New Strategies for Safe Cancer Therapy Using Electrospun Nanofibers: A Short Review

Author(s): Mohsen Doostmohammadi, Hamid Forootanfar*, Seeram Ramakrishna*

Journal Name: Mini-Reviews in Medicinal Chemistry

Volume 20 , Issue 13 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Electrospun nanofibers regarding their special features, including high drug loading capacity, high surface to volume area, flexibility, and ease of production and operation, are of great interest for being used in tissue engineering, and drug delivery approaches. In this context, several studies have been done for the production of biodegradable and biocompatible scaffolds containing different anticancer agents for fighting with solid tumors. Surprisingly, these scaffolds are able to deliver different combinations of drugs and agents, such as nanoparticles and release them in a time dependent manner. Here in this review, we summarize the principles of electrospinning and their uses in entrapment of drugs and anti-proliferative agents suitable for cancer therapy. The latest studies performed on treating cancer using electrospinning are mentioned and their advantages and disadvantages over conventional treatment methods are discussed.

Keywords: Electrospun nanofibers, anticancer, tissue engineering, nanoparticle, tumor, drugs.

[1]
Plummer, M.; de Martel, C.; Vignat, J.; Ferlay, J.; Bray, F.; Franceschi, S. Global burden of cancers attributable to infections in 2012: A synthetic analysis. Lancet Glob. Health, 2016, 4(9), e609-e616.
[http://dx.doi.org/10.1016/S2214-109X(16)30143-7] [PMID: 27470177]
[2]
Anand, P.; Kunnumakkara, A.B.; Sundaram, C.; Harikumar, K.B.; Tharakan, S.T.; Lai, O.S.; Sung, B.; Aggarwal, B.B.; Aggarwal, B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res., 2008, 25(9), 2097-2116.
[http://dx.doi.org/10.1007/s11095-008-9661-9] [PMID: 18626751]
[3]
Martinez, J.D.; Parker, M.T.; Fultz, K.E.; Ignatenko, N.A.; Gerner, E.W. Molecular Biology of Cancer. In: Chemother. Agents Ed. by Donald J. Abraham 5;
[http://dx.doi.org/10.1002/0471266949.bmc074]
[4]
Cancer Statistics - National Cancer Institute. https://www.cancer.gov/about-cancer/understanding/statistics [April 22, 2018];
[5]
Zhang, J.; Wang, X.; Liu, T.; Liu, S.; Jing, X. Antitumor activity of electrospun polylactide nanofibers loaded with 5-fluorouracil and oxaliplatin against colorectal cancer. Drug Deliv., 2016, 23(3), 794-800.
[http://dx.doi.org/10.3109/10717544.2014.916768] [PMID: 24870201]
[6]
Coriat, R.; Alexandre, J.; Nicco, C.; Quinquis, L.; Benoit, E.; Chéreau, C.; Lemaréchal, H.; Mir, O.; Borderie, D.; Tréluyer, J-M.; Weill, B.; Coste, J.; Goldwasser, F.; Batteux, F. Treatment of oxaliplatin-induced peripheral neuropathy by intravenous mangafodipir. J. Clin. Invest., 2014, 124(1), 262-272.
[http://dx.doi.org/10.1172/JCI68730] [PMID: 24355920]
[7]
Piccolo, J.; Kolesar, J.M. Prevention and treatment of chemotherapy-induced peripheral neuropathy. Am. J. Health Syst. Pharm., 2014, 71(1), 19-25.
[http://dx.doi.org/10.2146/ajhp130126] [PMID: 24352178]
[8]
Efudex, Carac (fluorouracil topical) dosing, indications, interactions, adverse effects, and more https://reference.medscape.com/drug/efudex-carac-fluorouracil-topical-343545#showall [April 23, 2018];
[9]
Jardine, L.F.; Ingram, L.C.; Bleyer, W.A. Intrathecal leucovorin after intrathecal methotrexate overdose. J. Pediatr. Hematol. Oncol., 1996, 18(3), 302-304.
[http://dx.doi.org/10.1097/00043426-199608000-00014] [PMID: 8689347]
[10]
Di Pietro, A.; Dayan, G.; Conseil, G.; Steinfels, E.; Krell, T.; Trompier, D.; Baubichon-Cortay, H.; Jault, J. P-glycoprotein-mediated resistance to chemotherapy in cancer cells: Using recombinant cytosolic domains to establish structure-function relationships. Braz. J. Med. Biol. Res., 1999, 32(8), 925-939.
[http://dx.doi.org/10.1590/S0100-879X1999000800001] [PMID: 10454753]
[11]
Padera, T.P.; Meijer, E.F.J.; Munn, L.L. The lymphatic system in disease processes and cancer progression. Annu. Rev. Biomed. Eng., 2016, 18, 125-158.
[http://dx.doi.org/10.1146/annurev-bioeng-112315-031200] [PMID: 26863922]
[12]
Feng, T.; Wei, Y.; Lee, R.J.; Zhao, L. Liposomal curcumin and its application in cancer. Int. J. Nanomedicine, 2017, 12, 6027-6044.
[http://dx.doi.org/10.2147/IJN.S132434] [PMID: 28860764]
[13]
Hendriks, D.; Choi, G.; de Bruyn, M.; Wiersma, V.R.; Bremer, E. Antibody-Based cancer therapy: Successful agents and novel approaches. Int. Rev. Cell Mol. Biol., 2017, 331, 289-383.
[http://dx.doi.org/10.1016/bs.ircmb.2016.10.002] [PMID: 28325214]
[14]
Corraliza-Gorjón, I.; Somovilla-Crespo, B.; Santamaria, S.; Garcia-Sanz, J.A.; Kremer, L. New strategies using antibody combinations to increase cancer treatment effectiveness. Front. Immunol., 2017, 8, 1804.
[http://dx.doi.org/10.3389/fimmu.2017.01804] [PMID: 29312320]
[15]
Wu, M.; Huang, S. Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment. Mol. Clin. Oncol., 2017, 7(5), 738-746.
[http://dx.doi.org/10.3892/mco.2017.1399] [PMID: 29075487]
[16]
Malik, A.; Tahir Butt, T.; Zahid, S.; Zahid, F.; Waquar, S.; Rasool, M.; Qazi, M.H.; Qazi, A.M. Use of magnetic nanoparticles as targeted therapy: theranostic approach to treat and diagnose cancer. J. Nanotechnol., 2017, 2017, 1-8.
[http://dx.doi.org/10.1155/2017/1098765]
[17]
Kim, K.W.; Moretti, L.; Mitchell, L.R.; Jung, D.K.; Lu, B. Combined Bcl-2/mammalian target of rapamycin inhibition leads to enhanced radiosensitization via induction of apoptosis and autophagy in non-small cell lung tumor xenograft model. Clin. Cancer Res., 2009, 15(19), 6096-6105.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0589] [PMID: 19773376]
[18]
Wolinsky, J.B.; Colson, Y.L.; Grinstaff, M.W. Local drug delivery strategies for cancer treatment: Gels, nanoparticles, polymeric films, rods, and wafers. J. Control. Release, 2012, 159(1), 14-26.
