Hydroethanolic Extract of Lampaya Medicinalis Phil. (Verbenaceae) Decreases Proinflammatory Marker Expression in Palmitic Acid-exposed Macrophages

Author(s): Paulina Ormazabal*, Mariana Cifuentes, Rosaria Varì, Beatrice Scazzocchio, Roberta Masella, Igor Pacheco, Wladimir Vega, Adrián Paredes, Glauco Morales

Journal Name: Endocrine, Metabolic & Immune Disorders - Drug Targets
Formerly Current Drug Targets - Immune, Endocrine & Metabolic Disorders

Volume 20 , Issue 8 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Obesity is a major health problem associated with increased comorbidities, which are partially triggered by inflammation. Proinflammatory macrophage infiltration in adipose tissue of individuals with obesity increases chronic inflammation. Obesity is associated with elevated plasma levels of saturated fatty acids, such as palmitic acid (PA), which promotes inflammation in vivo and in vitro. Infusions of Lampaya medicinalis Phil. (Verbenaceae) are used in the folk medicine of Northern Chile to counteract inflammation of rheumatic diseases. Hydroethanolic extract of lampaya (HEL) contains spectrophotometrically defined compounds that may contribute to the observed effect on inflammation.

Methods: We evaluated the phytochemical composition of HEL by high-performance liquid chromatography coupled to diode array detection (HPLC-DAD) and liquid chromatography-electrospray ionization- tandem mass spectrometry (LC-ESI-MS/MS). We assessed whether the exposure to HEL affects PA-induced expression of proinflammatory factors in THP-1 macrophages.

Results: HPLC-DAD and LC-ESI-MS/MS analyses showed the presence of considerable amounts of flavonoids in HEL. The PA-induced phosphorylation of the inflammatory pathway mediators IKK and NF-κB, as well as the elevated expression and secretion of proinflammatory cytokines (IL-6, TNF-α), were reduced in cells pre-exposed to HEL.

Conclusion: These findings give new insights about the effect of HEL reducing IKK/NF-κB proinflammatory pathway, likely explained by the number of flavonoids contained in the extract. More studies would be needed to define the possible role of Lampaya as a preventive approach in subjects with obesity whose circulating PA might contribute to chronic inflammation.

Keywords: Hydroethanolic extract of Lampaya, inflammation, cytokines, THP-1 macrophages, palmitic acid, obesity.

[1]
Meldrum, D.R.; Morris, M.A.; Gambone, J.C. Obesity pandemic: causes, consequences, and solutions-but do we have the will? Fertil. Steril., 2017, 107(4), 833-839.
[http://dx.doi.org/10.1016/j.fertnstert.2017.02.104] [PMID: 28292617]
[2]
Salmon, A.B. Beyond diabetes: does obesity-induced oxidative stress drive the aging process? Antioxidants, 2016, 5(3), 24.
[http://dx.doi.org/10.3390/antiox5030024] [PMID: 27438860]
[3]
Burhans, M.S.; Hagman, D.K.; Kuzma, J.N.; Schmidt, K.A.; Kratz, M. Contribution of Adipose Tissue Inflammation to the Development of Type 2 Diabetes Mellitus. Compr. Physiol., 2018, 9(1), 1-58.
[http://dx.doi.org/10.1002/cphy.c170040] [PMID: 30549014]
[4]
Lee, H.J.; Shin, J.S.; Lee, K.G.; Park, S.C.; Jang, Y.P.; Nam, J.H.; Lee, K.T. Ethanol extract of potentilla supina linne suppresses lps-induced inflammatory responses through NF-κB and AP-1 inactivation in macrophages and in endotoxic mice. Phytother. Res., 2017, 31(3), 475-487.
[http://dx.doi.org/10.1002/ptr.5773] [PMID: 28127806]
[5]
Suganami, T.; Tanimoto-Koyama, K.; Nishida, J.; Itoh, M.; Yuan, X.; Mizuarai, S.; Kotani, H.; Yamaoka, S.; Miyake, K.; Aoe, S.; Kamei, Y.; Ogawa, Y. Role of the Toll-like receptor 4/NF-kappaB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arterioscler. Thromb. Vasc. Biol., 2007, 27(1), 84-91.
[http://dx.doi.org/10.1161/01.ATV.0000251608.09329.9a] [PMID: 17082484]
[6]
Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients, 2018, 10(11), 1618.
[http://dx.doi.org/10.3390/nu10111618] [PMID: 30400131]
[7]
Glushkova, O.V.; Parfenyuk, S.B.; Khrenov, M.O.; Novoselova, T.V.; Lunin, S.M.; Fesenko, E.E.; Novoselova, E.G. Inhibitors of TLR-4, NF-κB, and SAPK/JNK signaling reduce the toxic effect of lipopolysaccharide on RAW 264.7 cells. J. Immunotoxicol., 2013, 10(2), 133-140.
[http://dx.doi.org/10.3109/1547691X.2012.700652] [PMID: 22830990]
[8]
Benedetti, S.; Al-Tannak, N.F.; Alzharani, M.; Moir, H.J.; Stensel, D.J.; Thackray, A.E.; Naughton, D.P.; Dorak, M.T.; Spendiff, O.; Hill, N.; Watson, D.G.; Allgrove, J. Plasma Free Fatty Acids Metabolic Profile with LC-MS and Appetite-Related Hormones in South Asian and White European Men in Relation to Adiposity, Physical Activity and Cardiorespiratory Fitness: A Cross-Sectional Study. Metabolites, 2019, 9(4)E71
[http://dx.doi.org/10.3390/metabo9040071] [PMID: 31013892]
[9]
Sabin, M.A.; De Hora, M.; Holly, J.M.; Hunt, L.P.; Ford, A.L.; Williams, S.R.; Baker, J.S.; Retallick, C.J.; Crowne, E.C.; Shield, J.P. Fasting nonesterified fatty acid profiles in childhood and their relationship with adiposity, insulin sensitivity, and lipid levels. Pediatrics, 2007, 120(6), e1426-e1433.
[http://dx.doi.org/10.1542/peds.2007-0189] [PMID: 18055661]
[10]
Pillon, N.J.; Arane, K.; Bilan, P.J.; Chiu, T.T.; Klip, A. Muscle cells challenged with saturated fatty acids mount an autonomous inflammatory response that activates macrophages. Cell Commun. Signal., 2012, 10(1), 30.
[http://dx.doi.org/10.1186/1478-811X-10-30] [PMID: 23078640]
[11]
Holzer, R.G.; Park, E.J.; Li, N.; Tran, H.; Chen, M.; Choi, C.; Solinas, G.; Karin, M. Saturated fatty acids induce c-Src clustering within membrane subdomains, leading to JNK activation. Cell, 2011, 147(1), 173-184.
[http://dx.doi.org/10.1016/j.cell.2011.08.034] [PMID: 21962514]
[12]
McCall, K.D.; Holliday, D.; Dickerson, E.; Wallace, B.; Schwartz, A.L.; Schwartz, C.; Lewis, C.J.; Kohn, L.D.; Schwartz, F.L. Phenylmethimazole blocks palmitate-mediated induction of inflammatory cytokine pathways in 3T3L1 adipocytes and RAW 264.7 macrophages. J. Endocrinol., 2010, 207(3), 343-353.
[http://dx.doi.org/10.1677/JOE-09-0370] [PMID: 20813836]
[13]
Riera-Borrull, M.; Cuevas, V.D.; Alonso, B.; Vega, M.A.; Joven, J.; Izquierdo, E.; Corbí, Á.L. Palmitate Conditions Macrophages for enhanced responses toward inflammatory stimuli via JNK activation. J. Immunol., 2017, 199(11), 3858-3869.
[http://dx.doi.org/10.4049/jimmunol.1700845] [PMID: 29061766]
[14]
Evans, L.W.; Stratton, M.S.; Ferguson, B.S. Dietary natural products as epigenetic modifiers in aging-associated inflammation and disease. Nat. Prod. Rep., 2020.
[http://dx.doi.org/10.1039/C9NP00057G] [PMID: 31993614]
[15]
Gejjalagere Honnappa, C.; Mazhuvancherry Kesavan, U. A concise review on advances in development of small molecule anti-inflammatory therapeutics emphasising AMPK: An emerging target. Int. J. Immunopathol. Pharmacol., 2016, 29(4), 562-571.
[http://dx.doi.org/10.1177/0394632016673369] [PMID: 27707958]
[16]
Kim, H.P.; Son, K.H.; Chang, H.W.; Kang, S.S. Anti-inflammatory plant flavonoids and cellular action mechanisms. J. Pharmacol. Sci., 2004, 96(3), 229-245.
[http://dx.doi.org/10.1254/jphs.CRJ04003X] [PMID: 15539763]
[17]
Mellado, V.; Medina, E.; San Martin, C. Herbolaria Medica de Chile Ministerio de Salud Santiago de Chile, 1997.
[18]
Castro, V. Botánica y Pueblos Originarios., Actas 2° Congreso de Plantas Medicinales., 1995, 49..
[19]
Monterrey, N. Hierbas medicinales andinas de la 2ª Región., 1994, 33-35..
[20]
Gomez, D.; Ahumada, J.; Necul, E. Medicina tradicional atacameña., 1997. 61-74..
[21]
Morales, G.; Paredes, A.; Olivares, A.; Bravo, J. Acute oral toxicity and anti-inflammatory activity of hydroalcoholic extract from Lampaya medicinalis Phil in rats. Biol. Res., 2014, 47, 6.
[http://dx.doi.org/10.1186/0717-6287-47-6] [PMID: 25027298]
[22]
Morales, G.; Paredes, A. Antioxidant activities of Lampaya medicinalis extracts and their main chemical constituents. BMC Complement. Altern. Med., 2014, 14, 259.
[http://dx.doi.org/10.1186/1472-6882-14-259] [PMID: 25047047]
[23]
Peña-Neira, A.; Cáceres, A.; Pastenes, C. Low molecular weight phenolic and anthocyanin composition of grape skins from cv. Syrah (Vitis vinifera L.) in the Maipo Valley (Chile): Effect of clusters thinning and vineyard yield. Food Sci. Technol. Int., 2007, 13(2), 153-158.
[http://dx.doi.org/10.1177/1082013207077920]
[24]
Cejudo-Bastante, M.J.; Del Barrio-Galán, R.; Heredia, F.J.; Medel-Marabolí, M.; Peña-Neira, Á. Location effects on the polyphenolic and polysaccharidic profiles and colour of Carignan grape variety wines from the Chilean Maule region. Food Res. Int., 2018, 106, 729-735.
[http://dx.doi.org/10.1016/j.foodres.2018.01.054] [PMID: 29579981]
[25]
Mabry, T.J.; Markham, K.R.; Thomas, M.B. The systematic identification of flavonoids., 1970.
[http://dx.doi.org/10.1007/978-3-642-88458-0]
[26]
Nathia-Neves, G.; Nogueira, G.C.; Vardanega, R.; Meireles, M.A.D.A. Identification and quantification of genipin and geniposide from Genipa americana L. by HPLC-DAD using a fused-core column. Food Sci. Technol. (Campinas), 2018, 38, 116-122.
[http://dx.doi.org/10.1590/1678-457x.17317]
[27]
Dávila, Y.A.; Almandoz, M.C.; Sancho, M.I.; Gasull, E.I.; Blanco, S.E. Thermodynamic and kinetic study of the formation of the 2 '(OH) acetophenone-AI (III) complex. Avances en Ciencias e Ingeniería, 2011, 2(4), 59-68.
[28]
Strober, W. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol., 1997, 21(1), A-3B.
[29]
Liu, S.P.; Li, X.Y.; Li, Z.; He, L.N.; Xiao, Y.; Yan, K.; Zhou, Z.G. Octanoylated ghrelin inhibits the activation of the palmitic acid-induced TLR4/NF-κB signaling pathway in THP-1 macrophages. ISRN Endocrinol., 2012.2012237613
[http://dx.doi.org/10.5402/2012/237613] [PMID: 23251812]
[30]
