castiglia, M.; Fulfaro, F.; Bazan, V.; Russo, A. The Diagnostic Accuracy of Circulating Tumor DNA for the Detection of EGFR-T790M Mutation in NSCLC: A Systematic Review and Meta-Analysis. Sci. Rep., 2018, 8, 13379.
[38]
Kobayashi, S.; Boggon, T.J.; Dayaram, T.; Jänne, P.A.; Kocher, O.; Meyerson, M.; Johnson, B.E.; Eck, M.J.; Tenen, D.G.; Halmos, B. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med., 2005, 352(8), 786-792.
[http://dx.doi.org/10.1056/NEJMoa044238 ] [PMID: 15728811]
[39]
Walter, A.O.; Sjin, R.T.T.; Haringsma, H.J.; Ohashi, K.; Sun, J.; Lee, K.; Dubrovskiy, A.; Labenski, M.; Zhu, Z.; Wang, Z.; Sheets, M.; St Martin, T.; Karp, R.; van Kalken, D.; Chaturvedi, P.; Niu, D.; Nacht, M.; Petter, R.C.; Westlin, W.; Lin, K.; Jaw-Tsai, S.; Raponi, M.; Van Dyke, T.; Etter, J.; Weaver, Z.; Pao, W.; Singh, J.; Simmons, A.D.; Harding, T.C.; Allen, A. Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M-mediated resistance in NSCLC. Cancer Discov., 2013, 3(12), 1404-1415.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0314 ] [PMID: 24065731]
[40]
Xia, G.; Chen, W.; Zhang, J.; Shao, J.; Zhang, Y.; Huang, W.; Zhang, L.; Qi, W.; Sun, X.; Li, B.; Xiang, Z.; Ma, C.; Xu, J.; Deng, H.; Li, Y.; Li, P.; Miao, H.; Han, J.; Liu, Y.; Shen, J.; Yu, Y. A chemical tuned strategy to develop novel irreversible EGFR-TK inhibitors with improved safety and pharmacokinetic profiles. J. Med. Chem., 2014, 57(23), 9889-9900.
[http://dx.doi.org/10.1021/jm5014659 ] [PMID: 25409491]
[41]
Singh, J.; Dobrusin, E.M.; Fry, D.W.; Haske, T.; Whitty, A.; McNamara, D.J. Structure-based design of a potent, selective, and irreversible inhibitor of the catalytic domain of the erbB receptor subfamily of protein tyrosine kinases. J. Med. Chem., 1997, 40(7), 1130-1135.
[http://dx.doi.org/10.1021/jm960380s ] [PMID: 9089334]
[42]
Fry, D.W.; Bridges, A.J.; Denny, W.A.; Doherty, A.; Greis, K.D.; Hicks, J.L.; Hook, K.E.; Keller, P.R.; Leopold, W.R.; Loo, J.A.; McNamara, D.J.; Nelson, J.M.; Sherwood, V.; Smaill, J.B.; Trumpp-Kallmeyer, S.; Dobrusin, E.M. Specific, irreversible inactivation of the epidermal growth factor receptor and erbB2, by a new class of tyrosine kinase inhibitor. Proc. Natl. Acad. Sci. USA, 1998, 95(20), 12022-12027.
[http://dx.doi.org/10.1073/pnas.95.20.12022 ] [PMID: 9751783]
[43]
Tsou, H-R.; Overbeek-Klumpers, E.G.; Hallett, W.A.; Reich, M.F.; Floyd, M.B.; Johnson, B.D.; Michalak, R.S.; Nilakantan, R.; Discafani, C.; Golas, J.; Rabindran, S.K.; Shen, R.; Shi, X.; Wang, Y-F.; Upeslacis, J.; Wissner, A. Optimization of 6,7-disubstituted-4-(arylamino)quinoline-3-carbonitriles as orally active, irreversible inhibitors of human epidermal growth factor receptor-2 kinase activity. J. Med. Chem., 2005, 48(4), 1107-1131.
[http://dx.doi.org/10.1021/jm040159c ] [PMID: 15715478]
[44]
Calvo, E.; Tolcher, A.W.; Hammond, L.A.; Patnaik, A.; de Bono, J.S.; Eiseman, I.A.; Olson, S.C.; Lenehan, P.F.; McCreery, H.; Lorusso, P.; Rowinsky, E.K. Administration of CI-1033, an irreversible pan-erbB tyrosine kinase inhibitor, is feasible on a 7-day on, 7-day off schedule: A phase I pharmacokinetic and food effect study. Clin. Cancer Res., 2004, 10(21), 7112-7120.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1187 ] [PMID: 15534081]
[45]
Allen, L.F.; Eiseman, I.A.; Fry, D.W.; Lenehan, P.F. CI-1033, an irreversible pan-erbB receptor inhibitor and its potential application for the treatment of breast cancer. Semin. Oncol., 2003, 30(5)(Suppl. 16), 65-78.
[http://dx.doi.org/10.1053/j.seminoncol.2003.08.009 ] [PMID: 14613028]
[46]
Li, D.; Ambrogio, L.; Shimamura, T.; Kubo, S.; Takahashi, M.; Chirieac, L.R.; Padera, R.F.; Shapiro, G.I.; Baum, A.; Himmelsbach, F.; Rettig, W.J.; Meyerson, M.; Solca, F.; Greulich, H.; Wong, K-K. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene, 2008, 27(34), 4702-4711.
[http://dx.doi.org/10.1038/onc.2008.109 ] [PMID: 18408761]
[47]
Minkovsky, N.; Berezov, A. BIBW-2992, a dual receptor tyrosine kinase inhibitor for the treatment of solid tumors. Curr. Opin. Investig. Drugs, 2008, 9(12), 1336-1346.
[PMID: 19037840]
[48]
Wong, C.H.; Ma, B.B.Y.; Hui, C.W.C.; Tao, Q.; Chan, A.T.C. Preclinical evaluation of afatinib (BIBW2992) in esophageal squamous cell carcinoma (ESCC). Am. J. Cancer Res., 2015, 5(12), 3588-3599.
[PMID: 26885448]
[49]
Dungo, R.T.; Keating, G.M. Afatinib: first global approval. Drugs, 2013, 73(13), 1503-1515.
[http://dx.doi.org/10.1007/s40265-013-0111-6 ] [PMID: 23982599]
[50]
Oronsky, B.; Ma, P.; Reid, T.R.; Cabrales, P.; Lybeck, M.; Oronsky, A.; Oronsky, N.; Carter, C.A. Navigating the “No Man’s Land” of TKI-Failed EGFR-mutated non-small cell lung cancer (NSCLC): A review. Neoplasia, 2018, 20(1), 92-98.
[http://dx.doi.org/10.1016/j.neo.2017.11.001 ] [PMID: 29227909]
[51]
Sullivan, I.; Planchard, D. Next-Generation EGFR tyrosine kinase inhibitors for treating EGFR-Mutant lung cancer beyond first line. Front. Med. (Lausanne), 2017, 3, 76.
[http://dx.doi.org/10.3389/fmed.2016.00076 ] [PMID: 28149837]
[52]
Rabindran, S.K.; Discafani, C.M.; Rosfjord, E.C.; Baxter, M.; Floyd, M.B.; Golas, J.; Hallett, W.A.; Johnson, B.D.; Nilakantan, R.; Overbeek, E.; Reich, M.F.; Shen, R.; Shi, X.; Tsou, H-R.; Wang, Y-F.; Wissner, A. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res., 2004, 64(11), 3958-3965.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2868 ] [PMID: 15173008]
[53]
Godin-Heymann, N.; Ulkus, L.; Brannigan, B.W.; McDermott, U.; Lamb, J.; Maheswaran, S.; Settleman, J.; Haber, D.A. The T790M “gatekeeper” mutation in EGFR mediates resistance to low concentrations of an irreversible EGFR inhibitor. Mol. Cancer Ther., 2008, 7(4), 874-879.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2387 ] [PMID: 18413800]
[54]
Burstein, H.J.; Sun, Y.; Dirix, L.Y.; Jiang, Z.; Paridaens, R.; Tan, A.R.; Awada, A.; Ranade, A.; Jiao, S.; Schwartz, G.; Abbas, R.; Powell, C.; Turnbull, K.; Vermette, J.; Zacharchuk, C.; Badwe, R. Neratinib, an irreversible ErbB receptor tyrosine kinase inhibitor, in patients with advanced ErbB2-positive breast cancer. J. Clin. Oncol., 2010, 28(8), 1301-1307.
[http://dx.doi.org/10.1200/JCO.2009.25.8707 ] [PMID: 20142587]
[55]
Smaill, J.B.; Gonzales, A.J.; Spicer, J.A.; Lee, H.; Reed, J.E.; Sexton, K.; Althaus, I.W.; Zhu, T.; Black, S.L.; Blaser, A.; Denny, W.A.; Ellis, P.A.; Fakhoury, S.; Harvey, P.J.; Hook, K.; McCarthy, F.O.J.; Palmer, B.D.; Rivault, F.; Schlosser, K.; Ellis, T.; Thompson, A.M.; Trachet, E.; Winters, R.T.; Tecle, H.; Bridges, A. Tyrosine Kinase Inhibitors. 20. Optimization of Substituted Quinazoline and Pyrido[3,4-d]pyrimidine Derivatives as orally active, irreversible inhibitors of the epidermal growth factor receptor family. J. Med. Chem., 2016, 59(17), 8103-8124.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00883 ] [PMID: 27491023]
[56]
Engelman, J.A.; Zejnullahu, K.; Gale, C-M.; Lifshits, E.; Gonzales, A.J.; Shimamura, T.; Zhao, F.; Vincent, P.W.; Naumov, G.N.; Bradner, J.E.; Althaus, I.W.; Gandhi, L.; Shapiro, G.I.; Nelson, J.M.; Heymach, J.V.; Meyerson, M.; Wong, K-K.; Jänne, P.A. PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res., 2007, 67(24), 11924-11932.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1885 ] [PMID: 18089823]
[57]
Silva-Oliveira, R.J.; Silva, V.A.O.; Martinho, O.; Cruvinel-Carloni, A.; Melendez, M.E.; Rosa, M.N.; de Paula, F.E.; de Souza Viana, L.; Carvalho, A.L.; Reis, R.M. Cytotoxicity of allitinib, an irreversible anti-EGFR agent, in a large panel of human cancer-derived cell lines: KRAS mutation status as a predictive biomarker. Cell Oncol. (Dordr.), 2016, 39(3), 253-263.