[http://dx.doi.org/10.1016/j.jconrel.2011.11.031] [PMID: 22154931]
[19]
Weng, L.; Xie, J. Smart electrospun nanofibers for controlled drug release: Recent advances and new perspectives. Curr. Pharm. Des., 2015, 21(15), 1944-1959.
[http://dx.doi.org/10.2174/1381612821666150302151959] [PMID: 25732665]
[20]
Zheng, F.; Wang, S.; Shen, M.; Zhu, M.; Shi, X. Antitumor efficacy of doxorubicin-loaded electrospun nano-hydroxyapatite–poly(lactic-co-glycolic acid) composite nanofibers. Polym. Chem., 2013, 4, 933-941.
[http://dx.doi.org/10.1039/C2PY20779F]
[21]
Reneker, D.H.; Yarin, A.L. Electrospinning jets and polymer nanofibers. Polymer (Guildf.), 2008, 49(10), 2387-2425.
[http://dx.doi.org/10.1016/j.polymer.2008.02.002]
[22]
He, J.H.; Wan, Y.Q.; Yu, J.Y. Scaling law in electrospinning: Relationship between electric current and solution flow rate. Polymer (Guildf.), 2005, 2799-2801.
[http://dx.doi.org/10.1016/j.polymer.2005.01.065]
[23]
Hamza, S.; Kiani, A. A rapid and easy procedure of conductive 3D nanofibrous structure induced by nanosecond laser processing of Si wafer coated by Au thin-film. Sens. Biosensing Res., 2017, 6-11.
[http://dx.doi.org/10.1016/j.sbsr.2017.09.003]
[24]
Xu, L.; Zhao, X.; Xu, C.; Kotov, N.A. Water-Rich biomimetic composites with abiotic self-organizing nanofiber network. Adv. Mater., 2018, 30(1) 1703343
[http://dx.doi.org/10.1002/adma.201703343] [PMID: 29134692]
[25]
Ma, Z.; Kotaki, M.; Inai, R.; Ramakrishna, S. Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng., 2005, 11(1-2), 101-109.
[http://dx.doi.org/10.1089/ten.2005.11.101] [PMID: 15738665]
[26]
Schreuder-Gibson, H.; Gibson, P.; Senecal, K.; Sennett, M.; Walker, J.; Yeomans, W.; Ziegler, D.; Tsai, P.P. Protective textile materials based on electrospun nanofibers. J. Adv. Mater., 2002, 34(3), 44-55.
[27]
Welle, A.; Kröger, M.; Döring, M.; Niederer, K.; Pindel, E.; Chronakis, I.S. Electrospun aliphatic polycarbonates as tailored tissue scaffold materials. Biomaterials, 2007, 28(13), 2211-2219.
[http://dx.doi.org/10.1016/j.biomaterials.2007.01.024] [PMID: 17275083]
[28]
Sell, S.A.; Barnes, C.P.; Knapp, D.C.; Walpoth, B.H.; Bowlin, G.L. The new ‘spin’ on vascular tissue engineering. Int. Conf. Adv. Fibers Polym. Mater. (ICAFPM 2005), 2005.
[29]
Ramakrishna, S.; Fujihara, K.; Teo, W-E.; Yong, T.; Ma, Z.; Ramaseshan, R. Electrospun nanofibers: Solving global issues. Mater. Today, 2006, 9(3), 40-50.
[http://dx.doi.org/10.1016/S1369-7021(06)71389-X]
[30]
Deitzel, J.M.; Kleinmeyer, J.; Harris, D.; Beck Tan, N.C. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer (Guildf.), 422001, , 261-272.
[http://dx.doi.org/10.1016/S0032-3861(00)00250-0]
[31]
Zhao, Y.Y.; Yang, Q.B.; Lu, X.F.; Wang, C.; Wei, Y. Study on correlation of morphology of electrospun products of polyacrylamide with ultrahigh molecular weight. J. Polym. Sci. Part B Polym. Phys., 2005, 43(16), 2190-2195.
[32]
Qin, X.; Wu, D. Effect of different solvents on poly(caprolactone) (PCL) electrospun nonwoven membranes. J. Therm. Anal. Calorim., 2012, 1007-1013.
[http://dx.doi.org/10.1007/s10973-011-1640-4]
[33]
Areias, A.C.; Gómez-Tejedor, J.A.; Sencadas, V.; Alió, J.; Ribelles, J.L.G.; Lanceros-Mendez, S. Assessment of parameters influencing fiber characteristics of chitosan nanofiber membrane to optimize fiber mat production. Polym. Eng. Sci., 2012, 52(6), 1293-1300.
[http://dx.doi.org/10.1002/pen.23070]
[34]
Homayoni, H.; Ravandi, S.A.H.; Valizadeh, M. Electrospinning of chitosan nanofibers: Processing optimization. Carbohydr. Polym., 2009, 77(3), 656-661.
[http://dx.doi.org/10.1016/j.carbpol.2009.02.008]
[35]
Zargham, S.; Bazgir, S.; Tavakoli, A.; Rashidi, A.S.; Damerchely, R. The effect of flow rate on morphology and deposition area of electrospun nylon 6 nanofiber. J. Eng. Fiber. Fabrics, 2012, 7(4) 155892501200700
[36]
Zhang, J.; Duan, Y.; Wei, D.; Wang, L.; Wang, H.; Gu, Z.; Kong, D. Co-electrospun fibrous scaffold-adsorbed DNA for substrate-mediated gene delivery. J. Biomed. Mater. Res. - Part A, 2011, 96(1), 212-220.
[37]
Kadavil, H.; Zagho, M.; Elzatahry, A.; Altahtamouni, T. Sputtering of electrospun polymer-based nanofibers for biomedical applications: A perspective. Nanomaterials (Basel), 2019, 9(1), 77.
[http://dx.doi.org/10.3390/nano9010077] [PMID: 30626067]
[38]
Buzgo, M.; Mickova, A.; Rampichova, M.; Doupnik, M. Blend electrospinning, coaxial electrospinning, and emulsion electrospinning techniques; Core-Shell Nanostructures for Drug Delivery and Theranostics, 2018, pp. 325-347.
[http://dx.doi.org/10.1016/B978-0-08-102198-9.00011-9]
[39]
Qian, W.; Yu, D.G.; Li, Y.; Liao, Y.Z.; Wang, X.; Wang, L. Dual drug release electrospun core-shell nanofibers with tunable dose in the second phase. Int. J. Mol. Sci., 2014, 15(1), 774-786.
[http://dx.doi.org/10.3390/ijms15010774] [PMID: 24406731]
[40]
Contreras-Cáceres, R.; Cabeza, L. Perazzoli, G; Díaz, A; López-Romero, J.M; Melguizo, C; Prados, J; Electrospun Nanofibers: Recent applications in drug delivery and cancer therapy. Nanomaterials (Basel), 2019, 9(4), 3-24.
[41]
Al-Enizi, A.M.; Zagho, M.M.; Elzatahry, A.A. Polymer-Based electrospun nanofibers for biomedical applications. Nanomaterials (Basel), 2018, 8(4), 259-263.
