Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Evaluating the Effect of Integra Seeded with Adipose Tissue-Derived Stem Cells or Fibroblasts in Wound Healing

Author(s): Yuchang Wang, Quanrui Feng, Zhanfei Li, Xiangjun Bai, Yiping Wu and Yukun Liu*

Volume 17, Issue 7, 2020

Page: [629 - 635] Pages: 7

DOI: 10.2174/1567201817666200512104004

Price: $65

Abstract

Background: Extensive loss of skin in burn patients can have devastating consequences, both physically and mentally. Adipose-Derived Stem Cells (ADSCs) and fibroblasts are known to play significant roles in the process of wound healing. Recently, bioengineered skin has been considered for wound healing purposes.

Methods: Investigate the effect of Integra seeded with ADSCs, fibroblasts, or both on wound healing.

Results: We found that when Integra is seeded with ADSCs and fibroblasts, both types of cells incorporate and proliferate, the phenomenon becoming more robust when the cells are co-cultured on Integra, both in vitro and in vivo. In addition, when these cells are seeded on Integra, they stimulate epithelization with no signs of inflammation and skin necrosis being observed when transplanted on animals for 7 days.

Conclusion: ADSCs and fibroblasts seeded on Integra could decrease the number of α-SMA positive myofibroblasts, leading to scarless wound healing. The evidence from this study is strongly supportive that Integra seeded with ADSCs and fibroblasts is an appropriate and effective bioengineered skin for wound healing.

Keywords: Adipose tissue-derived stem cells, integra, fibroblasts, wound healing, bioengineered, infection.