[http://dx.doi.org/10.1007/s13402-016-0270-z ] [PMID: 26920031]
[58]
Kim, T.M.; Lee, K-W.; Oh, D-Y.; Lee, J-S. Im, S.A.; Kim, D.W.; Han, S.W.; Kim, Y.J.; Kim, T.Y.; Kim, J.H.; Han, H.; Kim, W.H.; Bang, Y.J. Phase 1 Studies of Poziotinib, an Irreversible Pan-HER tyrosine kinase inhibitor in patients with advanced solid tumors. Cancer Res. Treat., 2018, 50(3), 835-842.
[http://dx.doi.org/10.4143/crt.2017.303 ] [PMID: 28859471]
[59]
To, K.K.W.; Poon, D.C.; Wei, Y.; Wang, F.; Lin, G.; Fu, L. Pelitinib (EKB-569) targets the up-regulation of ABCB1 and ABCG2 induced by hyperthermia to eradicate lung cancer. Br. J. Pharmacol., 2015, 172(16), 4089-4106.
[http://dx.doi.org/10.1111/bph.13189 ] [PMID: 25988710]
[60]
Tejpar, S.; Van Cutsem, E.; Gamelin, E.; Machover, D.; Soulie, P.; Ulusakarya, A.; Laurent, S.; Vauthier, J.M.; Quinn, S.; Zacharchuk, C. Phase 1/2a Study of EKB-569, an Irreversible Inhibitor of Epidermal Growth Factor Receptor, in Combination with 5-Fluorouracil, Leucovorin, and Oxaliplatin (FOLFOX-4) in patients with Advanced Colorectal Cancer (CRC). J. Clin. Oncol., 2004, 22, 3579-3579.
[http://dx.doi.org/10.1200/jco.2004.22.90140.3579]
[61]
Jani, J.P.; Finn, R.S.; Campbell, M.; Coleman, K.G.; Connell, R.D.; Currier, N.; Emerson, E.O.; Floyd, E.; Harriman, S.; Kath, J.C.; Morris, J.; Moyer, J.D.; Pustilnik, L.R.; Rafidi, K.; Ralston, S.; Rossi, A.M.K.; Steyn, S.J.; Wagner, L.; Winter, S.M.; Bhattacharya, S.K. Discovery and pharmacologic characterization of CP-724,714, a selective ErbB2 tyrosine kinase inhibitor. Cancer Res., 2007, 67(20), 9887-9893.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3559 ] [PMID: 17942920]
[62]
Das, D.; Xie, L.; Wang, J.; Xu, X.; Zhang, Z.; Shi, J.; Le, X.; Hong, J. Discovery of new quinazoline derivatives as irreversible dual EGFR/HER2 inhibitors and their anticancer activities - Part 1. Bioorg. Med. Chem. Lett., 2019, 29(4), 591-596.
[http://dx.doi.org/10.1016/j.bmcl.2018.12.056 ] [PMID: 30600209]
[64]
Tan, C-S.; Kumarakulasinghe, N.B.; Huang, Y-Q.; Ang, Y.L.E.; Choo, J.R-E.; Goh, B-C.; Soo, R.A. Third generation EGFR TKIs: Current data and future directions. Mol. Cancer, 2018, 17(1), 29.
[http://dx.doi.org/10.1186/s12943-018-0778-0 ] [PMID: 29455654]
[65]
Zhou, W.; Ercan, D.; Chen, L.; Yun, C-H.; Li, D.; Capelletti, M.; Cortot, A.B.; Chirieac, L.; Iacob, R.E.; Padera, R.; Engen, J.R.; Wong, K-K.; Eck, M.J.; Gray, N.S.; Jänne, P.A. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature, 2009, 462(7276), 1070-1074.
[http://dx.doi.org/10.1038/nature08622 ] [PMID: 20033049]
[66]
Sakuma, Y.; Yamazaki, Y.; Nakamura, Y.; Yoshihara, M.; Matsukuma, S.; Nakayama, H.; Yokose, T.; Kameda, Y.; Koizume, S.; Miyagi, Y. WZ4002, a third-generation EGFR inhibitor, can overcome anoikis resistance in EGFR-mutant lung adenocarcinomas more efficiently than Src inhibitors. Lab. Invest., 2012, 92(3), 371-383.
[http://dx.doi.org/10.1038/labinvest.2011.187 ] [PMID: 22157722]
[67]
Cross, D.A.E.; Ashton, S.E.; Ghiorghiu, S.; Eberlein, C.; Nebhan, C.A.; Spitzler, P.J.; Orme, J.P.; Finlay, M.R.V.; Ward, R.A.; Mellor, M.J.; Hughes, G.; Rahi, A.; Jacobs, V.N.; Red Brewer, M.; Ichihara, E.; Sun, J.; Jin, H.; Ballard, P.; Al-Kadhimi, K.; Rowlinson, R.; Klinowska, T.; Richmond, G.H.P.; Cantarini, M.; Kim, D-W.; Ranson, M.R.; Pao, W. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov., 2014, 4(9), 1046-1061.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0337 ] [PMID: 24893891]
[68]
Goss, G.; Tsai, C-M.; Shepherd, F.A.; Bazhenova, L.; Lee, J.S.; Chang, G-C.; Crino, L.; Satouchi, M.; Chu, Q.; Hida, T.; Han, J-Y.; Juan, O.; Dunphy, F.; Nishio, M.; Kang, J-H.; Majem, M.; Mann, H.; Cantarini, M.; Ghiorghiu, S.; Mitsudomi, T. Osimertinib for pretreated EGFR Thr790Met-positive advanced non-small-cell lung cancer (AURA2): A multicentre, open-label, single-arm, phase 2 study. Lancet Oncol., 2016, 17(12), 1643-1652.
[http://dx.doi.org/10.1016/S1470-2045(16)30508-3 ] [PMID: 27751847]
[69]
Nie, K.; Zhang, Z.; Zhang, C.; Lan, K.; Ji, Y. Effect of EGFR C797S/G Mutation on osimertinib resistance in chinese patients with non-small-cell lung cancer. J. Clin. Oncol., 2018, 36, e21171-e21171.
[http://dx.doi.org/10.1200/JCO.2018.36.15_suppl.e21171]
[70]
Soria, J-C.; Ohe, Y.; Vansteenkiste, J.; Reungwetwattana, T.; Chewaskulyong, B.; Lee, K.H.; Dechaphunkul, A.; Imamura, F.; Nogami, N.; Kurata, T.; Okamoto, I.; Zhou, C.; Cho, B.C.; Cheng, Y.; Cho, E.K.; Voon, P.J.; Planchard, D.; Su, W-C.; Gray, J.E.; Lee, S-M.; Hodge, R.; Marotti, M.; Rukazenkov, Y.; Ramalingam, S.S. FLAURA Investigators. osimertinib in untreated EGFR-Mutated advanced non-small-cell lung cancer. N. Engl. J. Med., 2018, 378(2), 113-125.
[http://dx.doi.org/10.1056/NEJMoa1713137 ] [PMID: 29151359]
[71]
Yang, J.C.; Reckamp, K.; Kim, Y.; Novello, S.; Smit, E.; Lee, J.; Su, W.; Akerley, W.; Blakely, C.; Bazhenova, L.; Chiari, R.; Hsia, T.; Golsorkhi, T.; Despain, D.; Shih, D.; Rolfe, L.; Popat, S.; Wakelee, H. P2.03-058 Tiger-3: A phase 3 randomized study of rociletinib vs chemotherapy in EGFR-Mutated Non-Small Cell Lung Cancer (NSCLC). J. Thorac. Oncol., 2017, 12, S2397.