[http://dx.doi.org/10.3390/nano8040259] [PMID: 29677145]
[42]
Bolbasov, E.; Goreninskii, S.; Tverdokhlebov, S.; Mishanin, A.; Viknianshchuk, A.; Bezuidenhout, D.; Golovkin, A. Comparative Study of the physical, topographical and biological properties of electrospinning PCL, PLLA, their blend and copolymer Scaffolds.IOP Conference. Series; Materials Science and Engineering, 2018, p. 012012.
[43]
Li, X.; Kanjwal, M.A.; Lin, L.; Chronakis, I.S. Electrospun polyvinyl-alcohol nanofibers as oral fast-dissolving delivery system of caffeine and riboflavin. Colloids Surf. B Biointerfaces, 2013, 103, 182-188.
[http://dx.doi.org/10.1016/j.colsurfb.2012.10.016] [PMID: 23201736]
[44]
Xie, J.; Wang, C.H. Electrospun micro- and nanofibers for sustained delivery of paclitaxel to treat C6 glioma in vitro. Pharm. Res., 2006, 23(8), 1817-1826.
[http://dx.doi.org/10.1007/s11095-006-9036-z] [PMID: 16841195]
[45]
Hrib, J.; Sirc, J.; Hobzova, R.; Hampejsova, Z.; Bosakova, Z.; Munzarova, M.; Michalek, J. Nanofibers for drug delivery - Incorporation and release of model molecules, influence of molecular weight and polymer structure; Beilstein J Nanotechno, 2015, pp. 1939-1945.
[46]
Lee, S.H.; Song, W.S. Enzymatic hydrolysis of polylactic acid fiber. Appl. Biochem. Biotechnol., 2011, 164(1), 89-102.
[http://dx.doi.org/10.1007/s12010-010-9117-7] [PMID: 21038086]
[47]
Repanas, A.; Wolkers, W.F. Coaxial electrospinning as a process to engineer biodegradable polymeric scaffolds as drug delivery systems for anti-inflammatory and anti- thrombotic pharmaceutical agents. Clin. Exp. Pharmacol., 2015, 5(5), 1-8.
[http://dx.doi.org/10.4172/2161-1459.1000192]
[48]
Houchin, M.L.; Topp, E.M. Physical properties of PLGA films during polymer degradation. J. Appl. Polym. Sci., 2009, 2848-2854.
[http://dx.doi.org/10.1002/app.30813]
[49]
Shahriar, S.M.S.; Mondal, J.; Hasan, M.N.; Revuri, V.D.Y. Lee; Y.K, Lee. Electrospinning nanofibers for therapeutics delivery. Nanomaterials (Basel), 2019, 9(4), 532-542.
[http://dx.doi.org/10.3390/nano9040532]
[50]
Jiang, S.; Liu, S.; Feng, W. PVA hydrogel properties for biomedical application. J. Mech. Behav. Biomed. Mater., 2011, 4(7), 1228-1233.
[51]
Zhao, G.; Zhang, X.; Lu, T.J.; Xu, F. Recent advances in electrospun nanofibrous scaffolds for cardiac tissue engineering. Adv. Funct. Mater., 2015, 25(36), 5726-5738.
[http://dx.doi.org/10.1002/adfm.201502142]
[52]
Iqbal, S.; Rashid, M.H.; Arbab, A.S.; Khan, M. Encapsulation of anticancer drugs (5-Fluorouracil and Paclitaxel) into polycaprolactone (PCL) nanofibers and in vitro testing for sustained and targeted therapy. J. Biomed. Nanotechnol., 2017, 13(4), 355-366.
[http://dx.doi.org/10.1166/jbn.2017.2353] [PMID: 28845137]
[53]
Almajhdi, F.N.; Fouad, H.; Khalil, K.A.; Awad, H.M.; Mohamed, S.H.S.; Elsarnagawy, T.; Albarrag, A.M.; Al-Jassir, F.F.; Abdo, H.S. In-vitro anticancer and antimicrobial activities of PLGA/silver nanofiber composites prepared by electrospinning. J. Mater. Sci. Mater. Med., 2014, 25(4), 1045-1053.
[http://dx.doi.org/10.1007/s10856-013-5131-y] [PMID: 24375170]
[54]
Ramalingam, R.; Dhand, C. Leung, C; Ezhilarasu, H; Prasannan, P; Ong, S; Subramanian, S; Kamruddin, M; Lakshminarayanan, R; Ramakrishna, S; Verma, N; Arunachalam, K. Poly-ε-Caprolactone/Gelatin hybrid electrospun composite nanofibrous mats containing ultrasound assisted herbal extract: Antimicrobial and cell proliferation study. Nanomaterials (Basel), 2019, 462.
[http://dx.doi.org/10.3390/nano9030462]
[55]
Dubey, P.; Gopinath, P. Fabrication of electrospun poly(ethylene oxide)-poly(capro lactone) composite nanofibers for co-delivery of niclosamide and silver nanoparticles exhibits enhanced anti-cancer effects in vitro. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(4), 726-742.
[http://dx.doi.org/10.1039/C5TB02351C] [PMID: 32262954]
[56]
Hadjianfar, M.; Semnani, D. Varshosaz, J. Polycaprolactone/chitosan blend nanofibers loaded by 5-fluorouracil: An approach to anticancer drug delivery system. Polym. Adv. Technol., 2018, 2972-2981.
[http://dx.doi.org/10.1002/pat.4417]
[57]
Ma, G.; Liu, Y.; Peng, C.; Fang, D.; He, B.; Nie, J. Paclitaxel loaded electrospun porous nanofibers as mat potential application for chemotherapy against prostate cancer. Carbohydr. Polym., 2011, 505-5102.
[http://dx.doi.org/10.1016/j.carbpol.2011.04.082]
[58]
USCS Data Visualizations - CDC. https://gis.cdc.gov/Cancer/USCS/DataViz.html [July 13, 2019];
[59]
Van Cutsem, E.; Oliveira, J. ESMO Guidelines Working Group. Advanced colorectal cancer: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann. Oncol., 2009, 20(Suppl. 4), 61-63.
[http://dx.doi.org/10.1093/annonc/mdp130] [PMID: 19454465]
[60]
Yoo, P.S.; Lopez-Soler, R.I.; Longo, W.E.; Cha, C.H. Liver resection for metastatic colorectal cancer in the age of neoadjuvant chemotherapy and bevacizumab. Clin. Colorectal Cancer, 2006, 6(3), 202-207.
[http://dx.doi.org/10.3816/CCC.2006.n.036] [PMID: 17026789]
[61]
Folprecht, G.; Grothey, A.; Alberts, S.; Raab, H-R.; Köhne, C-H. Neoadjuvant treatment of unresectable colorectal liver metastases: Correlation between tumour response and resection rates. Ann. Oncol., 2005, 16(8), 1311-1319.
[http://dx.doi.org/10.1093/annonc/mdi246] [PMID: 15870084]
[62]
de Gramont, A.; Figer, A.; Seymour, M.; Homerin, M.; Hmissi, A.; Cassidy, J.; Boni, C.; Cortes-Funes, H.; Cervantes, A.; Freyer, G.; Papamichael, D.; Le Bail, N.; Louvet, C.; Hendler, D.; de Braud, F.; Wilson, C.; Morvan, F.; Bonetti, A. Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J. Clin. Oncol., 2000, 18(16), 2938-2947.