« Previous
Graphical Abstract
[1]
Britto, E.J.; Morrison, C.A. Wound, Dressings. in:; stat, pearls, ed.;Treasure Island, (FL), 2017.
[2]
Hüging, M.; Biedermann, T.; Sobrio, M.; Meyer, S.; Böttcher-Haberzeth, S.; Manuel, E.; Horst, M.; Hynes, S.; Reichmann, E.; Schiestl, C.; Hartmann-Fritsch, F. The effect of wound dressings on a bio-engineered human dermo-epidermal skin substitute in a rat model. J. Burn Care Res., 2017, 38(6), 354-364.
[http://dx.doi.org/10.1097/BCR.0000000000000530] [PMID: 29088007]
[3]
Chung, E.; Rybalko, V.Y.; Hsieh, P.L.; Leal, S.L.; Samano, M.A.; Willauer, A.N.; Stowers, R.S.; Natesan, S.; Zamora, D.O.; Christy, R.J.; Suggs, L.J. Fibrin-based stem cell containing scaffold improves the dynamics of burn wound healing. Wound Repair Regen., 2016, 24(5), 810-819.
[http://dx.doi.org/10.1111/wrr.12459] [PMID: 27348084]
[4]
Chen, T.A.; Ayala-Haedo, J.A.; Blessing, N.W.; Topping, K.; Alabiad, C.R.; Erickson, B.P. Bioengineered dermal substitutes for the management of traumatic periocular tissue loss. Orbit, 2018, 37(2), 115-120.
[PMID: 28891728]
[5]
De Angelis, B.; Gentile, P.; Tati, E.; Bottini, D.J.; Bocchini, I.; Orlandi, F.; Pepe, G.; Di Segni, C.; Cervelli, G.; Cervelli, V. One-stage reconstruction of scalp after full-thickness oncologic defects using a dermal regeneration template (Integra). BioMed Res. Int., 2015, 2015, 698385.
[http://dx.doi.org/10.1155/2015/698385] [PMID: 26649312]
[6]
Massee, M.; Chinn, K.; Lim, J.J.; Godwin, L.; Young, C.S.; Koob, T.J. Type I and II diabetic adipose-derived stem cells respond in vitro to dehydrated human amnion/chorion membrane allograft treatment by increasing proliferation, migration, and altering cytokine secretion. Adv. Wound Care (New Rochelle), 2016, 5(2), 43-54.
[http://dx.doi.org/10.1089/wound.2015.0661] [PMID: 26862462]
[7]
Wallace, H.A.; Bhimji, S.S. Wound, Healing, Phases. In; Editors. StatPearls: Treasure Island, (FL), 2017.
[8]
Hodgkinson, T.; Bayat, A. In vitro and ex vivo analysis of hyaluronan supplementation of Integra® dermal template on human dermal fibroblasts and keratinocytes. J. Appl. Biomater. Funct. Mater., 2016, 14(1), e9-e18.
[http://dx.doi.org/10.5301/jabfm.5000259] [PMID: 26689817]
[9]
Meruane, M.A.; Rojas, M.; Marcelain, K. The use of adipose tissue-derived stem cells within a dermal substitute improves skin regeneration by increasing neoangiogenesis and collagen synthesis. Plast. Reconstr. Surg., 2012, 130(1), 53-63.
[http://dx.doi.org/10.1097/PRS.0b013e3182547e04] [PMID: 22418720]
[10]
Haubner, F.; Muschter, D.; Pohl, F.; Schreml, S.; Prantl, L.; Gassner, H.G. A co-culture model of fibroblasts and adipose tissue-derived stem cells reveals new insights into impaired wound healing after radiotherapy. Int. J. Mol. Sci., 2015, 16(11), 25947-25958.
[http://dx.doi.org/10.3390/ijms161125935] [PMID: 26528967]
[11]
Johnson, M.B.; Wong, A.K. Integra-based reconstruction of large scalp wounds: a case report and systematic review of the literature. Plast. Reconstr. Surg. Glob. Open, 2016, 4(10), e1074.
[http://dx.doi.org/10.1097/GOX.0000000000001074] [PMID: 27826471]
[12]
Schiavon, M.; Francescon, M.; Drigo, D.; Salloum, G.; Baraziol, R.; Tesei, J.; Fraccalanza, E.; Barbone, F. The use of integra dermal regeneration template versus flaps for reconstruction of full-thickness scalp defects involving the calvaria: a cost-benefit analysis. Aesthetic Plast. Surg., 2016, 40(6), 901-907.
[http://dx.doi.org/10.1007/s00266-016-0703-0] [PMID: 27699461]
[13]
Formigli, L.; Paternostro, F.; Tani, A.; Mirabella, C.; Quattrini Li, A.; Nosi, D.; D’Asta, F.; Saccardi, R.; Mazzanti, B.; Lo Russo, G.; Zecchi-Orlandini, S. MSCs seeded on bioengineered scaffolds improve skin wound healing in rats. Wound Repair Regen., 2015, 23(1), 115-123.
[http://dx.doi.org/10.1111/wrr.12251] [PMID: 25571903]
[14]