[http://dx.doi.org/10.1016/j.jtho.2017.11.013]
[72]
Yun, J.; Hong, M.H.; Kim, S-Y.; Park, C-W.; Kim, S.; Yun, M.R.; Kang, H.N.; Pyo, K-H.; Lee, S.S.; Koh, J.S.; Song, H-J.; Kim, D.K.; Lee, Y-S.; Oh, S-W.; Choi, S.; Kim, H.R.; Cho, B.C. YH25448, an Irreversible EGFR-TKI with potent intracranial activity in EGFR mutant non-small cell lung cancer. Clin. Cancer Res., 2019, 25(8), 2575-2587.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2906 ] [PMID: 30670498]
[73]
Lelais, G.; Epple, R.; Marsilje, T.H.; Long, Y.O.; McNeill, M.; Chen, B.; Lu, W.; Anumolu, J.; Badiger, S.; Bursulaya, B.; DiDonato, M.; Fong, R.; Juarez, J.; Li, J.; Manuia, M.; Mason, D.E.; Gordon, P.; Groessl, T.; Johnson, K.; Jia, Y.; Kasibhatla, S.; Li, C.; Isbell, J.; Spraggon, G.; Bender, S.; Michellys, P-Y. Discovery of (R,E)-N-(7-Chloro-1-(1-[4-(dimethylamino)but-2-enoyl]azepan-3-yl)-1H-benzo[d]imidazol-2-yl)-2-methylisonicotinamide (EGF816), a Novel, Potent, and WT sparing covalent inhibitor of oncogenic (L858R, ex19del) and resistant (T790M) EGFR Mutants for the Treatment of EGFR mutant non-small-cell lung cancers. J. Med. Chem., 2016, 59(14), 6671-6689.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01985 ] [PMID: 27433829]
[74]
Jia, Y.; Juarez, J.; Li, J.; Manuia, M.; Niederst, M.J.; Tompkins, C.; Timple, N.; Vaillancourt, M-T.; Pferdekamper, A.C.; Lockerman, E.L.; Li, C.; Anderson, J.; Costa, C.; Liao, D.; Murphy, E.; DiDonato, M.; Bursulaya, B.; Lelais, G.; Barretina, J.; McNeill, M.; Epple, R.; Marsilje, T.H.; Pathan, N.; Engelman, J.A.; Michellys, P-Y.; McNamara, P.; Harris, J.; Bender, S.; Kasibhatla, S. EGF816 exerts anticancer effects in non-small cell lung cancer by irreversibly and selectively targeting primary and acquired activating mutations in the egf receptor. Cancer Res., 2016, 76(6), 1591-1602.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2581 ] [PMID: 26825170]
[75]
Ma, Y.; Zheng, X.; Zhao, H.; Fang, W.; Zhang, Y.; Ge, J.; Wang, L.; Wang, W.; Jiang, J.; Chuai, S.; Zhang, Z.; Xu, W.; Xu, X.; Hu, P.; Zhang, L. First-in-Human Phase I Study of AC0010, a Mutant-Selective EGFR inhibitor in non-small cell lung cancer: Safety, Efficacy, and potential mechanism of resistance. J. Thorac. Oncol., 2018, 13(7), 968-977.
[http://dx.doi.org/10.1016/j.jtho.2018.03.025 ] [PMID: 29626621]
[76]
Unlucky 13: Top Clinical Trial Failures of 2018, 2018.
[77]
Cheng, H.; Nair, S.K.; Murray, B.W.; Almaden, C.; Bailey, S.; Baxi, S.; Behenna, D.; Cho-Schultz, S.; Dalvie, D.; Dinh, D.M.; Edwards, M.P.; Feng, J.L.; Ferre, R.A.; Gajiwala, K.S.; Hemkens, M.D.; Jackson-Fisher, A.; Jalaie, M.; Johnson, T.O.; Kania, R.S.; Kephart, S.; Lafontaine, J.; Lunney, B.; Liu, K.K-C.; Liu, Z.; Matthews, J.; Nagata, A.; Niessen, S.; Ornelas, M.A.; Orr, S.T.M.; Pairish, M.; Planken, S.; Ren, S.; Richter, D.; Ryan, K.; Sach, N.; Shen, H.; Smeal, T.; Solowiej, J.; Sutton, S.; Tran, K.; Tseng, E.; Vernier, W.; Walls, M.; Wang, S.; Weinrich, S.L.; Xin, S.; Xu, H.; Yin, M-J.; Zientek, M.; Zhou, R.; Kath, J.C. Discovery of 1-(3R,4R)-3-[(5-Chloro-2-[(1-methyl-1H-pyrazol-4-yl)amino]-7H-pyrrolo[2,3-d]pyrimidin-4-yloxy)methyl]-4-methoxypyrrolidin-1-ylprop-2-en-1-one (PF-06459988), a Potent, WT Sparing, Irreversible Inhibitor of T790M-Containing EGFR Mutants. J. Med. Chem., 2016, 59(5), 2005-2024.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01633 ] [PMID: 26756222]
[78]
Planken, S.; Behenna, D.C.; Nair, S.K.; Johnson, T.O.; Nagata, A.; Almaden, C.; Bailey, S.; Ballard, T.E.; Bernier, L.; Cheng, H.; Cho-Schultz, S.; Dalvie, D.; Deal, J.G.; Dinh, D.M.; Edwards, M.P.; Ferre, R.A.; Gajiwala, K.S.; Hemkens, M.; Kania, R.S.; Kath, J.C.; Matthews, J.; Murray, B.W.; Niessen, S.; Orr, S.T.M.; Pairish, M.; Sach, N.W.; Shen, H.; Shi, M.; Solowiej, J.; Tran, K.; Tseng, E.; Vicini, P.; Wang, Y.; Weinrich, S.L.; Zhou, R.; Zientek, M.; Liu, L.; Luo, Y.; Xin, S.; Zhang, C.; Lafontaine, J. Discovery of N-((3R,4R)-4-Fluoro-1-(6-((3-methoxy-1-methyl-1H-pyrazol-4-yl)amino)-9-methyl-9H-purin-2-yl)pyrrolidine-3-yl)acrylamide (PF-06747775) through structure-based drug design: a high affinity irreversible inhibitor targeting oncogenic EGFR mutants with selectivity over wild-type EGFR. J. Med. Chem., 2017, 60(7), 3002-3019.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01894 ] [PMID: 28287730]
[79]
Husain, H.; Martins, R.; Goldberg, S.; Senico, P.; Ma, W.; Masters, J.; Pathan, N.; Kim, D-W.; Socinski, M.; Goldberg, Z.; Cho, B.C. P3.02b-001 Phase 1 Dose Escalation of PF-06747775 (EGFR-T790M Inhibitor) in patients with advanced EGFRm (Del 19 or L858R+/-T790M) NSCLC. J. Thorac. Oncol., 2017, 12, S1185.
[http://dx.doi.org/10.1016/j.jtho.2016.11.1668]
[80]
Wissner, A.; Floyd, M.B.; Johnson, B.D.; Fraser, H.; Ingalls, C.; Nittoli, T.; Dushin, R.G.; Discafani, C.; Nilakantan, R.; Marini, J.; Ravi, M.; Cheung, K.; Tan, X.; Musto, S.; Annable, T.; Siegel, M.M.; Loganzo, F. 2-(Quinazolin-4-ylamino)-[1,4]benzoquinones as covalent-binding, irreversible inhibitors of the kinase domain of vascular endothelial growth factor receptor-2. J. Med. Chem., 2005, 48(24), 7560-7581.
[http://dx.doi.org/10.1021/jm050559f ] [PMID: 16302797]
[81]
Wissner, A.; Fraser, H.L.; Ingalls, C.L.; Dushin, R.G.; Floyd, M.B.; Cheung, K.; Nittoli, T.; Ravi, M.R.; Tan, X.; Loganzo, F. Dual irreversible kinase inhibitors: quinazoline-based inhibitors incorporating two independent reactive centers with each targeting different cysteine residues in the kinase domains of EGFR and VEGFR-2. Bioorg. Med. Chem., 2007, 15(11), 3635-3648.
[http://dx.doi.org/10.1016/j.bmc.2007.03.055 ] [PMID: 17416531]
[82]
Turner, N.; Grose, R. Fibroblast growth factor signalling: From development to cancer. Nat. Rev. Cancer, 2010, 10(2), 116-129.
[http://dx.doi.org/10.1038/nrc2780 ] [PMID: 20094046]
[83]
Touat, M.; Ileana, E.; Postel-Vinay, S.; André, F.; Soria, J-C. Targeting FGFR signaling in cancer. Clin. Cancer Res., 2015, 21(12), 2684-2694.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2329 ] [PMID: 26078430]
[84]
Weiss, J.; Sos, M.L.; Seidel, D.; Peifer, M.; Zander, T.; Heuckmann, J.M.; Ullrich, R.T.; Menon, R.; Maier, S.; Soltermann, A.; Moch, H.; Wagener, P.; Fischer, F.; Heynck, S.; Koker, M.; Schottle, J.; Leenders, F.; Gabler, F.; Dabow, I.; Querings, S.; Heukamp, L.C.; Balke-Want, H.; Ansen, S.; Rauh, D.; Baessmann, I.; Altmuller, J.; Wainer, Z.; Conron, M.; Wright, G.; Russell, P.; Solomon, B.; Brambilla, E.; Brambilla, C.; Lorimier, P.; Sollberg, S.; Brustugun, O.T.; Engel-Riedel, W.; Ludwig, C.; Petersen, I.; Sanger, J.; Clement, J.; Groen, H.; Timens, W.; Sietsma, H.; Thunnissen, E.; Smit, E.; Heideman, D.; Cappuzzo, F.; Ligorio, C.; Damiani, S.; Hallek, M.; Beroukhim, R.; Pao, W.; Klebl, B.; Baumann, M.; Buettner, R.; Ernestus, K.; Stoelben, E.; Wolf, J.; Nurnberg, P.; Perner, S.; Thomas, R.K. Frequent and Focal FGFR1 Amplification Associates with Therapeutically Tractable FGFR1 Dependency in Squamous Cell Lung Cancer. Science Translational Medicine, 2010, 2(62ra93), 62ra93.
[http://dx.doi.org/10.1126/scitranslmed.3001451]
[85]
Kunii, K.; Davis, L.; Gorenstein, J.; Hatch, H.; Yashiro, M.; Di Bacco, A.; Elbi, C.; Lutterbach, B. FGFR2-amplified gastric cancer cell lines require FGFR2 and Erbb3 signaling for growth and survival. Cancer Res., 2008, 68(7), 2340-2348.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5229 ] [PMID: 18381441]
[86]
Kalff, A.; Spencer, A. The t(4;14) translocation and FGFR3 overexpression in multiple myeloma: Prognostic implications and current clinical strategies. Blood Cancer J., 2012, 2, e89-e89.
