Recent Advances in the Novel Formulation of Docosahexaenoic Acid for Effective Delivery, Associated Challenges and Its Clinical Importance

Author(s): Harmanpreet Singh, Shubham Thakur, Nikhil Shri Sahajpal, Harjeet Singh, Amrinder Singh, Harminder Singh Sohal, Subheet Kumar Jain*

Journal Name: Current Drug Delivery

Volume 17 , Issue 6 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Docosahexaenoic Acid (DHA) is an essential polyunsaturated omega-3 fatty acid, and a fundamental structural component of the phospholipid membranes, especially of neural and retinal cells. DHA is found to be critical for the normal development and functioning of neurons and synaptogenesis in the brain, and is required during pre- and post-natal stages of life. DHA has also been observed to exhibit neuroprotective, cardioprotective, and anti-inflammatory properties. However, geographical dietary variations and poor economic conditions lead to insufficient DHA levels resulting in various health deficits like improper brain development, cognitive disorders, and other clinical complications. Thus, to prevent its deficiency-induced derangements, several authorities recommend DHA as a supplement during pregnancy, infancy, and throughout adulthood. In past decades, the soft gelatin capsule was only feasible resolute of DHA, but due to their limitations and invention of new technologies; it led to the development of new dosage forms with improved physicochemical characteristics of DHA. This article will discuss in detail about the role of DHA in brain development, microalgae oil as an emerging source of DHA, clinical- and pharmacological-activities of DHA, issues related to DHA oil, current formulation of DHA along with their application, limitations, and strategies used for improvement and future prospectives.

Keywords: Docosahexaenoic acid, brain development, novel formulations, clinical application, encapsulation, spray drying.