Kim, M.H.; Wu, W.H.; Choi, J.H.; Kim, J.; Jun, J.H.; Ko, Y.; Lee, J.H. Galectin-1 from conditioned medium of three-dimensional culture of adipose-derived stem cells accelerates migration and proliferation of human keratinocytes and fibroblasts. Wound Repair Regen., 2018, 26 Suppl. 1, (S9-S18).
[PMID: 28857355]
[15]
Kim, W.S.; Park, B.S.; Sung, J.H.; Yang, J.M.; Park, S.B.; Kwak, S.J.; Park, J.S. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J. Dermatol. Sci., 2007, 48(1), 15-24.
[http://dx.doi.org/10.1016/j.jdermsci.2007.05.018] [PMID: 17643966]
[16]
Wang, B.; Ma, X.; Zhao, L.; Zhou, X.; Ma, Y.; Sun, H.; Yang, Y.; Chen, B. Injection of basic fibroblast growth factor together with adipose-derived stem cell transplantation: improved cardiac remodeling and function in myocardial infarction. Clin. Exp. Med., 2016, 16(4), 539-550.
[http://dx.doi.org/10.1007/s10238-015-0383-0] [PMID: 26349680]
[17]
Wang, T.; Zhao, J.; Zhang, J.; Mei, J.; Shao, M.; Pan, Y.; Yang, W.; Jiang, Y.; Liu, F.; Jia, W. Heparan sulfate inhibits inflammation and improves wound healing through down-regulating NLRP3 inflammasome in diabetic rats. J. Diabetes, 2018, 10(7), 556-563.
[18]
Inoue, Y.; Liu, Y.M.; Otawara, M.; Chico Calero, I.; Stephanie Nam, A.; Yu, Y.M.; Chang, P.; Butler, K.L.; Nazarian, R.M.; Goverman, J.; Vakoc, B.J.; Irimia, D. Resolvin D2 limits secondary tissue necrosis after burn wounds in rats. J. Burn Care Res., 2018, 39(3), 423-43.
[http://dx.doi.org/10.1097/BCR.0000000000000617] [PMID: 28877131]
[19]
Lu, W.; Yu, J.; Zhang, Y.; Ji, K.; Zhou, Y.; Li, Y.; Deng, Z.; Jin, Y. Mixture of fibroblasts and adipose tissue-derived stem cells can improve epidermal morphogenesis of tissue-engineered skin. Cells Tissues Organs (Print), 2012, 195(3), 197-206.
[http://dx.doi.org/10.1159/000324921] [PMID: 21494022]
[20]
Ghanavati, Z.; Orazizadeh, M.; Bayati, V.; Abbaspour, M.R.; Khorsandi, L.; Mansouri, E.; Neisi, N. Characterization of A three-dimensional organotypic co-culture skin model for epidermal differentiation of rat adipose-derived stem cells. Cell J., 2016, 18(3), 289-301.
[PMID: 27602310]
[21]
Riis, S.; Newman, R.; Ipek, H.; Andersen, J.I.; Kuninger, D.; Boucher, S.; Vemuri, M.C.; Pennisi, C.P.; Zachar, V.; Fink, T. Hypoxia enhances the wound-healing potential of adipose-derived stem cells in a novel human primary keratinocyte-based scratch assay. Int. J. Mol. Med., 2017, 39(3), 587-594.
[http://dx.doi.org/10.3892/ijmm.2017.2886] [PMID: 28204820]
[22]
Werner, S.; Krieg, T.; Smola, H. Keratinocyte-fibroblast interactions in wound healing. J. Invest. Dermatol., 2007, 127(5), 998-1008.
[http://dx.doi.org/10.1038/sj.jid.5700786] [PMID: 17435785]
[23]
Li, Y.; Zhang, J.; Zhang, W.; Liu, Y.; Li, Y.; Wang, K.; Zhang, Y.; Yang, C.; Li, X.; Shi, J.; Su, L.; Hu, D. MicroRNA-192 regulates hypertrophic scar fibrosis by targeting SIP1. J. Mol. Histol., 2017, 48(5-6), 357-366.
[http://dx.doi.org/10.1007/s10735-017-9734-3] [PMID: 28884252]
[24]
Cho, J.A.; Park, H.; Lim, E.H.; Lee, K.W. Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells. Int. J. Oncol., 2012, 40(1), 130-138.
[PMID: 21904773]
[25]
Li, Y.; Zhang, W.; Gao, J.; Liu, J.; Wang, H.; Li, J.; Yang, X.; He, T.; Guan, H.; Zheng, Z.; Han, S.; Dong, M.; Han, J.; Shi, J.; Hu, D. Adipose tissue-derived stem cells suppress hypertrophic scar fibrosis via the p38/MAPK signaling pathway. Stem Cell Res. Ther., 2016, 7(1), 102.
[http://dx.doi.org/10.1186/s13287-016-0356-6] [PMID: 27484727]
[26]
Liu, J.; Ren, J.; Su, L.; Cheng, S.; Zhou, J.; Ye, X.; Dong, Y.; Sun, S.; Qi, F.; Liu, Z.; Pleat, J.; Zhai, H.; Zhu, N. Human adipose tissue-derived stem cells inhibit the activity of keloid fibroblasts and fibrosis in a keloid model by paracrine signaling. Burns, 2017, 44(2), 370-385.
[PMID: 29029852]
[27]
Desai, V.D.; Hsia, H.C.; Schwarzbauer, J.E. Reversible modulation of myofibroblast differentiation in adipose-derived mesenchymal stem cells. PLoS One, 2014, 9(1), e86865.
[http://dx.doi.org/10.1371/journal.pone.0086865] [PMID: 24466271]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy