Generic placeholder image

Current Chinese Chemistry

Editor-in-Chief

ISSN (Print): 2666-0016
ISSN (Online): 2666-0008

Research Article

Green Synthesis of Substituted Dihydropyrimidin-2(1H)-one by Using Zinc Chloride /Acetic Acid Catalytic System

Author(s): Bapu R. Thorat*, Ankita Gurav, Bharat Dalvi, Ashwini Sawant, Vikas Lokhande and Suraj N. Mali*

Volume 1, Issue 1, 2021

Published on: 12 May, 2020

Page: [30 - 46] Pages: 17

DOI: 10.2174/2665997201999200512110147

Abstract

Background: Biginelli reaction is the most well-known and widely studied, multicomponent reaction used for the direct synthesis of many biologically active 3,4-dihydropyrimidin- 2(1H)-ones and their derivatives by reacting a β-keto ester/1,3-dicarbonyl compound, an aldehyde, and urea. It is catalyzed by different Bronsted and Lewis acids.

Methods: The catalytic effect of different metal chlorides, such as sodium, potassium, magnesium, stannous, ferric, manganese, cupric, nickel, cobalt, and zinc, in absence and presence of acetic acid were studied.

Results: The zinc, ferric, cupric, and cobalt chlorides were found to be more effective catalysts for Biginelli reaction at room temperature. The yield of the reaction increased with temperature for all catalytic systems. Acetophenone, cyclohexanone, acetyl acetone, and different β-ketoesters formed tetrahedropyrimidine in moderate to good yield, by using zinc chloride catalyst at room temperature in acetic acid. The efficiency of the catalyst was studied by treating different substituted aldehydes with 1,3-dicarbonyl compounds and urea at room temperature.

Conclusion: The zinc chloride in acetic acid found to be an effective greener catalyst system for Biginelli reaction.

Keywords: Biginelli reaction, dihydropyrimidinone, lewis acid, zinc chloride, acetic acid, green systhesis.