Cousin, S.P.; Hügl, S.R.; Wrede, C.E.; Kajio, H.; Myers, M.G., Jr; Rhodes, C.J. Free fatty acid-induced inhibition of glucose and insulin-like growth factor I-induced deoxyribonucleic acid synthesis in the pancreatic β-cell line INS-1. Endocrinology, 2001, 142(1), 229-240.
[http://dx.doi.org/10.1210/endo.142.1.7863] [PMID: 11145586]
[31]
Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res., 2001, 29(9)e45
[http://dx.doi.org/10.1093/nar/29.9.e45] [PMID: 11328886]
[32]
Le Boedec, K. Sensitivity and specificity of normality tests and consequences on reference interval accuracy at small sample size: a computer-simulation study. Vet. Clin. Pathol., 2016, 45(4), 648-656.
[http://dx.doi.org/10.1111/vcp.12390] [PMID: 27556235]
[33]
d’Arqom, A.; Luangwedchakarn, V.; Umrod, P.; Wongprompitak, P.; Tantibhedyangkul, W. Effects of 1α,25 Dihydroxyvitamin D3 on Pro-inflammatory Cytokines of Palmitic Acid Treated Thp-1 Cells. J. Food Sci., 2017, 82(12), 3013-3020.
[http://dx.doi.org/10.1111/1750-3841.13966] [PMID: 29193074]
[34]
Wang, G.; Hu, Z.; Fu, Q.; Song, X.; Cui, Q.; Jia, R.; Zou, Y.; He, C.; Li, L.; Yin, Z. Resveratrol mitigates lipopolysaccharide-mediated acute inflammation in rats by inhibiting the TLR4/NF-κBp65/MAPKs signaling cascade. Sci. Rep., 2017, 7, 45006.
[http://dx.doi.org/10.1038/srep45006] [PMID: 28322346]
[35]
Zhai, K.F.; Duan, H.; Cui, C.Y.; Cao, Y.Y.; Si, J.L.; Yang, H.J.; Wang, Y.C.; Cao, W.G.; Gao, G.Z.; Wei, Z.J. Liquiritin from glycyrrhiza uralensis attenuating rheumatoid arthritis via reducing inflammation, suppressing angiogenesis, and inhibiting MAPK signaling pathway. J. Agric. Food Chem., 2019, 67(10), 2856-2864.
[http://dx.doi.org/10.1021/acs.jafc.9b00185] [PMID: 30785275]
[36]
Zhai, K.F.; Duan, H.; Chen, Y.; Khan, G.J.; Cao, W.G.; Gao, G.Z.; Shan, L.L.; Wei, Z.J. Apoptosis effects of imperatorin on synoviocytes in rheumatoid arthritis through mitochondrial/caspase-mediated pathways. Food Funct., 2018, 9(4), 2070-2079.
[http://dx.doi.org/10.1039/C7FO01748K] [PMID: 29577119]
[37]
Zhai, K.F.; Duan, H.; Luo, L.; Cao, W.G.; Han, F.K.; Shan, L.L.; Fang, X.M. Protective effects of paeonol on inflammatory response in IL-1β-induced human fibroblast-like synoviocytes and rheumatoid arthritis progression via modulating NF-κB pathway. Inflammopharmacology, 2017.
[http://dx.doi.org/10.1007/s10787-017-0385-5] [PMID: 28799079]
[38]
Ching-Wen, C.; Yun-Chieh, C.; Yu-Chin, L.; Wen-Huang, P. p-Hydroxyacetophenone suppresses nuclear factor-κB-related inflammation in nociceptive and inflammatory animal models. J. Nat. Med., 2017, 71(2), 422-432.
[http://dx.doi.org/10.1007/s11418-017-1074-9] [PMID: 28150144]
[39]
Macedo, T.; Ribeiro, V.; Oliveira, A.P.; Pereira, D.M.; Fernandes, F.; Gomes, N.G.M.; Araújo, L.; Valentão, P.; Andrade, P.B. Anti-inflammatory properties of Xylopia aethiopica leaves: Interference with pro-inflammatory cytokines in THP-1-derived macrophages and flavonoid profiling. J. Ethnopharmacol., 2020.248112312
[http://dx.doi.org/10.1016/j.jep.2019.112312] [PMID: 31629028]
[40]
Alvarez, M.E.; Rotelli, A.E.; Pelzer, L.E.; Saad, J.R.; Giordano, O. Phytochemical study and anti-inflammatory properties of Lampaya hieronymi Schum. ex Moldenke. Farmaco, 2000, 55(6-7), 502-505.
[http://dx.doi.org/10.1016/S0014-827X(00)00067-7] [PMID: 11204754]
[41]
Bedi, O.; Aggarwal, S.; Trehanpati, N.; Ramakrishna, G.; Krishan, P. Molecular and Pathological Events Involved in the Pathogenesis of Diabetes-Associated Nonalcoholic Fatty Liver Disease. J. Clin. Exp. Hepatol., 2019, 9(5), 607-618.
[http://dx.doi.org/10.1016/j.jceh.2018.10.004] [PMID: 31695251]
[42]
Nikolopoulou, A.; Kadoglou, N.P. Obesity and metabolic syndrome as related to cardiovascular disease. Expert Rev. Cardiovasc. Ther., 2012, 10(7), 933-939.
[http://dx.doi.org/10.1586/erc.12.74] [PMID: 22908926]
[43]
Ouakinin, S.R.S.; Barreira, D.P.; Gois, C.J. Depression and obesity: Integrating the role of stress, neuroendocrine dysfunction and inflammatory pathways. Front. Endocrinol. (Lausanne), 2018, 9, 431.
[http://dx.doi.org/10.3389/fendo.2018.00431] [PMID: 30108549]
[44]
Carta, G.; Murru, E.; Banni, S.; Manca, C. Palmitic Acid: Physiological Role, Metabolism and Nutritional Implications. Front. Physiol., 2017, 8, 902.
[http://dx.doi.org/10.3389/fphys.2017.00902] [PMID: 29167646]
[45]
Ford, J.H. Saturated fatty acid metabolism is key link between cell division, cancer, and senescence in cellular and whole organism aging. Age (Dordr.), 2010, 32(2), 231-237.
[http://dx.doi.org/10.1007/s11357-009-9128-x] [PMID: 20431990]
[46]
Schink, A.; Neumann, J.; Leifke, A.L.; Ziegler, K.; Fröhlich-Nowoisky, J.; Cremer, C.; Thines, E.; Weber, B.; Pöschl, U.; Schuppan, D.; Lucas, K. Screening of herbal extracts for TLR2- and TLR4-dependent anti-inflammatory effects. PLoS One, 2018, 13(10)e0203907
[http://dx.doi.org/10.1371/journal.pone.0203907] [PMID: 30307962]
[47]
Lu, C.C.; Hsu, Y.J.; Chang, C.J.; Lin, C.S.; Martel, J.; Ojcius, D.M.; Ko, Y.F.; Lai, H.C.; Young, J.D. Immunomodulatory properties of medicinal mushrooms: differential effects of water and ethanol extracts on NK cell-mediated cytotoxicity. Innate Immun., 2016, 22(7), 522-533.
[http://dx.doi.org/10.1177/1753425916661402] [PMID: 27469258]
[48]
Martel, J.; Ko, Y.F.; Ojcius, D.M.; Lu, C.C.; Chang, C.J.; Lin, C.S.; Lai, H.C.; Young, J.D. Immunomodulatory Properties of Plants and Mushrooms. Trends Pharmacol. Sci., 2017, 38(11), 967-981.
[http://dx.doi.org/10.1016/j.tips.2017.07.006] [PMID: 28863984]
[49]
Mfotie Njoya, E.; Eloff, J.N.; McGaw, L.J. Croton gratissimus leaf extracts inhibit cancer cell growth by inducing caspase 3/7 activation with additional anti-inflammatory and antioxidant activities. BMC Complement. Altern. Med., 2018, 18(1), 305.
[http://dx.doi.org/10.1186/s12906-018-2372-9] [PMID: 30428879]
[50]
Kim, E.K.; Choi, E.J. Compromised MAPK signaling in human diseases: an update. Arch. Toxicol., 2015, 89(6), 867-882.
[http://dx.doi.org/10.1007/s00204-015-1472-2] [PMID: 25690731]
[51]
Bajpai, V.K.; Alam, M.B.; Quan, K.T.; Ju, M.K.; Majumder, R.; Shukla, S.; Huh, Y.S.; Na, M.; Lee, S.H.; Han, Y.K. Attenuation of inflammatory responses by (+)-syringaresinol via MAP-Kinase-mediated suppression of NF-κB signaling in vitro and in vivo. Sci. Rep., 2018, 8(1), 9216.
[http://dx.doi.org/10.1038/s41598-018-27585-w] [PMID: 29907781]
[52]
Liao, Z.L.; Su, H.; Tan, Y.F.; Qiu, Y.J.; Zhu, J.P.; Chen, Y.; Lin, S.S.; Wu, M.H.; Mao, Y.P.; Hu, J.J.; Yu, E.Y. Salidroside protects PC-12 cells against amyloid β-induced apoptosis by activation of the ERK1/2 and AKT signaling pathways. Int. J. Mol. Med., 2019, 43(4), 1769-1777.
[http://dx.doi.org/10.3892/ijmm.2019.4088] [PMID: 30720058]
[53]
Kalli, M.; Voutouri, C.; Minia, A.; Pliaka, V.; Fotis, C.; Alexopoulos, L.G.; Stylianopoulos, T. Mechanical Compression Regulates Brain Cancer Cell Migration Through MEK1/Erk1 Pathway Activation and GDF15 Expression. Front. Oncol., 2019, 9, 992.
[http://dx.doi.org/10.3389/fonc.2019.00992] [PMID: 31612114]
[54]
Gunawardena, D.; Govindaraghavan, S.; Munch, G. Anti-inflammatory properties of cinnamon polyphenols and their monomeric precursors. Polyphenols in Human Health and Disease., 2014, 1Vol. 1, 30, pp.. , 409-425.
[http://dx.doi.org/10.1016/B978-0-12-398456-2.00030-X]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 8
Year: 2020
Published on: 12 May, 2020
Page: [1309 - 1320]
Pages: 12
DOI: 10.2174/1871530320666200513082300
Price: $65

Article Metrics

PDF: 16
HTML: 1