[http://dx.doi.org/10.1038/bcj.2012.37 ] [PMID: 22961061]
[87]
Taylor, J.G. VI; Cheuk, A.T.; Tsang, P.S.; Chung, J-Y.; Song, Y.K.; Desai, K.; Yu, Y.; Chen, Q-R.; Shah, K.; Youngblood, V.; Fang, J.; Kim, S.Y.; Yeung, C.; Helman, L.J.; Mendoza, A.; Ngo, V.; Staudt, L.M.; Wei, J.S.; Khanna, C.; Catchpoole, D.; Qualman, S.J.; Hewitt, S.M.; Merlino, G.; Chanock, S.J.; Khan, J. Identification of FGFR4-activating mutations in human rhabdomyosarcomas that promote metastasis in xenotransplanted models. J. Clin. Invest., 2009, 119(11), 3395-3407.
[PMID: 19809159]
[88]
Lang, L.; Teng, Y. Fibroblast growth factor receptor 4 Targeting in Cancer: New insights into mechanisms and therapeutic strategies. Cells, 2019, 8(1), 31.
[http://dx.doi.org/10.3390/cells8010031 ] [PMID: 30634399]
[89]
Pike, K.G. Inhibitors of the Fibroblast Growth Factor Receptor.Cancer II; Waring, M.J., Ed.; Springer International Publishing: Cham, 2017, Vol. 28, pp. 141-141.
[http://dx.doi.org/10.1007/7355_2017_13]
[90]
Zhou, W.; Hur, W.; McDermott, U.; Dutt, A.; Xian, W.; Ficarro, S.B.; Zhang, J.; Sharma, S.V.; Brugge, J.; Meyerson, M.; Settleman, J.; Gray, N.S. A structure-guided approach to creating covalent FGFR inhibitors. Chem. Biol., 2010, 17(3), 285-295.
[http://dx.doi.org/10.1016/j.chembiol.2010.02.007 ] [PMID: 20338520]
[91]
Hamby, J.M.; Connolly, C.J.C.; Schroeder, M.C.; Winters, R.T.; Showalter, H.D.H.; Panek, R.L.; Major, T.C.; Olsewski, B.; Ryan, M.J.; Dahring, T.; Lu, G.H.; Keiser, J.; Amar, A.; Shen, C.; Kraker, A.J.; Slintak, V.; Nelson, J.M.; Fry, D.W.; Bradford, L.; Hallak, H.; Doherty, A.M. Structure-activity relationships for a novel series of pyrido[2,3-d]pyrimidine tyrosine kinase inhibitors. J. Med. Chem., 1997, 40(15), 2296-2303.
[http://dx.doi.org/10.1021/jm970367n ] [PMID: 9240345]
[92]
Brameld, K.A.; Owens, T.D.; Verner, E.; Venetsanakos, E.; Bradshaw, J.M.; Phan, V.T.; Tam, D.; Leung, K.; Shu, J.; LaStant, J.; Loughhead, D.G.; Ton, T.; Karr, D.E.; Gerritsen, M.E.; Goldstein, D.M.; Funk, J.O. Discovery of the Irreversible Covalent FGFR Inhibitor 8-(3-(4-Acryloylpiperazin-1-yl)propyl)-6-(2,6-dichloro-3,5-dimethoxyphenyl)-2-(methylamino)pyrido[2,3-d]pyrimidin-7(8H)-one (PRN1371) for the Treatment of Solid Tumors. J. Med. Chem., 2017, 60(15), 6516-6527.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00360 ] [PMID: 28665128]
[93]
A Dose Escalation Study in Solid Tumors and a Dose Expansion Study of PRN1371 in Adult Patients With Metastatic Urothelial Carcinoma, 2017.
[94]
Wu, X.; Ge, H.; Lemon, B.; Vonderfecht, S.; Weiszmann, J.; Hecht, R.; Gupte, J.; Hager, T.; Wang, Z.; Lindberg, R.; Li, Y. FGF19-induced hepatocyte proliferation is mediated through FGFR4 activation. J. Biol. Chem., 2010, 285(8), 5165-5170.
[http://dx.doi.org/10.1074/jbc.M109.068783 ] [PMID: 20018895]
[95]
Sawey, E.T.; Chanrion, M.; Cai, C.; Wu, G.; Zhang, J.; Zender, L.; Zhao, A.; Busuttil, R.W.; Yee, H.; Stein, L.; French, D.M.; Finn, R.S.; Lowe, S.W.; Powers, S. Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by Oncogenomic screening. Cancer Cell, 2011, 19(3), 347-358.
[http://dx.doi.org/10.1016/j.ccr.2011.01.040 ] [PMID: 21397858]
[96]
Hagel, M.; Miduturu, C.; Sheets, M.; Rubin, N.; Weng, W.; Stransky, N.; Bifulco, N.; Kim, J.L.; Hodous, B.; Brooijmans, N.; Shutes, A.; Winter, C.; Lengauer, C.; Kohl, N.E.; Guzi, T. First selective small molecule inhibitor of FGFR4 for the treatment of hepatocellular carcinomas with an activated FGFR4 Signaling Pathway. Cancer Discov., 2015, 5(4), 424-437.
[http://dx.doi.org/10.1158/2159-8290.CD-14-1029 ] [PMID: 25776529]
[97]
Kim, R.; Sarker, D.; Macarulla, T.; Yau, T.; Choo, S.P.; Meyer, T.; Hollebecque, A.; Whisenant, J.; Sung, M.; Yoon, J-H.; Lim, H.Y.; Zhu, A.; Park, J-W.; Faivre, S.; Mazzaferro, V.; Shi, H.; Schmidt-Kittler, O.; Clifford, C.; Wolf, B.; Kang, Y-K. 365OPhase 1 safety and clinical activity of BLU-554 in Advanced Hepatocellular Carcinoma (HCC). Ann. Oncol., 2017, 28.
[http://dx.doi.org/10.1093/annonc/mdx367]
[98]
Kim, R.; Sharma, S.; Meyer, T.; Sarker, D.; Macarulla, T.; Sung, M.; Choo, S.P.; Shi, H.; Schmidt-Kittler, O.; Clifford, C.; Wolf, B.; Llovet, J.M. First-in-Human Study of BLU-554, a Potent, Highly-Selective FGFR4 inhibitor designed for Hepatocellular Carcinoma (HCC) with FGFR4 pathway activation. Eur. J. Cancer, 2016, 69, S41.
[http://dx.doi.org/10.1016/S0959-8049(16)32704-6]
[99]
CStone Received Approval to Initiate Clinical Development in China of CS1001 and BLU-554 (CS3008) in Combination Therapy for HCC.
[100]
Littman, S.J.; Brus, C.; Burkart, A. A Phase II Study of Palbociclib (PD-0332991) in adult patients with advanced hepatocellular carcinoma. J. Clin. Oncol., 2015, 33, 277-277.
[http://dx.doi.org/10.1200/jco.2015.33.3_suppl.277]
[101]
Finn, R.S.; Martin, M.; Rugo, H.S.; Jones, S.; Im, S.A.; Gelmon, K.; Harbeck, N.; Lipatov, O.N.; Walshe, J.M.; Moulder, S.; Gauthier, E.; Lu, D.R.; Randolph, S.; Diéras, V.; Slamon, D.J. Palbociclib and letrozole in advanced breast cancer. N. Engl. J. Med., 2016, 375(20), 1925-1936.
[http://dx.doi.org/10.1056/NEJMoa1607303 ] [PMID: 27959613]
[102]
Joshi, J.J.; Coffey, H.; Corcoran, E.; Tsai, J.; Huang, C-L.; Ichikawa, K.; Prajapati, S.; Hao, M-H.; Bailey, S.; Wu, J.; Rimkunas, V.; Karr, C.; Subramanian, V.; Kumar, P.; MacKenzie, C.; Hurley, R.; Satoh, T.; Yu, K.; Park, E.; Rioux, N.; Kim, A.; Lai, W.G.; Yu, L.; Zhu, P.; Buonamici, S.; Larsen, N.; Fekkes, P.; Wang, J.; Warmuth, M.; Reynolds, D.J.; Smith, P.G.; Selvaraj, A. H3B-6527 Is a potent and Selective Inhibitor of FGFR4 in FGF19-Driven Hepatocellular Carcinoma. Cancer Res., 2017, 77(24), 6999-7013.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-1865 ] [PMID: 29247039]
[103]
Li, X.; Guise, C.P.; Taghipouran, R.; Yosaatmadja, Y.; Ashoorzadeh, A.; Paik, W-K.; Squire, C.J.; Jiang, S.; Luo, J.; Xu, Y.; Tu, Z-C.; Lu, X.; Ren, X.; Patterson, A.V.; Smaill, J.B.; Ding, K. 2-Oxo-3, 4-dihydropyrimido[4, 5-d]pyrimidinyl derivatives as new irreversible pan fibroblast growth factor receptor (FGFR) inhibitors. Eur. J. Med. Chem., 2017, 135, 531-543.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.049 ] [PMID: 28521156]
[104]
Wang, Y.; Chen, Z.; Dai, M.; Sun, P.; Wang, C.; Gao, Y.; Zhao, H.; Zeng, W.; Shen, L.; Mao, W.; Wang, T.; Hu, G.; Li, J.; Chen, S.; Long, C.; Chen, X.; Liu, J.; Zhang, Y. Discovery and optimization of selective FGFR4 inhibitors via scaffold hopping. Bioorg. Med. Chem. Lett., 2017, 27(11), 2420-2423.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.014 ] [PMID: 28433531]
[105]
Mo, C.; Zhang, Z.; Guise, C.P.; Li, X.; Luo, J.; Tu, Z.; Xu, Y.; Patterson, A.V.; Smaill, J.B.; Ren, X.; Lu, X.; Ding, K. 2-Aminopyrimidine Derivatives as New Selective Fibroblast Growth Factor Receptor 4 (FGFR4) inhibitors. ACS Med. Chem. Lett., 2017, 8(5), 543-548.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00091 ] [PMID: 28523108]
[106]
Thompson, P.A.; Burger, J.A. Bruton’s tyrosine kinase inhibitors: First and second generation agents for patients with Chronic Lymphocytic Leukemia (CLL). Expert Opin. Investig. Drugs, 2018, 27(1), 31-42.