Graphical Abstract
[1]
(a)Kappe, C.O. 100 years of the Biginelli dihydropyrimidine synthesis. Tetrahedron, 1993, 49(32), 6937-6963.
[http://dx.doi.org/10.1016/S0040-4020(01)87971-0]
(b)Kappe, C.O. 4-Aryldihydropyrimidines via the Biginelli condensation: Aza-analogs of nifedipine-type calcium channel modulators. Molecules, 1998, 3(1), 1-9.
[http://dx.doi.org/10.3390/30100001]
[2]
O'reilly, B.C.; Atwal, K.S. Synthesis of substituted 1, 2, 3, 4-tetrahydro-6-methyl-2-oxo-5-pyrimidinecarboxylic acid esters: The Biginelli condensation revisited. Heterocycles (Sendai), 1987, 26(5), 1185-1188.
[http://dx.doi.org/10.3987/R-1987-05-1185]
[3]
Ashok, M.; Holla, B.S.; Kumari, N.S. Convenient one pot synthesis of some novel derivatives of thiazolo[2,3-b]dihydropyrimidinone possessing 4-methylthiophenyl moiety and evaluation of their antibacterial and antifungal activities. Eur. J. Med. Chem., 2007, 42(3), 380-385.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.003] [PMID: 17070617]
[4]
Hurst, E.W.; Hull, R. Two new synthetic substances active against viruses of the psittacosis-lymphogranuloma-trachoma group. J. Med. Chem., 1960, 3(2), 215-229.
[http://dx.doi.org/10.1021/jm50015a002]
[5]
Slimi, H.; Moussaoui, Y. ben Salem, R. Synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones/thiones via Biginelli reaction promoted by bismuth (III) nitrate or PPh3 without solvent. Arab. J. Chem., 2016, 9, S510-S514.
[http://dx.doi.org/10.1016/j.arabjc.2011.06.010]
[6]
Kolosov, M.A.; Orlov, V.D.; Beloborodov, D.A.; Dotsenko, V.V. A chemical placebo: NaCl as an effective, cheapest, non-acidic and greener catalyst for Biginelli-type 3,4-dihydropyrimidin-2(1H)-ones (-thiones) synthesis. Mol. Divers., 2009, 13(1), 5-25.
[http://dx.doi.org/10.1007/s11030-008-9094-8] [PMID: 19082754]
[7]
Kappe, C.O. Biologically active dihydropyrimidones of the Biginelli-type--a literature survey. Eur. J. Med. Chem., 2000, 35(12), 1043-1052.
[http://dx.doi.org/10.1016/S0223-5234(00)01189-2] [PMID: 11248403]
[8]
Kato, T.; Chiba, T.; Abe, Y. Production of 5-Carbamoyl-6-methyl-4-substituted-1, 2, 3, 4-Tetrahydro-2-Thioxopyrimidine; Jpn Pat, 1984, p. 59190974.
[9]
Mayer, T.U.; Kapoor, T.M.; Haggarty, S.J.; King, R.W.; Schreiber, S.L.; Mitchison, T.J. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science, 1999, 286(5441), 971-974.
[http://dx.doi.org/10.1126/science.286.5441.971] [PMID: 10542155]
[10]
Biginelli, P. The condensation reaction described by Biginelli. Gazz. Chim. Ital., 1893, 23, 360-416.
[11]
Rani, V.R.; Srinivas, N.; Kishan, M.R.; Kulkarni, S.J.; Raghavan, K.V. Zeolite-catalyzed cyclocondensation reaction for the selective synthesis of 3, 4-dihydropyrimidin-2 (1 H)-ones. Green Chem., 2001, 3(6), 305-306.
[http://dx.doi.org/10.1039/b107612b]
[12]
Bigi, F.; Carloni, S.; Frullanti, B.; Maggi, R.; Sartori, G. A revision of the Biginelli reaction under solid acid catalysis. Solvent-free synthesis of dihydropyrimidines over montmorillonite KSF. Tet. Lett., 1999, 40(17), 3465-3468.
[http://dx.doi.org/10.1016/S0040-4039(99)00424-4]
[13]
Salehi, P.; Dabiri, M.; Zolfigol, M.A.; Fard, M.A.B. Silica sulfuric acid: an efficient and reusable catalyst for the one-pot synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones. Tetrahedron Lett., 2003, 44(14), 2889-2891.
[http://dx.doi.org/10.1016/S0040-4039(03)00436-2]
[14]
Heravi, M.M.; Bakhtiari, K.; Bamoharram, F.F. 12-Molybdophosphoric acid: A recyclable catalyst for the synthesis of Biginelli-type 3, 4-dihydropyrimidine-2 (1H)-ones. Catal. Commun., 2006, 7(6), 373-376.
[http://dx.doi.org/10.1016/j.catcom.2005.12.007]
[15]
Zhang, X.; Shi, F.; Yu, X.; Liu, H.; Fu, Y.; Wang, Z.; Jiang, L.; Li, X. Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: toward super-hydrophobic surface. J. Am. Chem. Soc., 2004, 126(10), 3064-3065.
[http://dx.doi.org/10.1021/ja0398722] [PMID: 15012132]
[16]
Pasha, M.A.; Swamy, N.R.; Jayashankara, V.P. One pot synthesis of 3, 4- dihydropyrimidin- 2 (1H)- ones/- thiones catalyzed by zinc chloride: An improved procedure for the Biginelli reaction using microwaves under solvent free conditions. Indian J. Chem., 2005, 44(4), 823-826.
[http://dx.doi.org/10.1002/chin.200534209]
[17]
Sun, Q.; Wang, Y.Q.; Ge, Z.M.; Cheng, T.M.; Li, R.T. A highly efficient solvent-free synthesis of dihydropyrimidinones catalyzed by zinc chloride. Synthesis, 2004, (07), 1047-1051.
[18]
Bose, D.S.; Idrees, M. An efficient and high yielding protocol for the synthesis of substituted dihydropyrimidin-2 (1h)-ones and spiro-fused heterocycles by involving tandem reactions. J. Heterocycl. Chem., 2007, 44(1), 211-214.
[http://dx.doi.org/10.1002/jhet.5570440133]
[19]
Xue, S.; Shen, Y.C.; Li, Y.L.; Shen, X.M.; Guo, Q.X. Synthesis of 4-aryl-3, 4-dihydropyrimidinones using microwave-assisted solventless Biginelli reaction. Chin. J. Chem., 2002, 20(4), 385-389.
[http://dx.doi.org/10.1002/cjoc.20020200417]
[20]
Liang, B.; Wang, X.; Wang, J.X.; Du, Z. New three-component cyclocondensation reaction: microwave-assisted one-pot synthesis of 5-unsubstituted-3, 4-dihydropyrimidin-2 (1H)-ones under solvent-free conditions. Tetrahedron, 2007, 63(9), 1981-1986.
[http://dx.doi.org/10.1016/j.tet.2006.12.062]
[21]
Jenner, G. Effect of high pressure on Biginelli reactions. Steric hindrance and mechanistic considerations. Tetrahedron Lett., 2004, 45(32), 6195-6198.
[http://dx.doi.org/10.1016/j.tetlet.2004.05.106]
[22]
Niknam, K.; Zolfigol, M.A.; Hossieninejad, Z.; Daneshvar, N. Efficient synthesis of 3, 4-dihydropyrimidin-2 (1H)-one using metal hydrogen sulfates M (HSO4) n as catalyst under solvent-free conditions. Chin. J. Catal., 2007, 28(7), 591-595.
[http://dx.doi.org/10.1016/S1872-2067(07)60051-5]
[23]
Zhang, M.; Li, Y.Q. Facile one-pot synthesis of 3,4-Dihydropyrimidin-2 (1H)-one Catalyzed by Zn (NH2SO3) 2. Synth. Commun., 2006, 36(7), 835-841.
[http://dx.doi.org/10.1080/00397910500464228]
[24]
Zhang, M.; Li, Y.Q.; Zhou, M.Y. Rapid synthesis of 1, 2, 3, 4-Tetrahydropyrimidin-2-ones using Zn (NH2SO3) 2 as a catalyst under microwave irradiation. Chin. J. Chem., 2006, 24(2), 282-284.
[http://dx.doi.org/10.1002/cjoc.200690054]
[25]
Hui, X.; Yan-Guang, W. A rapid and efficient Biginelli reaction catalyzed by zinc triflate. Chin. J. Chem., 2003, 21(3), 327-331.
[http://dx.doi.org/10.1002/cjoc.20030210321]
[26]
Wang, C.F.; Jiang, H.; Gong, H.; Wang, M.; Wang, Z.C. Biginelli condensation of aliphatic aldehydes catalyzed by inorganic zinc compounds. Youji Huaxue, 2006, 26(3), 333-336.
[27]
Clark, J.H.; Macquarrie, D.J.; Sherwood, J. The combined role of catalysis and solvent effects on the Biginelli reaction: improving efficiency and sustainability. Chemistry, 2013, 19(16), 5174-5182.