[http://dx.doi.org/10.1200/JCO.2000.18.16.2938] [PMID: 10944126]
[63]
Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.; Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren, E.; Ferrara, N.; Fyfe, G.; Rogers, B.; Ross, R.; Kabbinavar, F. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med., 2004, 350(23), 2335-2342.
[http://dx.doi.org/10.1056/NEJMoa032691] [PMID: 15175435]
[64]
Saltz, L.B.; Clarke, S.; Díaz-Rubio, E.; Scheithauer, W.; Figer, A.; Wong, R.; Koski, S.; Lichinitser, M.; Yang, T.S.; Rivera, F.; Couture, F.; Sirzén, F.; Cassidy, J. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: A randomized phase III study. J. Clin. Oncol., 2008, 26(12), 2013-2019.
[http://dx.doi.org/10.1200/JCO.2007.14.9930] [PMID: 18421054]
[65]
Amado, R.G.; Wolf, M.; Peeters, M.; Van Cutsem, E.; Siena, S.; Freeman, D.J.; Juan, T.; Sikorski, R.; Suggs, S.; Radinsky, R.; Patterson, S.D.; Chang, D.D. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol., 2008, 26(10), 1626-1634.
[http://dx.doi.org/10.1200/JCO.2007.14.7116] [PMID: 18316791]
[66]
Van Cutsem, E.; Köhne, C-H.; Hitre, E.; Zaluski, J.; Chang, C.C-R.; Makhson, A.; D’Haens, G.; Pintér, T.; Lim, R.; Bodoky, G.; Roh, J.K.; Folprecht, G.; Ruff, P.; Stroh, C.; Tejpar, S.; Schlichting, M.; Nippgen, J.; Rougier, P. Etuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N. Engl. J. Med., 2009, 360, 1408-1417.
[http://dx.doi.org/10.1056/NEJMoa0805019] [PMID: 19339720]
[67]
Douillard, J.Y.; Siena, S.; Cassidy, J.; Tabernero, J.; Burkes, R.; Barugel, M.; Humblet, Y.; Bodoky, G.; Cunningham, D.; Jassem, J.; Rivera, F.; Kocákova, I.; Ruff, P.; Błasińska-Morawiec, M.; Šmakal, M.; Canon, J.L.; Rother, M.; Oliner, K.S.; Wolf, M.; Gansert, J. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J. Clin. Oncol., 2010, 28(31), 4697-4705.
[http://dx.doi.org/10.1200/JCO.2009.27.4860] [PMID: 20921465]
[68]
Koeppen, S. Prevention and treatment of chemotherapy-induced peripheral neuropathy. Best Pract. Onkol., 2018, 71, 19-25.
[69]
Varshosaz, J.; Jajanian-Najafabadi, A.; Soleymani, A.; Khajavinia, A. Poly (butylene adipate-co-terephthalate) electrospun nanofibers loaded with 5-fluorouracil and curcumin in treatment of colorectal cancer cells. Polym. Test., 2018, 65, 217-230.
[http://dx.doi.org/10.1016/j.polymertesting.2017.11.020]
[70]
Yohe, S.T.; Herrera, V.L.M.; Colson, Y.L.; Grinstaff, M.W. 3D superhydrophobic electrospun meshes as reinforcement materials for sustained local drug delivery against colorectal cancer cells. J. Control. Release, 2012, 162(1), 92-101.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.047] [PMID: 22684120]
[71]
Illangakoon, U.E.; Yu, D.G.; Ahmad, B.S.; Chatterton, N.P.; Williams, G.R. 5-Fluorouracil loaded Eudragit fibers prepared by electrospinning. Int. J. Pharm., 2015, 495(2), 895-902.
[http://dx.doi.org/10.1016/j.ijpharm.2015.09.044] [PMID: 26410755]
[72]
Liu, D.; Wang, F.; Yue, J.; Jing, X.; Huang, Y. Metabolism targeting therapy of dichloroacetate-loaded electrospun mats on colorectal cancer. Drug Deliv., 2015, 22(1), 136-143.
[http://dx.doi.org/10.3109/10717544.2013.870258] [PMID: 24359441]
[73]
Zhang, Z.; Liu, S.; Qi, Y.; Zhou, D.; Xie, Z.; Jing, X.; Chen, X.; Huang, Y. Time-programmed DCA and oxaliplatin release by multilayered nanofiber mats in prevention of local cancer recurrence following surgery. J. Control. Release, 2016, 235, 125-133.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.046] [PMID: 27221069]
[74]
Md, H-R.M.A.G.M.G.S.M.A.A.R. Biological activities of a new acrylamide derivative from Ipomoea turpethum. Pak. J. Biol. Sci., 2002, 5, 968-969.
[http://dx.doi.org/10.3923/pjbs.2002.968.969]
[75]
Tiwari, S.K.; Tzezana, R.; Zussman, E.; Venkatraman, S.S. Optimizing partition-controlled drug release from electrospun core-shell fibers. Int. J. Pharm., 2010, 392(1-2), 209-217.
[http://dx.doi.org/10.1016/j.ijpharm.2010.03.021] [PMID: 20227472]
[76]
Bonadies, I.; Maglione, L.; Ambrogi, V.; Paccez, J.D.; Zerbini, L.F.; Rocha e Silva, L.F.; Picanço, N.S.; Tadei, W.P.; Grafova, I.; Grafov, A.; Carfagna, C. Electrospun core/shell nanofibers as designed devices for efficient Artemisinin delivery. Eur. Polym. J., 2017, 89, 211-220.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.02.015]
[77]
White, N.J. Assessment of the pharmacodynamic properties of antimalarial drugs in vivo. Antimicrob. Agents Chemother., 1997, 41(7), 1413-1422.
[http://dx.doi.org/10.1128/AAC.41.7.1413] [PMID: 9210658]
[78]
Huang, H.H.; He, C.L.; Wang, H.S.; Mo, X.M. Preparation of core-shell biodegradable microfibers for long-term drug delivery. J. Biomed. Mater. Res. - Part A, 2009, 15, 1243-1251.
[http://dx.doi.org/10.1002/jbm.a.32543]
[79]
Qiu, K.; He, C.; Feng, W.; Wang, W.; Zhou, X.; Yin, Z.; Chen, L.; Wang, H.; Mo, X. Doxorubicin-loaded electrospun poly(l-lactic acid)/mesoporous silica nanoparticles composite nanofibers for potential postsurgical cancer treatment. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(36), 4601-4611.
[http://dx.doi.org/10.1039/c3tb20636j] [PMID: 32261203]
[80]
Yan, E.; Fan, Y.; Sun, Z.; Gao, J.; Hao, X.; Pei, S.; Wang, C.; Sun, L.; Zhang, D. Biocompatible core-shell electrospun nanofibers as potential application for chemotherapy against ovary cancer. Mater. Sci. Eng. C, 2014, 41, 217-223.