[http://dx.doi.org/10.1080/13543784.2018.1404027 ] [PMID: 29125406]
[107]
Liang, C.; Tian, D.; Ren, X.; Ding, S.; Jia, M.; Xin, M.; Thareja, S. The development of Bruton’s Tyrosine Kinase (BTK) inhibitors from 2012 to 2017: A mini-review. Eur. J. Med. Chem., 2018, 151, 315-326.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.062 ] [PMID: 29631132]
[108]
Li, X.; Zuo, Y.; Tang, G.; Wang, Y.; Zhou, Y.; Wang, X.; Guo, T.; Xia, M.; Ding, N.; Pan, Z. Discovery of a series of 2,5-diaminopyrimidine covalent irreversible inhibitors of Bruton’s tyrosine kinase with in vivo antitumor activity. J. Med. Chem., 2014, 57(12), 5112-5128.
[http://dx.doi.org/10.1021/jm4017762 ] [PMID: 24915291]
[109]
Deeks, E.D. Ibrutinib: A review in chronic lymphocytic leukaemia. Drugs, 2017, 77(2), 225-236.
[http://dx.doi.org/10.1007/s40265-017-0695-3 ] [PMID: 28105602]
[110]
Herrera, A.F.; Jacobsen, E.D. Ibrutinib for the treatment of mantle cell lymphoma. Clin. Cancer Res., 2014, 20(21), 5365-5371.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0010 ] [PMID: 25361916]
[111]
Akinleye, A.; Chen, Y.; Mukhi, N.; Song, Y.; Liu, D. Ibrutinib and novel BTK inhibitors in clinical development. J. Hematol. Oncol., 2013, 6, 59.
[http://dx.doi.org/10.1186/1756-8722-6-59 ] [PMID: 23958373]
[112]
Dimopoulos, M.A.; Trotman, J.; Tedeschi, A.; Matous, J.V.; Macdonald, D.; Tam, C.; Tournilhac, O.; Ma, S.; Oriol, A.; Heffner, L.T.; Shustik, C.; García-Sanz, R.; Cornell, R.F.; de Larrea, C.F.; Castillo, J.J.; Granell, M.; Kyrtsonis, M-C.; Leblond, V.; Symeonidis, A.; Kastritis, E.; Singh, P.; Li, J.; Graef, T.; Bilotti, E.; Treon, S.; Buske, C. iNNOVATE Study Group and the European Consortium for Waldenström’s Macroglobulinemia. Ibrutinib for patients with rituximab-refractory Waldenström’s macroglobulinaemia (iNNOVATE): An open-label substudy of an international, multicentre, phase 3 trial. Lancet Oncol., 2017, 18(2), 241-250.
[http://dx.doi.org/10.1016/S1470-2045(16)30632-5 ] [PMID: 27956157]
[113]
Guha, M. Imbruvica--next big drug in B-cell cancer--approved by FDA. Nat. Biotechnol., 2014, 32(2), 113-115.
[http://dx.doi.org/10.1038/nbt0214-113 ] [PMID: 24509736]
[114]
Martin, P.; Blum, K.; Bartlett, N.L.; Park, S.I.; Maddocks, K.J.; Ruan, J.; Di Liberto, M.; Huang, X.; Inghirami, G.; Harris, P.; Chen-Kiang, S.; Leonard, J.P. A Phase I trial of ibrutinib plus palbociclib in patients with previously treated mantle cell lymphoma. Blood, 2016, 128, 150-150.
[http://dx.doi.org/10.1182/blood.V128.22.150.150]
[115]
Golay, J.; Ubiali, G.; Introna, M. The specific Bruton tyrosine kinase inhibitor acalabrutinib (ACP-196) shows favorable in vitro activity against chronic lymphocytic leukemia B cells with CD20 antibodies. Haematologica, 2017, 102(10), e400-e403.
[http://dx.doi.org/10.3324/haematol.2017.169334 ] [PMID: 28642301]
[116]
Rogers, K.A.; Thompson, P.A.; Allan, J.N.; Coleman, M.; Sharman, J.P.; Cheson, B.D.; Izumi, R.; Frigault, M.M.; Quah, C.; Raman, R.K.; Wang, M.H.; Kipps, T.J. Phase 2 study of acalabrutinib in ibrutinib-intolerant patients with relapsed/refractory chronic lymphocytic leukemia. Hematol. Oncol., 2019, 37, 60-61.
[http://dx.doi.org/10.1002/hon.29_2629]
[117]
Ghia, P.; Pluta, A.; Wach, M.; Lysak, D.; Kozak, T.; Simkovic, M.; Kaplan, P.; Kraychok, I.; Illes, A.; De La Serna, J.; Dolan, S.; Campbell, P.; Musuraca, G.; Jacob, A.; Avery, E.J.; Lee, J.H.; Chen, T.; Liang, W.; Patel, P.; Jurczak, W. Acalabrutinib vs Rituximab Plus Idelalisib (IdR) or Bendamustine (BR) by Investigator Choice in Relapsed/Refractory (RR) Chronic Lymphocytic Leukemia: Phase 3 ASCEND Study. Hematol. Oncol., 2019, 37, 86-87.
[http://dx.doi.org/10.1002/hon.54_2629]
[118]
Walter, H.S.; Rule, S.A.; Dyer, M.J.S.; Karlin, L.; Jones, C.; Cazin, B.; Quittet, P.; Shah, N.; Hutchinson, C.V.; Honda, H.; Duffy, K.; Birkett, J.; Jamieson, V.; Courtenay-Luck, N.; Yoshizawa, T.; Sharpe, J.; Ohno, T.; Abe, S.; Nishimura, A.; Cartron, G.; Morschhauser, F.; Fegan, C.; Salles, G. A phase 1 clinical trial of the selective BTK inhibitor ONO/GS-4059 in relapsed and refractory mature B-cell malignancies. Blood, 2016, 127(4), 411-419.
[http://dx.doi.org/10.1182/blood-2015-08-664086 ] [PMID: 26542378]
[119]
Phase 2 Trial Testing 3 Potential Sjögren Therapies Now Enrolling in US. Europe, 2017.
[120]
Evans, E.K.; Tester, R.; Aslanian, S.; Karp, R.; Sheets, M.; Labenski, M.T.; Witowski, S.R.; Lounsbury, H.; Chaturvedi, P.; Mazdiyasni, H.; Zhu, Z.; Nacht, M.; Freed, M.I.; Petter, R.C.; Dubrovskiy, A.; Singh, J.; Westlin, W.F. Inhibition of Btk with CC-292 provides early pharmacodynamic assessment of activity in mice and humans. J. Pharmacol. Exp. Ther., 2013, 346(2), 219-228.
[http://dx.doi.org/10.1124/jpet.113.203489 ] [PMID: 23709115]
[121]
Phase, A A Phase 2a, 4-Week Double-Blind, Proof-of-Concept Efficacy and Safety Study of CC-292 Versus Placebo As CoTherapy with Methotrexate in Active Rheumatoid Arthritis (RA).,
[122]
Park, J.K.; Byun, J-Y.; Park, J.A.; Kim, Y-Y.; Lee, Y.J.; Oh, J.I.; Jang, S.Y.; Kim, Y.H.; Song, Y.W.; Son, J.; Suh, K.H.; Lee, Y-M.; Lee, E.B. HM71224, a novel Bruton’s tyrosine kinase inhibitor, suppresses B cell and monocyte activation and ameliorates arthritis in a mouse model: a potential drug for rheumatoid arthritis. Arthritis Res. Ther., 2016, 18, 91.
[http://dx.doi.org/10.1186/s13075-016-0988-z ] [PMID: 27090981]
[123]
Guo, Y.; Liu, Y.; Hu, N.; Yu, D.; Zhou, C.; Shi, G.; Zhang, B.; Wei, M.; Liu, J.; Luo, L.; Tang, Z.; Song, H.; Guo, Y.; Liu, X.; Su, D.; Zhang, S.; Song, X.; Zhou, X.; Hong, Y.; Chen, S.; Cheng, Z.; Young, S.; Wei, Q.; Wang, H.; Wang, Q.; Lv, L.; Wang, F.; Xu, H.; Sun, H.; Xing, H.; Li, N.; Zhang, W.; Wang, Z.; Liu, G.; Sun, Z.; Zhou, D.; Li, W.; Liu, L.; Wang, L.; Wang, Z. Discovery of Zanubrutinib (BGB-3111), a Novel, Potent, and Selective Covalent Inhibitor of Bruton’s Tyrosine Kinase. J. Med. Chem., 2019, 62(17), 7923-7940.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00687 ] [PMID: 31381333]
[124]
Hillmen, P.; Brown, J.R.; Kahl, B.S.; Ghia, P.; Robak, T.; Marimpietri, C.; Cohen, A.; Huang, J.; Tam, C.S.L. Phase 3 Zanubrutinib (BGB-3111) vs. Bendamustine + Rituximab (BR) in Patients (Pts) with Treatment-Naïve (TN) Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma (CLL/SLL). J. Clin. Oncol., 2018, 36, TPS7581-TPS7581.
[http://dx.doi.org/10.1200/JCO.2018.36.15_suppl.TPS7581]
[125]
First Patient Dosed in Phase 3 Trial of BeiGene’s Zanubrutinib for Hard-to-Treat Leukemia. Lymphoma, 2017.
[126]
Watterson, S.H.; Liu, Q.; Beaudoin Bertrand, M.; Batt, D.G.; Li, L.; Pattoli, M.A.; Skala, S.; Cheng, L.; Obermeier, M.T.; Moore, R.; Yang, Z.; Vickery, R.; Elzinga, P.A.; Discenza, L.; D’Arienzo, C.; Gillooly, K.M.; Taylor, T.L.; Pulicicchio, C.; Zhang, Y.; Heimrich, E.; McIntyre, K.W.; Ruan, Q.; Westhouse, R.A.; Catlett, I.M.; Zheng, N.; Chaudhry, C.; Dai, J.; Galella, M.A.; Tebben, A.J.; Pokross, M.; Li, J.; Zhao, R.; Smith, D.; Rampulla, R.; Allentoff, A.; Wallace, M.A.; Mathur, A.; Salter-Cid, L.; Macor, J.E.; Carter, P.H.; Fura, A.; Burke, J.R.; Tino, J.A. Discovery of Branebrutinib (BMS-986195): A strategy for identifying a highly potent and selective covalent inhibitor providing rapid in vivo inactivation of Bruton’s Tyrosine Kinase (BTK). J. Med. Chem., 2019, 62(7), 3228-3250.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00167 ] [PMID: 30893553]
[127]
Catlett, I.; Wei, L.; Zheng, N.; Liu, A.; He, B.; Girgis, I.; Nowak, M. BMS-986195, a Novel, Rapidly Acting, Covalent Inhibitor of Bruton’s Tyrosine Kinase: Safety, Pharmacokinetic and Pharmacodynamic Profiles in Healthy Participants.
[128]
Caldwell, R.D.; Qiu, H.; Askew, B.C.; Bender, A.T.; Brugger, N.; Camps, M.; Dhanabal, M.; Dutt, V.; Eichhorn, T.; Gardberg, A.S.; Goutopoulos, A.; Grenningloh, R.; Head, J.; Healey, B.; Hodous, B.L.; Huck, B.R.; Johnson, T.L.; Jones, C.; Jones, R.C.; Mochalkin, I.; Morandi, F.; Nguyen, N.; Meyring, M.; Potnick, J.R.; Santos, D.C.; Schmidt, R.; Sherer, B.; Shutes, A.; Urbahns, K.; Follis, A.V.; Wegener, A.A.; Zimmerli, S.C.; Liu-Bujalski, L. Discovery of evobrutinib: An oral, potent, and highly selective, covalent bruton’s tyrosine kinase (BTK) inhibitor for the treatment of immunological diseases. J. Med. Chem., 2019, 62(17), 7643-7655.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00794 ] [PMID: 31368705]
[129]
Montalban, X.; Arnold, D.L.; Weber, M.S.; Staikov, I.; Piasecka-Stryczynska, K.; Willmer, J.; Martin, E.C.; Dangond, F.; Syed, S.; Wolinsky, J.S. Evobrutinib phase 2 study group. Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis. N. Engl. J. Med., 2019, 380(25), 2406-2417.
[http://dx.doi.org/10.1056/NEJMoa1901981 ] [PMID: 31075187]
[130]
Wu, H.; Huang, Q.; Qi, Z.; Chen, Y.; Wang, A.; Chen, C.; Liang, Q.; Wang, J.; Chen, W.; Dong, J.; Yu, K.; Hu, C.; Wang, W.; Liu, X.; Deng, Y.; Wang, L.; Wang, B.; Li, X.; Gray, N.S.; Liu, J.; Wei, W.; Liu, Q. Irreversible inhibition of BTK kinase by a novel highly selective inhibitor CHMFL-BTK-11 suppresses inflammatory response in rheumatoid arthritis model. Sci. Rep., 2017, 7(1), 466.
[http://dx.doi.org/10.1038/s41598-017-00482-4 ] [PMID: 28352114]
[131]
Qiu, H.; Liu-Bujalski, L.; Caldwell, R.D.; Follis, A.V.; Gardberg, A.; Goutopoulos, A.; Grenningloh, R.; Head, J.; Johnson, T.; Jones, R.; Mochalkin, I.; Morandi, F.; Neagu, C.; Sherer, B. Discovery of potent, highly selective covalent irreversible BTK inhibitors from a fragment hit. Bioorg. Med. Chem. Lett., 2018, 28(17), 2939-2944.
[http://dx.doi.org/10.1016/j.bmcl.2018.07.008 ] [PMID: 30122225]
[132]
Liang, X.; Lv, F.; Wang, B.; Yu, K.; Wu, H.; Qi, Z.; Jiang, Z.; Chen, C.; Wang, A.; Miao, W.; Wang, W.; Hu, Z.; Liu, J.; Liu, X.; Zhao, Z.; Wang, L.; Zhang, S.; Ye, Z.; Wang, C.; Ren, T.; Wang, Y.; Liu, Q.; Liu, J. Discovery of 2-((3-Acrylamido-4-methylphenyl)amino)-N-(2-methyl-5-(3,4,5-trimethoxybenzamido) phenyl)-4-(methylamino)pyrimidine-5-carboxamide (CHMFL-BMX-078) as a highly potent and selective type II irreversible bone marrow kinase in the X chromosome (BMX) kinase inhibitor. J. Med. Chem., 2017, 60(5), 1793-1816.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01413 ] [PMID: 28140585]
[133]
Liu, F.; Zhang, X.; Weisberg, E.; Chen, S.; Hur, W.; Wu, H.; Zhao, Z.; Wang, W.; Mao, M.; Cai, C.; Simon, N.I.; Sanda, T.; Wang, J.; Look, A.T.; Griffin, J.D.; Balk, S.P.; Liu, Q.; Gray, N.S. Discovery of a selective irreversible BMX inhibitor for prostate cancer. ACS Chem. Biol., 2013, 8(7), 1423-1428.
[http://dx.doi.org/10.1021/cb4000629 ] [PMID: 23594111]
[134]
Siliciano, J.D.; Morrow, T.A.; Desiderio, S.V. itk, a T-cell-specific tyrosine kinase gene inducible by interleukin 2. Proc. Natl. Acad. Sci. USA, 1992, 89(23), 11194-11198.
[http://dx.doi.org/10.1073/pnas.89.23.11194 ] [PMID: 1280821]
[135]
Andreotti, A.H.; Schwartzberg, P.L.; Joseph, R.E.; Berg, L.J. T-cell signaling regulated by the Tec family kinase. Itk. Cold Spring Harb. Perspect. Biol., 2010, 2(7), a002287-a002287.
[http://dx.doi.org/10.1101/cshperspect.a002287 ] [PMID: 20519342]
[136]
Zapf, C.W.; Gerstenberger, B.S.; Xing, L.; Limburg, D.C.; Anderson, D.R.; Caspers, N.; Han, S.; Aulabaugh, A.; Kurumbail, R.; Shakya, S.; Li, X.; Spaulding, V.; Czerwinski, R.M.; Seth, N.; Medley, Q.G. Covalent inhibitors of interleukin-2 inducible T cell kinase (itk) with nanomolar potency in a whole-blood assay. J. Med. Chem., 2012, 55(22), 10047-10063.
[http://dx.doi.org/10.1021/jm301190s ] [PMID: 23098091]
[137]
Harling, J.D.; Deakin, A.M.; Campos, S.; Grimley, R.; Chaudry, L.; Nye, C.; Polyakova, O.; Bessant, C.M.; Barton, N.; Somers, D.; Barrett, J.; Graves, R.H.; Hanns, L.; Kerr, W.J.; Solari, R. Discovery of novel irreversible inhibitors of interleukin (IL)-2-inducible tyrosine kinase (Itk) by targeting cysteine 442 in the ATP pocket. J. Biol. Chem., 2013, 288(39), 28195-28206.
[http://dx.doi.org/10.1074/jbc.M113.474114 ] [PMID: 23935099]
[138]
Zhong, Y.; Dong, S.; Strattan, E.; Ren, L.; Butchar, J.P.; Thornton, K.; Mishra, A.; Porcu, P.; Bradshaw, J.M.; Bisconte, A.; Owens, T.D.; Verner, E.; Brameld, K.A.; Funk, J.O.; Hill, R.J.; Johnson, A.J.; Dubovsky, J.A. Targeting interleukin-2-inducible T-cell kinase (ITK) and resting lymphocyte kinase (RLK) using a novel covalent inhibitor PRN694. J. Biol. Chem., 2015, 290(10), 5960-5978.
[http://dx.doi.org/10.1074/jbc.M114.614891 ] [PMID: 25593320]
[139]
Tang, G.; Liu, L.; Wang, X.; Pan, Z. Discovery of 7H-pyrrolo[2,3-d]pyrimidine derivatives as selective covalent irreversible inhibitors of interleukin-2-inducible T-cell kinase (Itk). Eur. J. Med. Chem., 2019, 173, 167-183.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.055 ] [PMID: 30999237]
[140]
Janc, J.W.; Hill, C.M.; Ng, P.P.; Hoston, A.N.; Madriaga, A.; Dao-Pick, T.P.; Yeung, K.S.; Hudson, R.; Beausoleil, A-M.; Bradley, E.; Verner, E.; Thamm, D.H.; Miller, R.A.; Buggy, J.J. Proceedings of the Experimental and Molecular Therapeutics, 2019, pp. 1313-1313.
[141]
A Dose Escalation Study Evaluating CPI-818 in Relapsed/Refractory T-Cell Lymphoma., 2017.
[142]
Kottaridis, P.D.; Gale, R.E.; Frew, M.E.; Harrison, G.; Langabeer, S.E.; Belton, A.A.; Walker, H.; Wheatley, K.; Bowen, D.T.; Burnett, A.K.; Goldstone, A.H.; Linch, D.C. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood, 2001, 98(6), 1752-1759.
[http://dx.doi.org/10.1182/blood.V98.6.1752 ] [PMID: 11535508]
[143]
Chen, Y.; Pan, Y.; Guo, Y.; Zhao, W.; Ho, W.T.; Wang, J.; Xu, M.; Yang, F-C.; Zhao, Z.J. Tyrosine kinase inhibitors targeting FLT3 in the treatment of acute myeloid leukemia. Stem Cell Investig., 2017, 4, 48-48.
[http://dx.doi.org/10.21037/sci.2017.05.04 ] [PMID: 28607922]
[144]
Fischer, T.; Stone, R.M.; Deangelo, D.J.; Galinsky, I.; Estey, E.; Lanza, C.; Fox, E.; Ehninger, G.; Feldman, E.J.; Schiller, G.J.; Klimek, V.M.; Nimer, S.D.; Gilliland, D.G.; Dutreix, C.; Huntsman-Labed, A.; Virkus, J.; Giles, F.J. Phase IIB trial of oral Midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J. Clin. Oncol., 2010, 28(28), 4339-4345.
[http://dx.doi.org/10.1200/JCO.2010.28.9678 ] [PMID: 20733134]
[145]
Zarrinkar, P.P.; Gunawardane, R.N.; Cramer, M.D.; Gardner, M.F.; Brigham, D.; Belli, B.; Karaman, M.W.; Pratz, K.W.; Pallares, G.; Chao, Q.; Sprankle, K.G.; Patel, H.K.; Levis, M.; Armstrong, R.C.; James, J.; Bhagwat, S.S. AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood, 2009, 114(14), 2984-2992.
[http://dx.doi.org/10.1182/blood-2009-05-222034 ] [PMID: 19654408]
[146]
Yamaura, T.; Nakatani, T.; Uda, K.; Ogura, H.; Shin, W.; Kurokawa, N.; Saito, K.; Fujikawa, N.; Date, T.; Takasaki, M.; Terada, D.; Hirai, A.; Akashi, A.; Chen, F.; Adachi, Y.; Ishikawa, Y.; Hayakawa, F.; Hagiwara, S.; Naoe, T.; Kiyoi, H. A novel irreversible FLT3 inhibitor, FF-10101, shows excellent efficacy against AML cells with FLT3 mutations. Blood, 2018, 131(4), 426-438.
[http://dx.doi.org/10.1182/blood-2017-05-786657 ] [PMID: 29187377]
[148]
Ghaffari, H.; Reddy, M.V.R.; Cosenza, S.C.; del Carpio, R.V.; Reddy, E.P. Proceedings of the Experimental and Molecular Therapeutics, 2017, pp. 2094-2094.
[149]
Bensinger, D.; Stubba, D.; Cremer, A.; Kohl, V.; Waßmer, T.; Stuckert, J.; Engemann, V.; Stegmaier, K.; Schmitz, K.; Schmidt, B. Virtual Screening Identifies Irreversible FMS-like Tyrosine Kinase 3 Inhibitors with Activity toward Resistance-Conferring Mutations. J. Med. Chem., 2019, 62(5), 2428-2446.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01714 ] [PMID: 30742435]
[150]
Forster, M.; Gehringer, M.; Laufer, S.A. Recent advances in JAK3 inhibition: Isoform selectivity by covalent cysteine targeting. Bioorg. Med. Chem. Lett., 2017, 27(18), 4229-4237.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.079 ] [PMID: 28844493]
[151]
Telliez, J-B.; Dowty, M.E.; Wang, L.; Jussif, J.; Lin, T.; Li, L.; Moy, E.; Balbo, P.; Li, W.; Zhao, Y.; Crouse, K.; Dickinson, C.; Symanowicz, P.; Hegen, M.; Banker, M.E.; Vincent, F.; Unwalla, R.; Liang, S.; Gilbert, A.M.; Brown, M.F.; Hayward, M.; Montgomery, J.; Yang, X.; Bauman, J.; Trujillo, J.I.; Casimiro-Garcia, A.; Vajdos, F.F.; Leung, L.; Geoghegan, K.F.; Quazi, A.; Xuan, D.; Jones, L.; Hett, E.; Wright, K.; Clark, J.D.; Thorarensen, A. Discovery of a JAK3-Selective Inhibitor: Functional differentiation of JAK3-Selective Inhibition over pan-JAK or JAK1-Selective Inhibition. ACS Chem. Biol., 2016, 11(12), 3442-3451.
[http://dx.doi.org/10.1021/acschembio.6b00677 ] [PMID: 27791347]
[152]
Thorarensen, A.; Dowty, M.E.; Banker, M.E.; Juba, B.; Jussif, J.; Lin, T.; Vincent, F.; Czerwinski, R.M.; Casimiro-Garcia, A.; Unwalla, R.; Trujillo, J.I.; Liang, S.; Balbo, P.; Che, Y.; Gilbert, A.M.; Brown, M.F.; Hayward, M.; Montgomery, J.; Leung, L.; Yang, X.; Soucy, S.; Hegen, M.; Coe, J.; Langille, J.; Vajdos, F.; Chrencik, J.; Telliez, J-B. Design of a Janus Kinase 3 (JAK3) Specific Inhibitor 1-((2S,5R)-5-((7H-Pyrrolo[2,3-d]pyrimidin-4-yl)amino)-2-methylpiperidin-1-yl)prop-2-en-1-one (PF-06651600) Allowing for the Interrogation of JAK3 signaling in humans. J. Med. Chem., 2017, 60(5), 1971-1993.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01694 ] [PMID: 28139931]
[153]
Bioavailability Study of PF-06651600 Formulations in Healthy Participants.
[154]
Kempson, J.; Ovalle, D.; Guo, J.; Wrobleski, S.T.; Lin, S.; Spergel, S.H.; Duan, J.J-W.; Jiang, B.; Lu, Z.; Das, J.; Yang, B.V.; Hynes, J., Jr; Wu, H.; Tokarski, J.; Sack, J.S.; Khan, J.; Schieven, G.; Blatt, Y.; Chaudhry, C.; Salter-Cid, L.M.; Fura, A.; Barrish, J.C.; Carter, P.H.; Pitts, W.J. Discovery of highly potent, selective, covalent inhibitors of JAK3. Bioorg. Med. Chem. Lett., 2017, 27(20), 4622-4625.
[http://dx.doi.org/10.1016/j.bmcl.2017.09.023 ] [PMID: 28927786]
[155]
Yu, R-N.; Chen, C-J.; Shu, L.; Yin, Y.; Wang, Z-J.; Zhang, T-T.; Zhang, D-Y. Structure-based design and synthesis of pyrimidine-4,6-diamine derivatives as Janus kinase 3 inhibitors. Bioorg. Med. Chem., 2019, 27(8), 1646-1657.
[http://dx.doi.org/10.1016/j.bmc.2019.03.009 ] [PMID: 30853331]
[156]
Sánchez-Martínez, C.; Lallena, M.J.; Sanfeliciano, S.G.; de Dios, A. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs: Recent advances (2015-2019). Bioorg. Med. Chem. Lett., 2019, 29(20)126637
[http://dx.doi.org/10.1016/j.bmcl.2019.126637 ] [PMID: 31477350]
[157]
Anscombe, E.; Meschini, E.; Mora-Vidal, R.; Martin, M.P.; Staunton, D.; Geitmann, M.; Danielson, U.H.; Stanley, W.A.; Wang, L.Z.; Reuillon, T.; Golding, B.T.; Cano, C.; Newell, D.R.; Noble, M.E.M.; Wedge, S.R.; Endicott, J.A.; Griffin, R.J. Identification and characterization of an irreversible inhibitor of CDK2. Chem. Biol., 2015, 22(9), 1159-1164.
[http://dx.doi.org/10.1016/j.chembiol.2015.07.018 ] [PMID: 26320860]
[158]
Kwiatkowski, N.; Zhang, T.; Rahl, P.B.; Abraham, B.J.; Reddy, J.; Ficarro, S.B.; Dastur, A.; Amzallag, A.; Ramaswamy, S.; Tesar, B.; Jenkins, C.E.; Hannett, N.M.; McMillin, D.; Sanda, T.; Sim, T.; Kim, N.D.; Look, T.; Mitsiades, C.S.; Weng, A.P.; Brown, J.R.; Benes, C.H.; Marto, J.A.; Young, R.A.; Gray, N.S. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature, 2014, 511(7511), 616-620.
[http://dx.doi.org/10.1038/nature13393 ] [PMID: 25043025]
[159]
Zhang, T.; Kwiatkowski, N.; Olson, C.M.; Dixon-Clarke, S.E.; Abraham, B.J.; Greifenberg, A.K.; Ficarro, S.B.; Elkins, J.M.; Liang, Y.; Hannett, N.M.; Manz, T.; Hao, M.; Bartkowiak, B.; Greenleaf, A.L.; Marto, J.A.; Geyer, M.; Bullock, A.N.; Young, R.A.; Gray, N.S. Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors. Nat. Chem. Biol., 2016, 12(10), 876-884.
[http://dx.doi.org/10.1038/nchembio.2166 ] [PMID: 27571479]
[160]
Olson, C.M.; Liang, Y.; Leggett, A.; Park, W.D.; Li, L.; Mills, C.E.; Elsarrag, S.Z.; Ficarro, S.B.; Zhang, T.; Düster, R.; Geyer, M.; Sim, T.; Marto, J.A.; Sorger, P.K.; Westover, K.D.; Lin, C.Y.; Kwiatkowski, N.; Gray, N.S. Development of a Selective CDK7 Covalent Inhibitor Reveals Predominant Cell-Cycle Phenotype. Cell Chem. Biol., 2019, 26(6), 792-803.e10.
[http://dx.doi.org/10.1016/j.chembiol.2019.02.012 ] [PMID: 30905681]
[161]
Hu, S.; Marineau, J.J.; Rajagopal, N.; Hamman, K.B.; Choi, Y.J.; Schmidt, D.R.; Ke, N.; Johannessen, L.; Bradley, M.J.; Orlando, D.A.; Alnemy, S.R.; Ren, Y.; Ciblat, S.; Winter, D.K.; Kabro, A.; Sprott, K.T.; Hodgson, J.G.; Fritz, C.C.; Carulli, J.P.; di Tomaso, E.; Olson, E.R. Discovery and characterization of SY-1365, a Selective, covalent inhibitor of CDK7. Cancer Res., 2019, 79(13), 3479-3491.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-0119 ] [PMID: 31064851]
[162]
Doble, B.W.; Woodgett, J.R. GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell Sci., 2003, 116(Pt 7), 1175-1186.
[http://dx.doi.org/10.1242/jcs.00384 ] [PMID: 12615961]
[163]
Pandey, M.K.; DeGrado, T.R. Glycogen Synthase Kinase-3 (GSK-3)-Targeted therapy and imaging. Theranostics, 2016, 6(4), 571-593.
[http://dx.doi.org/10.7150/thno.14334 ] [PMID: 26941849]
[164]
Llorens-MarÃtin, M.; Jurado, J.; Hern, Ã. ¡ndez, F.; Ãvila, J. GSK-3Î2, a Pivotal Kinase in Alzheimer Disease. Front. Mol. Neurosci., 2014, 7.
[165]
Li, X.; Liu, M.; Cai, Z.; Wang, G.; Li, X. Regulation of glycogen synthase kinase-3 during bipolar mania treatment. Bipolar Disord., 2010, 12(7), 741-752.
[http://dx.doi.org/10.1111/j.1399-5618.2010.00866.x ] [PMID: 21040291]
[166]
Lim, N.K.H.; Hung, L.W.; Pang, T.Y.; Mclean, C.A.; Liddell, J.R.; Hilton, J.B.; Li, Q-X.; White, A.R.; Hannan, A.J.; Crouch, P.J. Localized changes to glycogen synthase kinase-3 and collapsin response mediator protein-2 in the Huntington’s disease affected brain. Hum. Mol. Genet., 2014, 23(15), 4051-4063.
[http://dx.doi.org/10.1093/hmg/ddu119 ] [PMID: 24634145]
[167]
Venter, J.; Perez, C.; van Otterlo, W.A.L.; Martínez, A.; Blackie, M.A.L. 1-Aryl-3-(4-methoxybenzyl)ureas as potentially irreversible glycogen synthase kinase 3 inhibitors: Synthesis and biological evaluation. Bioorg. Med. Chem. Lett., 2019, 29(13), 1597-1600.
[http://dx.doi.org/10.1016/j.bmcl.2019.04.049 ] [PMID: 31054862]
[168]
Aronchik, I.; Dai, Y.; Labenski, M.; Barnes, C.; Jones, T.; Qiao, L.; Beebe, L.; Malek, M.; Elis, W.; Shi, T.; Mavrommatis, K.; Bray, G.L.; Filvaroff, E.H. Efficacy of a Covalent ERK1/2 Inhibitor, CC-90003, in KRAS-Mutant Cancer Models Reveals Novel Mechanisms of Response and Resistance. Mol. Cancer Res., 2019, 17(2), 642-654.
[http://dx.doi.org/10.1158/1541-7786.MCR-17-0554 ] [PMID: 30275173]
[169]
Mita, M.M.; LoRusso, P.; McArthur, G.A.; Kim, E.S.; Bray, G.L.; Hock, N.H.; Laille, E.J.; Aronchik, I.; Filvaroff, E.; Wu, X.; Bendell, J.C. A Phase Ia Study of CC-90003, a Selective Extracellular Signal-Regulated Kinase (ERK) Inhibitor, in Patients with Relapsed or refractory BRAF or RAS-Mutant tumors. J. Clin. Oncol., 2017, 35, 2577-2577.
[http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.2577]
[170]
Ward, R.A.; Colclough, N.; Challinor, M.; Debreczeni, J.E.; Eckersley, K.; Fairley, G.; Feron, L.; Flemington, V.; Graham, M.A.; Greenwood, R.; Hopcroft, P.; Howard, T.D.; James, M.; Jones, C.D.; Jones, C.R.; Renshaw, J.; Roberts, K.; Snow, L.; Tonge, M.; Yeung, K. Structure-Guided Design of Highly Selective and Potent Covalent Inhibitors of ERK1/2. J. Med. Chem., 2015, 58(11), 4790-4801.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00466 ] [PMID: 25977981]
[171]
Mukherjee, H.; Grimster, N.P. Beyond cysteine: Recent developments in the area of targeted covalent inhibition. Curr. Opin. Chem. Biol., 2018, 44, 30-38.
[http://dx.doi.org/10.1016/j.cbpa.2018.05.011 ] [PMID: 29857316]
[172]
Prior, I.A.; Lewis, P.D.; Mattos, C. A comprehensive survey of Ras mutations in cancer. Cancer Res., 2012, 72(10), 2457-2467.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-2612 ] [PMID: 22589270]
[173]
Hunter, J.C.; Gurbani, D.; Ficarro, S.B.; Carrasco, M.A.; Lim, S.M.; Choi, H.G.; Xie, T.; Marto, J.A.; Chen, Z.; Gray, N.S.; Westover, K.D. In situ selectivity profiling and crystal structure of SML-8-73-1, an active site inhibitor of oncogenic K-Ras G12C. Proc. Natl. Acad. Sci. USA, 2014, 111(24), 8895-8900.
[http://dx.doi.org/10.1073/pnas.1404639111 ] [PMID: 24889603]
[174]
Marwan, Fakih; Bert, O'Niel; Timothy Jay, Price Phase 1 Study Evaluating the Safety, Tolerability, Pharmacokinetics (PK), and Efficacy of AMG 510, a Novel Small Molecule KRASG12C Inhibitor, in Advanced Solid Tumors,
[175]
Patricelli, M.P.; Janes, M.R.; Li, L-S.; Hansen, R.; Peters, U.; Kessler, L.V.; Chen, Y.; Kucharski, J.M.; Feng, J.; Ely, T.; Chen, J.H.; Firdaus, S.J.; Babbar, A.; Ren, P.; Liu, Y. Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state. Cancer Discov., 2016, 6(3), 316-329.
[http://dx.doi.org/10.1158/2159-8290.CD-15-1105 ] [PMID: 26739882]
[176]
Janes, M.R.; Zhang, J.; Li, L-S.; Hansen, R.; Peters, U.; Guo, X.; Chen, Y.; Babbar, A.; Firdaus, S.J.; Darjania, L.; Feng, J.; Chen, J.H.; Li, S.; Li, S.; Long, Y.O.; Thach, C.; Liu, Y.; Zarieh, A.; Ely, T.; Kucharski, J.M.; Kessler, L.V.; Wu, T.; Yu, K.; Wang, Y.; Yao, Y.; Deng, X.; Zarrinkar, P.P.; Brehmer, D.; Dhanak, D.; Lorenzi, M.V.; Hu-Lowe, D.; Patricelli, M.P.; Ren, P.; Liu, Y. Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor. Cell, 2018, 172(3), 578-589.e17.
[http://dx.doi.org/10.1016/j.cell.2018.01.006 ] [PMID: 29373830]
[177]
Fell, J.B.; Fischer, J.P.; Baer, B.R.; Ballard, J.; Blake, J.F.; Bouhana, K.; Brandhuber, B.J.; Briere, D.M.; Burgess, L.E.; Burkard, M.R.; Chiang, H.; Chicarelli, M.J.; Davidson, K.; Gaudino, J.J.; Hallin, J.; Hanson, L.; Hee, K.; Hicken, E.J.; Hinklin, R.J.; Marx, M.A.; Mejia, M.J.; Olson, P.; Savechenkov, P.; Sudhakar, N.; Tang, T.P.; Vigers, G.P.; Zecca, H.; Christensen, J.G. Discovery of Tetrahydropyridopyrimidines as irreversible covalent inhibitors of KRAS-G12C with in vivo activity. ACS Med. Chem. Lett., 2018, 9(12), 1230-1234.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00382 ] [PMID: 30613331]
[178]
Forster, M.; Chaikuad, A.; Bauer, S.M.; Holstein, J.; Robers, M.B.; Corona, C.R.; Gehringer, M.; Pfaffenrot, E.; Ghoreschi, K.; Knapp, S.; Laufer, S.A. Selective JAK3 inhibitors with a covalent reversible binding mode targeting a new induced fit binding pocket. Cell Chem. Biol., 2016, 23(11), 1335-1340.
[http://dx.doi.org/10.1016/j.chembiol.2016.10.008 ] [PMID: 27840070]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 17
Year: 2020
Published on: 18 November, 2020
Page: [1732 - 1753]
Pages: 22
DOI: 10.2174/1389557520666200513121524
Price: $65

Article Metrics

PDF: 52
HTML: 2
EPUB: 1
PRC: 1