[http://dx.doi.org/10.1002/chem.201204396] [PMID: 23436300]
[28]
Gohain, M.; Prajapati, D.; Sandhu, J.S. A novel Cu-catalysed three-component one-pot synthesis of dihydropyrimidin-2 (1H)-ones using microwaves under solvent-free conditions. Synlett, 2004, 0235-0238(02)
[29]
Karthikeyan, P.; Aswar, S.A.; Muskawar, P.N.; Bhagat, P.R.; Kumar, S.S. Development and efficient 1-glycyl-3-methyl imidazolium chloride–copper (II) complex catalyzed highly enantioselective synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones. J. Organomet. Chem., 2013, 723, 154-162.
[http://dx.doi.org/10.1016/j.jorganchem.2012.06.022]
[30]
Mahdavinia, G.H.; Sepehrian, H. MCM-41 anchored sulfonic acid (MCM-41-R-SO3H): a mild, reusable and highly efficient heterogeneous catalyst for the Biginelli reaction. Chin. Chem. Lett., 2008, 19(12), 1435-1439.
[http://dx.doi.org/10.1016/j.cclet.2008.09.028]
[31]
Elmaghraby, A.M.; Mousa, I.A.; Harb, A.A.; Mahgoub, M.Y. Three component reaction: an efficient synthesis and reactions of 3, 4-dihydropyrimidin-2 (1H)-ones and thiones using new natural catalyst. ISRN Org. Chem., 2013, 2013, 706437.
[http://dx.doi.org/10.1155/2013/706437] [PMID: 24052868]
[32]
Ard, S.G.; Li, A.; Martinez, O., Jr; Shuman, N.S.; Viggiano, A.A.; Guo, H. Experimental and theoretical kinetics for the H2O++ H2/D2 ® H3O+/H2DO++ H/D reactions: observation of the rotational effect in the temperature dependence. J. Phys. Chem. A, 2014, 118(49), 11485-11489.
[http://dx.doi.org/10.1021/jp510399v] [PMID: 25398042]
[33]
Safari, J.; Gandomi-Ravandi, S. Titanium dioxide supported on MWCNTs as an eco-friendly catalyst in the synthesis of 3, 4-dihydropyrimidin-2-(1 H)-ones accelerated under microwave irradiation. New J. Chem., 2014, 38(8), 3514-3521.
[http://dx.doi.org/10.1039/C3NJ01618H]
[34]
Jiang, C.; You, Q.D. An efficient and solvent-free one-pot synthesis of dihydropyrimidinones under microwave irradiation. Chin. Chem. Lett., 2007, 18(6), 647-650.
[http://dx.doi.org/10.1016/j.cclet.2007.04.002]
[35]
Pathak, V.N.; Gupta, R.; Varshney, B. An efficient, inexpensive'Green Chemistry'route to multicomponent Biginelli condensation catalyzed by CuCl2. 2H2O-HCl. Indian J. Chem., 2008, 47(3), 434.
[36]
Lu, J.; Ma, H. Iron (III)-catalyzed synthesis of dihydropyrimidinones. Improved conditions for the Biginelli reaction. Synlett, 2000, (01), 63-64.
[37]
Janković, N.; Bugarčić, Z.; Marković, S. Double catalytic effect of (PhNH3) 2CuCl4 in a novel, highly efficient synthesis of 2-oxo and thioxo-1, 2, 3, 4-tetra-hydopyrimidines. J. Serb. Chem. Soc., 2015, 80(5), 595-604.
[http://dx.doi.org/10.2298/JSC141028011J]
[38]
Prasad, B.D.; Sastry, V.G.; Ramana, H.; Devilal, J.; Rao, A.S. Multicomponent Biginelli’s synthesis, antimycobacterial activity and molecular docking studies of dihydropyrimidine derivatives as thymidylate kinase protein targets. Pharmacologia, 2016, 7(256), 263.
[39]
Tayebee, R.; Ghadamgahi, M. Arab. J. Chem., 2012, 10(1), S757v-S764.
[40]
Chitra, S.; Pandiarajan, K. Calcium fluoride: an efficient and reusable catalyst for the synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones and their corresponding 2 (1H) thione: an improved high yielding protocol for the Biginelli reaction. Tetrahedron Lett., 2009, 50(19), 2222-2224.
[http://dx.doi.org/10.1016/j.tetlet.2009.02.162]