[http://dx.doi.org/10.1016/j.msec.2014.04.053] [PMID: 24907754]
[81]
Ma, Y.; Wang, X.; Zong, S.; Zhang, Z.; Xie, Z.; Huang, Y.; Yue, Y.; Liu, S.; Jing, X. Local, combination chemotherapy in prevention of cervical cancer recurrence after surgery by using nanofibers co-loaded with cisplatin and curcumin. RSC Advances, 2015, 5, 106325-106332.
[http://dx.doi.org/10.1039/C5RA17230F]
[82]
Zhang, Z.; Wu, Y.; Kuang, G.; Liu, S.; Zhou, D.; Chen, X.; Jing, X.; Huang, Y. Pt(iv) prodrug-backboned micelle and DCA loaded nanofibers for enhanced local cancer treatment. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(11), 2115-2125.
[http://dx.doi.org/10.1039/C7TB00178A] [PMID: 32263684]
[83]
Edwards, B.K.; Noone, A-M.; Mariotto, A.B.; Simard, E.P.; Boscoe, F.P.; Henley, S.J.; Jemal, A.; Cho, H.; Anderson, R.N.; Kohler, B.A.; Eheman, C.R.; Ward, E.M. Annual Report to the Nation on the status of cancer, 1975-2010, featuring prevalence of comorbidity and impact on survival among persons with lung, colorectal, breast, or prostate cancer. Cancer, 2014, 120(9), 1290-1314.
[http://dx.doi.org/10.1002/cncr.28509] [PMID: 24343171]
[84]
Chaffer, C.L.; Weinberg, R.A. A perspective on cancer cell metastasis. Science, 2011, 331(6024), 1559-1564.
[http://dx.doi.org/10.1126/science.1203543] [PMID: 21436443]
[85]
Singh, S.; Sharma, A.; Robertson, G.P. Realizing the clinical potential of cancer nanotechnology by minimizing toxicologic and targeted delivery concerns. Cancer Res., 2012, 72(22), 5663-5668.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1527] [PMID: 23139207]
[86]
Sharma, A.; Madhunapantula, S.V.; Robertson, G.P. Toxicological considerations when creating nanoparticle-based drugs and drug delivery systems. Expert Opin. Drug Metab. Toxicol., 2012, 8(1), 47-69.
[http://dx.doi.org/10.1517/17425255.2012.637916] [PMID: 22097965]
[87]
Kurobe, H.; Maxfield, M.W.; Breuer, C.K.; Shinoka, T. Concise review: tissue-engineered vascular grafts for cardiac surgery: past, present, and future. Stem Cells Transl. Med., 2012, 1(7), 566-571.
[http://dx.doi.org/10.5966/sctm.2012-0044] [PMID: 23197861]
[88]
Ding, Q.; Shi, S. The potential of Docetaxel-Loaded Poly(D,LLactide) Nanofibers for preventing recurrence after breast cancer surgery in Vivo J. Oncol. Transl. Res, 2018.
[89]
Hennenfent, K.L.; Govindan, R. Novel formulations of taxanes: A review. Old wine in a new bottle? Ann. Oncol., 2006, 17(5), 735-749.
[http://dx.doi.org/10.1093/annonc/mdj100] [PMID: 16364960]
[90]
Ding, Q.; Li, Z.; Yang, Y.; Guo, G.; Luo, F.; Chen, Z.; Yang, Y.; Qian, Z.; Shi, S. Preparation and therapeutic application of docetaxel-loaded poly(d,l-lactide) nanofibers in preventing breast cancer recurrence. Drug Deliv., 2016, 23(8), 2677-2685.
[PMID: 26171813]
[91]
Yang, G.; Wang, J.; Wang, Y.; Li, L.; Guo, X.; Zhou, S. An implantable active-targeting micelle-in-nanofiber device for efficient and safe cancer therapy. ACS Nano, 2015, 9(2), 1161-1174.
[http://dx.doi.org/10.1021/nn504573u] [PMID: 25602381]
[92]
Liao, Y.H.; Lin, C.C.; Li, T.C.; Lin, J.G. Utilization pattern of traditional Chinese medicine for liver cancer patients in Taiwan. BMC Complement. Altern. Med., 2012, 12, 146.
[http://dx.doi.org/10.1186/1472-6882-12-146] [PMID: 22947144]
[93]
Yang, B.H.; Xia, J.L.; Huang, L.W.; Tang, Z.Y.; Chen, M.S.; Li, J.Q.; Liang, A.M.; Mo, Q.G.; Lu, H.S.; Dai, C.L.; Yan, L.N.; Yu, Z.J.; Rao, R.S.; Li, L.Q.; Su, Z.X.; Fang, Z.W. Changes of clinical aspect of primary liver cancer in China during the past 30 years--control study for 3,250 cases with primary liver cancer. Zhonghua Yi Xue Za Zhi, 2003, 83(12), 1053-1057.
[PMID: 12899777]
[94]
Wang, P.; Meng, Z.Q.; Chen, Z.; Lin, J.H.; Ping, B.; Wang, L.F.; Wang, B.H.; Liu, L.M. Diagnostic value and complications of fine needle aspiration for primary liver cancer and its influence on the treatment outcome-a study based on 3011 patients in China. Eur. J. Surg. Oncol., 2008, 34(5), 541-546.
[http://dx.doi.org/10.1016/j.ejso.2007.07.013] [PMID: 17764885]
[95]
Jatoi, I.; Benson, J.R.; Liau, S-S.; Chen, Y.; Cisco, R.M.; Norton, J.A.; Moley, J.F.; Khalifeh, K.W.; Choti, M.A. The role of surgery in cancer prevention. Curr. Probl. Surg., 2010, 47(10), 750-830.
[http://dx.doi.org/10.1067/j.cpsurg.2010.06.002] [PMID: 20816140]
[96]
Huo, Z.; Qiu, Y.; Chu, Z.; Yin, P.; Lu, W.; Yan, Y.; Wan, N.; Chen, Z. Electrospinning preparation of timosaponin b-ii-loaded plla nanofibers and their antitumor recurrence activities In Vivo. J. Nanomater., 2015, 2015, 1-9.
[http://dx.doi.org/10.1155/2015/367964]
[97]
Liu, S.; Zhou, G.; Liu, D.; Xie, Z.; Huang, Y.; Wang, X.; Wu, W.; Jing, X. Inhibition of orthotopic secondary hepatic carcinoma in mice by doxorubicin-loaded electrospun polylactide nanofibers. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(1), 101-109.
[http://dx.doi.org/10.1039/C2TB00121G] [PMID: 32260617]
[98]
Zhang, Y.; Liu, S. Wang; X, Zhang; Z.Y, Bin Jing; X, Zhang; P, Xie; Z.G. Prevention of local liver cancer recurrence after surgery using multilayered cisplatin-loaded polylactide electrospun nanofibers. Chin. J. Polym. Sci., 2014, 32, 1111-1118.
[http://dx.doi.org/10.1007/s10118-014-1491-0]
[99]
Liu, S.; Wang, X.; Zhang, Z.; Zhang, Y.; Zhou, G.; Huang, Y.; Xie, Z.; Jing, X. Use of asymmetric multilayer polylactide nanofiber mats in controlled release of drugs and prevention of liver cancer recurrence after surgery in mice. Nanomedicine (Lond.), 2015, 11(5), 1047-1056.
[http://dx.doi.org/10.1016/j.nano.2015.03.001] [PMID: 25804412]
[100]
Siegel, R.L.; Miller, K.D.; Jemal, A.; Ghafoor, A.; Samuels, A.; Ward, E.; Feuer, E.J.; Thun, M. J. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[101]
Schiller, J.H. Current standards of care in small-cell and non-small-cell lung cancer. Oncology, 2001, 61(Suppl. 1), 3-13.
[http://dx.doi.org/10.1159/000055386] [PMID: 11598409]
[102]
Goffin, J.; Lacchetti, C.; Ellis, P.M.; Ung, Y.C.; Evans, W.K. Lung Cancer Disease Site Group of Cancer Care Ontario’s Program in Evidence-Based Care. First-line systemic chemotherapy in the treatment of advanced non-small cell lung cancer: A systematic review. J. Thorac. Oncol., 2010, 5(2), 260-274.
[http://dx.doi.org/10.1097/JTO.0b013e3181c6f035] [PMID: 20101151]
[103]
Andreadis, C.; Vahtsevanos, K.; Sidiras, T.; Thomaidis, I.; Antoniadis, K.; Mouratidou, D. 5-Fluorouracil and cisplatin in the treatment of advanced oral cancer. Oral Oncol., 2003, 39(4), 380-385.
[http://dx.doi.org/10.1016/S1368-8375(02)00141-0] [PMID: 12676258]
[104]
Lee, N-S.; Byun, J-H.; Bae, S-B.; Kim, C-K.; Lee, K-T.; Park, SK.; Won, J-H.; Hong, D-S.; Park, H-S. Combination of gemcitabine and cisplatin as first-line therapy in advanced non-small-cell lung cancer. Cancer Res. Treat., 2004, 36(3), 173-177.
[http://dx.doi.org/10.4143/crt.2004.36.3.173] [PMID: 20396540]
[105]
Ampollini, L.; Sonvico, F.; Barocelli, E.; Cavazzoni, A.; Bilancia, R.; Mucchino, C.; Cantoni, A.M.; Carbognani, P. Intrapleural polymeric films containing cisplatin for malignant pleural mesothelioma in a rat tumour model: A preliminary study. Eur. J. Cardiothorac. Surg., 2010, 37(3), 557-565.
[http://dx.doi.org/10.1016/j.ejcts.2009.08.012] [PMID: 19766508]
[106]
Lardinois, D.; Jung, F.J.; Opitz, I.; Rentsch, K.; Latkoczy, C.; Vuong, V.; Varga, Z.; Rousson, V.; Günther, D.; Bodis, S.; Stahel, R.; Weder, W. Intrapleural topical application of cisplatin with the surgical carrier Vivostat increases the local drug concentration in an immune-competent rat model with malignant pleuromesothelioma. J. Thorac. Cardiovasc. Surg., 2006, 131(3), 697-703.
[http://dx.doi.org/10.1016/j.jtcvs.2005.08.012] [PMID: 16515926]
[107]
Kaplan, J.A.; Liu, R.; Freedman, J.D.; Padera, R.; Schwartz, J.; Colson, Y.L.; Grinstaff, M.W. Prevention of lung cancer recurrence using cisplatin-loaded superhydrophobic nanofiber meshes. Biomaterials, 2016, 76, 273-281.
[http://dx.doi.org/10.1016/j.biomaterials.2015.10.060] [PMID: 26547283]
[108]
Yuan, Z.; Zhao, X.; Wang, X.; Qiu, W.; Chen, X.; Zheng, Q.; Cui, W. Promotion of initial anti-tumor effect via polydopamine modified doxorubicin-loaded electrospun fibrous membranes. Int. J. Clin. Exp. Pathol., 2014, 7(9), 5436-5449.
[PMID: 25337186]
[109]
adrzadeh, F.; Akbarzadeh, A.; Zarghami, N.; Yamchi, MR.; Zeighamian, V.; Tabatabae, FS.; Taheri, M.; Kafil, HS. The comparison between effects of free curcumin and curcumin loaded PLGA-PEG on telomerase and TRF1 expressions in calu-6 lung cancer cell line. Int. J. Biosci., 2014, 15, 8931-8936.
[110]
Mellatyar, H.; Talaei, S.; Pilehvar-Soltanahmadi, Y.; Barzegar, A.; Akbarzadeh, A.; Shahabi, A.; Barekati-Mowahed, M.; Zarghami, N. Targeted cancer therapy through 17-DMAG as an Hsp90 inhibitor: Overview and current state of the art. Biomed. Pharmacother., 2018, 102, 608-617.
[http://dx.doi.org/10.1016/j.biopha.2018.03.102] [PMID: 29602128]
[111]
Mellatyar, H.; Talaei, S.; Pilehvar-Soltanahmadi, Y.; Dadashpour, M.; Barzegar, A.; Akbarzadeh, A.; Zarghami, N. 17-DMAG-loaded nanofibrous scaffold for effective growth inhibition of lung cancer cells through targeting HSP90 gene expression. Biomed. Pharmacother., 2018, 105, 1026-1032.
[http://dx.doi.org/10.1016/j.biopha.2018.06.083] [PMID: 30021337]
[112]
Granger, M.P.; Wright, W.E.; Shay, J.W. Telomerase in cancer and aging. Crit. Rev. Oncol. Hematol., 2002, 41(1), 29-40.
[http://dx.doi.org/10.1016/S1040-8428(01)00188-3] [PMID: 11796230]
[113]
Vincent, A.; Herman, J.; Schulick, R.; Hruban, R.H.; Goggins, M. Pancreatic cancer. Lancet, 2011, 378(9791), 607-620.
[http://dx.doi.org/10.1016/S0140-6736(10)62307-0] [PMID: 21620466]
[114]
Zhan, Q.; Shen, B.; Deng, X.; Chen, H.; Jin, J.; Zhang, X.; Peng, C.; Li, H. Drug-eluting scaffold to deliver chemotherapeutic medication for management of pancreatic cancer after surgery. Int. J. Nanomedicine, 2013, 8, 2465-2472.
[PMID: 23885173]
[115]
Conroy, T.; Desseigne, F.; Ychou, M.; Bouché, O.; Guimbaud, R.; Bécouarn, Y.; Adenis, A.; Raoul, J-L.; Gourgou-Bourgade, S.; de la Fouchardière, C.; Bennouna, J.; Bachet, J-B.; Khemissa-Akouz, F.; Péré-Vergé, D.; Delbaldo, C.; Assenat, E.; Chauffert, B.; Michel, P.; Montoto-Grillot, C.; Ducreux, M. Groupe Tumeurs Digestives of Unicancer; PRODIGE Intergroup. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med., 2011, 364(19), 1817-1825.
[http://dx.doi.org/10.1056/NEJMoa1011923] [PMID: 21561347]
[116]
Jun, E.; Kim, S.C.; Lee, C.M.; Oh, J.; Lee, S.; Shim, I.K. Synergistic effect of a drug loaded electrospun patch and systemic chemotherapy in pancreatic cancer xenograft. Sci. Rep., 2017, 7(1), 12381.
[http://dx.doi.org/10.1038/s41598-017-12670-3] [PMID: 28959053]
[117]
Xia, G.; Zhang, H.; Cheng, R.; Wang, H.; Song, Z.; Deng, L.; Huang, X.; Santos, H.A.; Cui, W. localized controlled delivery of gemcitabine via microsol electrospun fibers to prevent pancreatic cancer recurrence. Adv. Healthc. Mater., 2018, 7(18) e1800593
[http://dx.doi.org/10.1002/adhm.201800593] [PMID: 30062854]
[118]
Uesaka, K.; Boku, N.; Fukutomi, A.; Okamura, Y.; Konishi, M.; Matsumoto, I.; Kaneoka, Y.; Shimizu, Y.; Nakamori, S.; Sakamoto, H.; Morinaga, S.; Kainuma, O.; Imai, K.; Sata, N.; Hishinuma, S.; Ojima, H.; Yamaguchi, R.; Hirano, S.; Sudo, T.; Ohashi, Y. JASPAC 01 Study Group. Adjuvant chemotherapy of S-1 versus gemcitabine for resected pancreatic cancer: A phase 3, open-label, randomised, non-inferiority trial (JASPAC 01). Lancet, 2016, 388(10041), 248-257.
[http://dx.doi.org/10.1016/S0140-6736(16)30583-9] [PMID: 27265347]
[119]
Li, G.; Chen, Y.; Cai, Z.; Li, J.; Wu, X.; He, X.; Zhao, Z.; Lan, P.; Li, Y. 5-Fluorouracil-loaded poly-l-lactide fibrous membrane for the prevention of intestinal stent restenosis. J. Mater. Sci., 2013, 48, 6186-6193.
[http://dx.doi.org/10.1007/s10853-013-7415-5]
[120]
Chen, P.; Wu, Q.S.; Ding, Y.P.; Chu, M.; Huang, Z.M.; Hu, W. A controlled release system of titanocene dichloride by electrospun fiber and its antitumor activity in vitro. Eur. J. Pharm. Biopharm., 2010, 76(3), 413-420.
[http://dx.doi.org/10.1016/j.ejpb.2010.09.005] [PMID: 20854905]
[121]
Zhu, X.; Ni, S.; Xia, T.; Yao, Q.; Li, H.; Wang, B.; Wang, J.; Li, X.; Su, W. Anti-Neoplastic cytotoxicity of SN-38-Loaded PCL/Gelatin electrospun composite nanofiber scaffolds against human glioblastoma cells In Vitro. J. Pharm. Sci., 2015, 104(12), 4345-4354.
[http://dx.doi.org/10.1002/jps.24684] [PMID: 26505475]
[122]
Vashisth, P.; Sharma, M.; Nikhil, K.; Singh, H.; Panwar, R.; Pruthi, P.A.; Pruthi, V. Antiproliferative activity of ferulic acidencapsulated electrospun PLGA/PEO nanofibers against MCF-7 human breast carcinoma cells 3 Biotech, 2015, 5, 303-315.
[123]
Ignatova, M.; Yossifova, L.; Gardeva, E.; Manolova, N.; Toshkova, R.; Rashkov, I.; Alexandrov, M. Antiproliferative activity of nanofibers containing quaternized chitosan and/or doxorubicin against MCF-7 human breast carcinoma cell line by apoptosis. J. Bioact. Compat. Polym., 2011, 26, 539-551.
[http://dx.doi.org/10.1177/0883911511424655]
[124]
Sedghi, R.; Shaabani, A.; Mohammadi, Z.; Samadi, F.Y.; Isaei, E. Biocompatible electrospinning chitosan nanofibers: A novel delivery system with superior local cancer therapy. Carbohydr. Polym., 2017, 159, 1-10.
[http://dx.doi.org/10.1016/j.carbpol.2016.12.011] [PMID: 28038737]
[125]
Ranganath, S.H.; Wang, C.H. Biodegradable microfiber implants delivering paclitaxel for post-surgical chemotherapy against malignant glioma. Biomaterials, 2008, 29(20), 2996-3003.
[http://dx.doi.org/10.1016/j.biomaterials.2008.04.002] [PMID: 18423584]
[126]
Amna, T.; Barakat, N.A.M.; Hassan, M.S.; Khil, M.S.; Kim, H.Y. Camptothecin loaded poly(ε-caprolactone)nanofibers via one-step electrospinning and their cytotoxicity. Colloids Surf. A Physicochem. Eng. Asp., 2013, 431, 1-8.
[http://dx.doi.org/10.1016/j.colsurfa.2013.04.026]
[127]
Laiva, A.L.; Venugopal, J.R.; Karuppuswamy, P.; Navaneethan, B.; Gora, A.; Ramakrishna, S. Controlled release of titanocene into the hybrid nanofibrous scaffolds to prevent the proliferation of breast cancer cells. Int. J. Pharm., 2015, 483(1-2), 115-123.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.025] [PMID: 25681729]
[128]
Sridhar, R.; Ravanan, S.; Venugopal, J.R.; Sundarrajan, S.; Pliszka, D.; Sivasubramanian, S.; Gunasekaran, P.; Prabhakaran, M.; Madhaiyan, K.; Sahayaraj, A.; Lim, K.H.C.; Ramakrishna, S. Curcumin- and natural extract-loaded nanofibres for potential treatment of lung and breast cancer: In vitro efficacy evaluation. J. Biomater. Sci. Polym. Ed., 2014, 25(10), 985-998.
[http://dx.doi.org/10.1080/09205063.2014.917039] [PMID: 24865590]
[129]
Sampath, M.; Lakra, R.; Korrapati, P.; Sengottuvelan, B. Curcumin loaded poly (lactic-co-glycolic) acid nanofiber for the treatment of carcinoma. Colloids Surf. B Biointerfaces, 2014, 117, 128-134.
[http://dx.doi.org/10.1016/j.colsurfb.2014.02.020] [PMID: 24646452]
[130]
Lu, T.; Jing, X.; Song, X.; Wang, X. Doxorubicin-loaded ultrafine PEG-PLA fiber mats against hepatocarcinoma. J. Appl. Polym. Sci., 2012, 123, 209-217.
[http://dx.doi.org/10.1002/app.34463]
[131]
Wang, C.; Ma, C.; Wu, Z.; Liang, H.; Yan, P.; Song, J.; Ma, N.; Zhao, Q. Enhanced Bioavailability and Anticancer Effect of Curcumin-Loaded Electrospun Nanofiber: In Vitro and In Vivo Study. Nanoscale Res. Lett., 2015, 10(1), 439.
[http://dx.doi.org/10.1186/s11671-015-1146-2] [PMID: 26573930]
[132]
Sundar, S.S.; Sangeetha, D. Fabrication and evaluation of electrospun collagen/poly(N-isopropyl acrylamide)/chitosan mat as blood contacting biomaterials for drug delivery. J. Mater. Sci. Mater. Med., 2012, 23(6), 1421-1430.
[http://dx.doi.org/10.1007/s10856-012-4610-x] [PMID: 22476650]
[133]
Guimarães, P.P.G.; Oliveira, M.F.; Gomes, A.D.M.; Gontijo, S.M.L.; Cortés, M.E.; Campos, P.P.; Viana, C.T.R.; Andrade, S.P.; Sinisterra, R.D. PLGA nanofibers improves the antitumoral effect of daunorubicin. Colloids Surf. B Biointerfaces, 2015, 136, 248-255.
[http://dx.doi.org/10.1016/j.colsurfb.2015.09.005] [PMID: 26402423]
[134]
Kim, Y.J.; Park, M.R.; Kim, M.S.; Kwon, O.H. Polyphenol-loaded polycaprolactone nanofibers for effective growth inhibition of human cancer cells. Mater. Chem. Phys., 2012, 133, 674-680.
[http://dx.doi.org/10.1016/j.matchemphys.2012.01.050]
[135]
Xie, C.; Li, X.; Luo, X.; Yang, Y.; Cui, W.; Zou, J.; Zhou, S. Release modulation and cytotoxicity of hydroxycamptothecin-loaded electrospun fibers with 2-hydroxypropyl-β-cyclodextrin inoculations. Int. J. Pharm., 2010, 391(1-2), 55-64.
[http://dx.doi.org/10.1016/j.ijpharm.2010.02.016] [PMID: 20170717]
[136]
Salehi, R.; Irani, M.; Rashidi, M.R.; Aroujalian, A.; Raisi, A.; Eskandani, M.; Haririan, I.; Davaran, S. Stimuli-responsive nanofibers prepared from poly(N-isopropylacrylamideacrylamidevinylpyrrolidone) by electrospinning as an anticancer drug delivery. Des. Monomers Polym., 2013, 16, 515-527.
[http://dx.doi.org/10.1080/15685551.2013.771303]
[137]
Hosseini, L.; Mahboobnia, K.; Irani, M. Fabrication of PLA/MWCNT/Fe 3O 4 composite nanofibers for leukemia cancer cells. Int. J. Polym. Mater. Polym. Biomater., 2016, 65, 176-182.
[http://dx.doi.org/10.1080/00914037.2015.1074912]
[138]
Anaraki, N.A.; Rad, L.R.; Irani, M.; Haririan, I. Fabrication of PLA/PEG/MWCNT electrospun nanofibrous scaffolds for anticancer drug delivery. J. Appl. Polym. Sci., 2015, 3, 21-34.
[139]
Ardeshirzadeh, B.; Anaraki, N.A.; Irani, M.; Rad, L.R.; Shamshiri, S. Controlled release of doxorubicin from electrospun PEO/chitosan/graphene oxide nanocomposite nanofibrous scaffolds. Mater. Sci. Eng. C, 2015, 48, 384-390.
[http://dx.doi.org/10.1016/j.msec.2014.12.039] [PMID: 25579938]
[140]
Wu, H.; Liu, S.; Xiao, L.; Dong, X.; Lu, Q.; Kaplan, D.L. Injectable and pH-Responsive Silk Nanofiber Hydrogels for Sustained Anticancer Drug Delivery. ACS Appl. Mater. Interfaces, 2016, 8(27), 17118-17126.
[http://dx.doi.org/10.1021/acsami.6b04424] [PMID: 27315327]
[141]
Jassal, M.; Sengupta, S.; Bhowmick, S. Functionalization of electrospun poly(caprolactone) fibers for pH-controlled delivery of doxorubicin hydrochloride. J. Biomater. Sci. Polym. Ed., 2015, 26(18), 1425-1438.
[http://dx.doi.org/10.1080/09205063.2015.1100495] [PMID: 26406285]
[142]
Zhang, Z.; Liu, S.; Xiong, H.; Jing, X.; Xie, Z.; Chen, X.; Huang, Y. Electrospun PLA/MWCNTs composite nanofibers for combined chemo- and photothermal therapy. Acta Biomater., 2015, 26, 115-123.
[143]
Aggarwal, U.; Goyal, A.K.; Rath, G. Development and characterization of the cisplatin loaded nanofibers for the treatment of cervical cancer. Mater. Sci. Eng. C, 2017, 75, 125-132.
[http://dx.doi.org/10.1016/j.msec.2017.02.013] [PMID: 28415413]
[144]
Luu, Y.K.; Kim, K.; Hsiao, B.S.; Chu, B.; Hadjiargyrou, M. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J. Control. Release, 2003, 89(2), 341-353.
[http://dx.doi.org/10.1016/S0168-3659(03)00097-X] [PMID: 12711456]
[145]
Jin, G.; He, R.; Liu, Q.; Dong, Y.; Lin, M.; Li, W.; Xu, F. Theranostics of Triple-Negative Breast Cancer Based on Conjugated Polymer Nanoparticles. ACS Appl. Mater. Interfaces, 2018, 10(13), 10634-10646.
[http://dx.doi.org/10.1021/acsami.7b14603] [PMID: 29323875]
[146]
Severyukhina, A.N.; Petrova, N.V.; Smuda, K.; Terentyuk, G.S.; Klebtsov, B.N.; Georgieva, R.; Bäumler, H.; Gorin, D.A. Photosensitizer-loaded electrospun chitosan-based scaffolds for photodynamic therapy and tissue engineering. Colloids Surf. B Biointerfaces, 2016, 144, 57-64.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.081] [PMID: 27065450]
[147]
Nergiz, S.Z.; Gandra, N.; Tadepalli, S.; Singamaneni, S. Multifunctional hybrid nanopatches of graphene oxide and gold nanostars for ultraefficient photothermal cancer therapy. ACS Appl. Mater. Interfaces, 2014, 6(18), 16395-16402.
[http://dx.doi.org/10.1021/am504795d] [PMID: 25152960]
[148]
Smith, M.J.; Smith, D.C.; White, K.L.; Bowlin, G.L. Immune response testing of electrospun polymers: An important consideration in the evaluation of biomaterials J. Eng. Fibers Fabrics, 2007. 155892500700200
[http://dx.doi.org/10.1177/155892500700200205]
[149]
Sayin, S.; Tufani, A.; Emanet, M.; Genchi, G.G.; Sen, O.; Shemshad, S.; Ozdemir, E.; Ciofani, G.; Ozaydin Ince, G. electrospun nanofibers with PH-responsive coatings for control of release kinetics. Front. Bioeng. Biotechnol., 2019, 7, 309.
[http://dx.doi.org/10.3389/fbioe.2019.00309] [PMID: 31828065]
[150]
Chen, S.; Boda, S.K.; Batra, S.K.; Li, X.; Xie, J. Emerging roles of electrospun nanofibers in cancer research. Adv. Healthc. Mater., 2018, 7(6) 1701024
[http://dx.doi.org/10.1002/adhm.201701024]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 13
Year: 2020
Published on: 19 August, 2020
Page: [1272 - 1286]
Pages: 15
DOI: 10.2174/1389557520666200513120924
Price: $65

Article Metrics

PDF: 23
HTML: 2
EPUB: 1
PRC: 1