[41]
Kumar, S.; Saini, A.; Sandhu, J.S. Cobalt (II) chloride or manganese (II) chloride or tin (II) chloride promoted one pot synthesis of dihydropyrimidin-2 (1H)-ones using microwave irradiation. Indian J. Chem., 2005, 44B, 762-767.
[http://dx.doi.org/10.1002/chin.200534208]
[42]
Moradi, L.; Tadayon, M. Green synthesis of 3, 4-dihydropyrimidinones using nano Fe3O4@ meglumine sulfonic acid as a new efficient solid acid catalyst under microwave irradiation. J. Saudi Chem. Soc., 2018, 22(1), 66-75.
[http://dx.doi.org/10.1016/j.jscs.2017.07.004]
[43]
Patil, S.; Jadhav, S.D.; Mane, S.Y. Pineapple juice as a natural catalyst: an excellent catalyst for Biginelli reaction. Inter. Jour. of Org. Chem., 2011, 1(3), 125.
[http://dx.doi.org/10.4236/ijoc.2011.13019]
[44]
Gogoi, P.; Dutta, A.K.; Saikia, S.; Borah, R. Heterogenized hybrid catalyst of 1-sulfonic acid-3-methyl imidazolium ferric chloride over NaY zeolite for one-pot synthesis of 2-amino-4-arylpyrimidine derivatives: A viable approach. Appl. Catal. A Gen., 2016, 523, 321-331.
[http://dx.doi.org/10.1016/j.apcata.2016.06.015]
[45]
Shamim, S.; Khan, K.M.; Salar, U.; Ali, F.; Lodhi, M.A.; Taha, M.; Khan, F.A.; Ashraf, S.; Ul-Haq, Z.; Ali, M.; Perveen, S. 5-Acetyl-6-methyl-4-aryl-3,4-dihydropyrimidin-2(1H)-ones: as potent urease inhibitors; synthesis, in vitro screening, and molecular modeling study. Bioorg. Chem., 2018, 76, 37-52.
[http://dx.doi.org/10.1016/j.bioorg.2017.10.021] [PMID: 29125971]
[46]
de Fátima, Â.; Terra, B.S.; da Silva Neto, L.; Braga, T.C. Organocatalyzed Biginelli reactions: a greener chemical approach for the synthesis of biologically active 3, 4-dihydropyrimidin-2 (1H)-ones/-thiones. In: In: Green Synthetic Approaches for Biologically Relevant Heterocycles; , 2015; pp. 317-337.
[47]
Rani, J.W.S.; Kathing, C.; Singh, N.G.; Nongrum, R.; Rahman, N.; Kharmawlong, G.; Nongkhlaw, R. One-pot synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones catalysed by [BMIM] Br under solvent-free condition. 2016, 48(4), 3-10.
[48]
Sayyahi, S.; Jahanbakhshi, S.; Dehghani, Z. A green and efficient method for the preparation of 3, 4-dihydropyrimidin-2 (1H)-ones using quaternary ammonium-treated clay in water. J. Chem., 2013, 5.
[http://dx.doi.org/10.1155/2013/605324]
[49]
Liu, P.; Hao, J.; Zhang, Z.A. General, efficient and green procedure for synthesis of dihydropyrimidine-5-carboxamides in low melting betaine hydrochloride/urea mixture. Chin. J. Chem., 2016, 34(6), 637-645.
[http://dx.doi.org/10.1002/cjoc.201500862]
[50]
Tafuri, J.; Roberts, J. Organophosphate poisoning. Ann. Emerg. Med., 1987, 16(2), 193-202.
[http://dx.doi.org/10.1016/S0196-0644(87)80015-X] [PMID: 3541700]
[51]
Mohamadpour, F.; Maghsoodlou, M.T.; Heydari, R.; Lashkari, M. Saccharin: a green, economical and efficient catalyst for the one-pot, multi-component synthesis of 3, 4-dihydropyrimidin-2-(1H)-one derivatives and 1H-pyrazolo [1, 2-b] phthalazine-5, 10-dione derivatives and substituted dihydro-2-oxypyrrole. J. Iran Chem. Soc., 2016, 13(8), 1549-1560.
[http://dx.doi.org/10.1007/s13738-016-0871-5]
[52]
Wang, H.; Casalongue, H.S.; Liang, Y.; Dai, H. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc., 2010, 132(21), 7472-7477.
[http://dx.doi.org/10.1021/ja102267j] [PMID: 20443559]
[53]
Kathing, C.; Rani, J.W.S.; Singh, N.G.; Tumtin, S.; Nongrum, R.; Nongkhlaw, R. One-pot synthesis of 3, 4-Dihydropyrimidin-2 (1H)-ones catalysed by cupric acetate under solvent-free conditions. J. Chin. Chem. Soc. (Taipei), 2014, 61(11), 1254-1258.
[http://dx.doi.org/10.1002/jccs.201400041]
[54]
Desai, N.C.; Trivedi, A.R.; Vaghani, H.V.; Somani, H.C.; Bhatt, K.A. Synthesis and biological evaluation of 1, 3, 4-oxadiazole bearing dihydropyrimidines as potential antitubercular agents. Med. Chem. Res., 2016, 25(2), 329-338.
[http://dx.doi.org/10.1007/s00044-015-1485-7]
[55]
Dekamin, M.G.; Mehdipoor, F.; Yaghoubi, A. 1, 3, 5-Tris (2-hydroxyethyl) isocyanurate functionalized graphene oxide: a novel and efficient nanocatalyst for the one-pot synthesis of 3, 4-dihydropyrimidin-2 (1 H)-ones. New J. Chem., 2017, 41(14), 6893-6901.
[http://dx.doi.org/10.1039/C7NJ00632B]
[56]
El-Hamouly, W.S.; El-Khamry, A.M.A.; Abbas, E.M. Synthesis of new 4-aryl-isoxazolo [5, 4-d] pyrimidin-6-one (thione) and 4-aryl-pyrazolo [3, 4-d]-pyrimidin-6-one derivatives of potential antihypertensive activity. Indian J. Chem. B., 2006, 45(9), 2091-2098.
[57]
Wang, L.; Zhou, M.; Chen, Q.; He, M.Y. Facile Biginelli-type reactions catalysed by super acidic ionic liquid under solvent-free conditions. J. Chem. Res., 2012, 36(12), 712-714.
[http://dx.doi.org/10.3184/174751912X13518654161237]
[58]
Anastas, P.T.; Kirchhoff, M.M. Origins, current status, and future challenges of green chemistry. Acc. Chem. Res., 2002, 35(9), 686-694.
[http://dx.doi.org/10.1021/ar010065m] [PMID: 12234198]
[59]
Huang, Y.; Yang, F.; Zhu, C. Highly enantioselective Biginelli reaction using a new chiral ytterbium catalyst: asymmetric synthesis of dihydropyrimidines. J. Am. Chem. Soc., 2005, 127(47), 16386-16387.
[http://dx.doi.org/10.1021/ja056092f] [PMID: 16305212]
[60]
Kolosov, M.A.; Kulyk, O.G.; Beloborodov, D.A.; Orlov, V.D. A simple and efficient one-pot synthesis of 4-alkyl-3, 4-dihydropyrimidin-2 (1 H)-ones. J. Chem. Res., 2013, 37(2), 115-118.
[http://dx.doi.org/10.3184/174751913X13573126386313]
[61]
Mali, S.N.; Chaudhari, H.K. Molecular modelling studies on adamantane-based Ebola virus GP-1 inhibitors using docking, pharmacophore and 3D-QSAR. SAR QSAR Environ. Res., 2019, 30(3), 161-180.
[http://dx.doi.org/10.1080/1062936X.2019.1573377] [PMID: 30786763]
[62]
Mali, S.N.; Sawant, S.; Chaudhari, H.K.; Mandewale, M.C. In silico appraisal, synthesis, antibacterial screening and DNA cleavage for 1,2,5-thiadiazole derivative. Curr. Comput. Aided Drug Des., 2019, 15(5), 445-455.
[http://dx.doi.org/10.2174/1573409915666190206142756] [PMID: 30727910]
[63]
Mishra, V.R.; Ghanavatkar, C.W.; Mali, S.N.; Qureshi, S.I.; Chaudhari, H.K.; Sekar, N. Design, synthesis, antimicrobial activity and computational studies of novel azo linked substituted benzimidazole, benzoxazole and benzothiazole derivatives. Comput. Biol. Chem., 2019, 78, 330-337.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.01.003] [PMID: 30639681]
[64]
Mishra, V.R.; Ghanavatkar, C.W.; Mali, S.N.; Chaudhari, H.K.; Sekar, N. Synthesis, bioactivities, DFT and in-silico appraisal of azo clubbed benzothiazole derivatives. J. Mol. Struct., 2019, 1192, 162-171.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.123]
[65]
Mishra, V.R.; Ghanavatkar, C.W.; Mali, S.N.; Chaudhari, H.K.; Sekar, N. Schiff base clubbed benzothiazole: synthesis, potent antimicrobial and MCF-7 anticancer activity, DNA cleavage and computational study. J. Biomol. Struct. Dyn., 2019, 1-14.
[http://dx.doi.org/10.1080/07391102.2019.1621213] [PMID: 31107179]
[66]
Jadhav, B.S.; Yamgar, R.S.; Kenny, R.S.; Mali, S.N.; Chaudhari, H.K.; Mandewale, M.C. Synthesis, in-silico and biological studies of thiazolyl-2h-chromen-2-one derivatives as potent antitubercular agents. Curr. Comput. Aided Drug Des., 2019, 15, 1.
[http://dx.doi.org/10.2174/1386207322666190722162100] [PMID: 31438831]
[67]
Kshatriya, R.; Kambale, D.; Mali, S.N.; Jejurkar, V.P.; Lokhande, P.; Chaudhari, H.K.; Saha, S.S. Brønsted acid catalyzed domino synthesis of functionalized 4H-chromens and their ADMET, molecular docking and antibacterial studies. ChemistrySelect, 2019, 4, 7943-7948.
[http://dx.doi.org/10.1002/slct.201901775]
[68]
Shelke, P.B.; Mali, S.N.; Chaudhari, H.K.; Pratap, A.P. Chitosan hydrochloride mediated efficient, green catalysis for the synthesis of perimidine derivatives. J. Heterocycl. Chem., 2019, 56(11), 3048-3054.
[http://dx.doi.org/10.1002/jhet.3700]
[69]
Kapale, S.S.; Mali, S.N.; Chaudhari, H.K. Molecular modelling studies for 4-oxo-1,4-dihydroquinoline-3-carboxamide derivatives as anticancer agents. Med. Drug Discov., 2019, 2, 100008.
[http://dx.doi.org/10.1016/j.medidd.2019.100008]
[70]
Anuse, D.G.; Thorat, B.R.; Sawant, S.; Yamgar, R.S.; Chaudhari, H.K.; Mali, S.N. Synthesis, SAR, molecular docking and anti-microbial study of substituted N-bromoamido-2-aminobenzothiazoles. Curr. Comput Aided Drug Des., 2019, 15, 1.
[http://dx.doi.org/10.2174/1573409915666190902143648] [PMID: 31475902]
[71]
Jejurkar, V.P.; Mali, S.N.; Kshatriya, R.; Chaudhari, H.K.; Saha, S. Synthesis, antimicrobial screening and in silico appraisal of iminocarbazole derivatives. ChemistrySelect, 2019, 4(32), 9470-9475.
[http://dx.doi.org/10.1002/slct.201901890]
[72]
Anuse, D.G.; Mali, S.N.; Thorat, B.R.; Yamgar, R.S.; Chaudhari, H.K. Synthesis, SAR, in-silico appraisal and anti-microbial study of substituted 2-aminobenzothiazoles derivatives. Curr. Comput. Aided Drug Des., 2019, 15, 1.
[http://dx.doi.org/10.2174/1573409915666191210125647] [PMID: 31820704]
[73]
Desale, V.J.; Mali, S.N.; Chaudhari, H.K.; Mali, M.C.; Thorat, B.R.; Yamgar, R.S. Synthesis and anti-mycobacterium study of halo-substituted 2-aryloxyacetohydrazones. Curr. Comput. Aided Drug Des., 2019, 15, 1.
[http://dx.doi.org/10.2174/1573409915666191018120611] [PMID: 31648645]
[74]
Thorat, B.R.; Rani, D.; Mali, S.N.; Yamgar, R.S. Synthesis, in-silico and in-vitro analysis of hydrazones as potential antituberculosis agents. Curr. Comput. Aided Drug Des., 2020. In press
[http://dx.doi.org/10.2174/1573409916666200302120942]
[75]
Thorat, B.R.; Rani, D.; Yamgar, R.S.; Mali, S.N. Synthesis, spectroscopic, in-vitro and computational analysis of hydrazones as potential antituberculosis agents: (Part-I). Comb. Chem. High Throughput Screen., 2020, 23(5), 392-401.
[http://dx.doi.org/10.2174/1386207323999200325125858] [PMID: 32209038]
[76]
Jadhav, B.S.; Yamgar, R.S.; Kenny, R.S.; Mali, S.N.; Chaudhari, H.K.; Mandewale, M.C. Synthesis and in-silico identification of new bioactive 1,3,4-oxadiazole tagged 2,3-dihydroimidazo[1,2-a]pyridine derivatives. Curr. Bioact. Compd., 2020. In press

© 2024 Bentham Science Publishers | Privacy Policy