[1]
Lutter, C.K. Iron deficiency in young children in low-income countries and new approaches for its prevention. J. Nutr., 2008, 138(12), 2523-2528.
[http://dx.doi.org/10.3945/jn.108.095406] [PMID: 19022983]
[2]
Suskind, D.L. Nutritional deficiencies during normal growth. Pediatr. Clin. North Am., 2009, 56(5), 1035-1053.
[http://dx.doi.org/10.1016/j.pcl.2009.07.004] [PMID: 19931062]
[3]
Caballero, B. Global patterns of child health: the role of nutrition. Ann. Nutr. Metab., 2002, 46(Suppl. 1), 3-7.
[http://dx.doi.org/10.1159/000066400] [PMID: 12428075]
[4]
Gat-Yablonski, G.; Yackobovitch-Gavan, M.; Phillip, M. Nutrition and bone growth in pediatrics. Endocrinol. Metab. Clin. North Am., 2009, 38(3), 565-586.
[http://dx.doi.org/10.1016/j.ecl.2009.07.001] [PMID: 19717005]
[5]
Haimi, M.; Lerner, A. Nutritional deficiencies in the pediatric age group in a multicultural developed country, Israel. World J. Clin. Cases, 2014, 2(5), 120-125.
[http://dx.doi.org/10.12998/wjcc.v2.i5.120] [PMID: 24868510]
[6]
de Onis, M.; Blössner, M. The World Health Organization global database on child growth and malnutrition: methodology and applications. Int. J. Epidemiol., 2003, 32(4), 518-526.
[http://dx.doi.org/10.1093/ije/dyg099] [PMID: 12913022]
[7]
Sinn, N.; Bryan, J. Effect of supplementation with polyunsaturated fatty acids and micronutrients on learning and behavior problems associated with child ADHD. J. Dev. Behav. Pediatr., 2007, 28(2), 82-91.
[http://dx.doi.org/10.1097/01.DBP.0000267558.88457.a5] [PMID: 17435458]
[8]
McNamara, R.K.; Jandacek, R.; Tso, P.; Blom, T.J.; Welge, J.A.; Strawn, J.R.; Adler, C.M.; Strakowski, S.M.; DelBello, M.P. Adolescents with or at ultra-high risk for bipolar disorder exhibit erythrocyte docosahexaenoic acid and eicosapentaenoic acid deficits: a candidate prodromal risk biomarker. Early Interv. Psychiatry, 2016, 10(3), 203-211.
[http://dx.doi.org/10.1111/eip.12282] [PMID: 26486098]
[9]
Bazan, N.G.; Molina, M.F.; Gordon, W.C. Docosahexaenoic acid signalolipidomics in nutrition: significance in aging, neuroinflammation, macular degeneration, Alzheimer’s, and other neurodegenerative diseases. Annu. Rev. Nutr., 2011, 31, 321-351.
[http://dx.doi.org/10.1146/annurev.nutr.012809.104635] [PMID: 21756134]
[10]
Lukiw, W.J.; Cui, J.G.; Marcheselli, V.L.; Bodker, M.; Botkjaer, A.; Gotlinger, K.; Serhan, C.N.; Bazan, N.G. A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J. Clin. Invest., 2005, 115(10), 2774-2783.
[http://dx.doi.org/10.1172/JCI25420] [PMID: 16151530]
[11]
Shinto, L.; Quinn, J.; Montine, T.; Dodge, H.H.; Woodward, W.; Baldauf-Wagner, S.; Waichunas, D.; Bumgarner, L.; Bourdette, D.; Silbert, L.; Kaye, J. A randomized placebo-controlled pilot trial of omega-3 fatty acids and alpha lipoic acid in Alzheimer’s disease. J. Alzheimers Dis., 2014, 38(1), 111-120.
[http://dx.doi.org/10.3233/JAD-130722] [PMID: 24077434]
[12]
Fabian, C.J.; Kimler, B.F.; Hursting, S.D. Omega-3 fatty acids for breast cancer prevention and survivorship. Breast Cancer Res., 2015, 17(1), 62.
[http://dx.doi.org/10.1186/s13058-015-0571-6] [PMID: 25936773]
[13]
Simopoulos, A.P. Importance of the omega-6/omega-3 balance in health and disease: evolutionary aspects of diet. Healthy agriculture,healthy nutrition, healthy people; Karger Publishers, 2011,102,pp, 10-21.
[14]
Kuhrts, E. Taste masking formulations of fatty acids. United States patent application US, 2014, 261, 722.
[15]
Puranik, S.S. Emulsions of omega-3 fatty acids for better bioavailability and beneficial health effects. Omega-3 fatty acids: Keys to Nutritional Health; Hegde, M.V.; Zanwar, A.A; Adekar, S.P., Ed.; Springer International Publishing: Switzerland, 2016, pp. 127-135.
[http://dx.doi.org/10.1007/978-3-319-40458-5_10]
[16]
Sinclair, A.J.; Attar-Bashi, N.M.; Li, D. What is the role of α-linolenic acid for mammals? Lipids, 2002, 37(12), 1113-1123.
[http://dx.doi.org/10.1007/s11745-002-1008-x] [PMID: 12617463]
[17]
Beare-Rogers, J.; Dieffenbacher, A.; Holm, J.V. Lexicon of lipid nutrition (IUPAC technical report). Pure Appl. Chem., 2001, 73, 685-744.
[http://dx.doi.org/10.1351/pac200173040685]
[18]
Simopoulos, A.P. Evolutionary aspects of diet: the omega-6/omega-3 ratio and the brain. Mol. Neurobiol., 2011, 44(2), 203-215.
[http://dx.doi.org/10.1007/s12035-010-8162-0] [PMID: 21279554]
[19]
Cook, H.W. In vitro formation of polyunsaturated fatty acids by desaturation in rat brain: some properties of the enzymes in developing brain and comparisons with liver. J. Neurochem., 1978, 30(6), 1327-1334.
[http://dx.doi.org/10.1111/j.1471-4159.1978.tb10463.x] [PMID: 670975]
[20]
Bourre, J.M.; Piciotti, M.; Dumont, O. Delta 6 desaturase in brain and liver during development and aging. Lipids, 1990, 25(6), 354-356.
[http://dx.doi.org/10.1007/BF02544347] [PMID: 2366633]
[21]
Scott, B.L.; Bazan, N.G. Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proc. Natl. Acad. Sci. USA, 1989, 86(8), 2903-2907.
[http://dx.doi.org/10.1073/pnas.86.8.2903] [PMID: 2523075]
[22]
Su, H.M.; Huang, M.C.; Saad, N.M.; Nathanielsz, P.W.; Brenna, J.T. Fetal baboons convert 18:3n-3 to 22:6n-3 in vivo. A stable isotope tracer study. J. Lipid Res., 2001, 42(4), 581-586.
[PMID: 11290830]
[23]
Green, P.; Yavin, E. Elongation, desaturation, and esterification of essential fatty acids by fetal rat brain in vivo. J. Lipid Res., 1993, 34(12), 2099-2107.
[PMID: 7905509]
[24]
Smink, W.; Gerrits, W.J.; Gloaguen, M.; Ruiter, A.; van Baal, J. Linoleic and α-linolenic acid as precursor and inhibitor for the synthesis of long-chain polyunsaturated fatty acids in liver and brain of growing pigs. Animal, 2012, 6(2), 262-270.
[http://dx.doi.org/10.1017/S1751731111001479] [PMID: 22436184]
[25]
Jeyapal, S.; Kona, S.R.; Mullapudi, S.V.; Putcha, U.K.; Gurumurthy, P.; Ibrahim, A. Substitution of linoleic acid with α-linolenic acid or long chain n-3 polyunsaturated fatty acid prevents Western diet induced nonalcoholic steatohepatitis. Sci. Rep., 2018, 8(1), 10953.
[http://dx.doi.org/10.1038/s41598-018-29222-y] [PMID: 30026586]
[26]
Su, H.M.; Bernardo, L.; Mirmiran, M.; Ma, X.H.; Corso, T.N.; Nathanielsz, P.W.; Brenna, J.T. Bioequivalence of dietary α-linolenic and docosahexaenoic acids as sources of docosahexaenoate accretion in brain and associated organs of neonatal baboons. Pediatr. Res., 1999, 45(1), 87-93.
[http://dx.doi.org/10.1203/00006450-199901000-00015] [PMID: 9890614]
[27]
Clarkson, T.W.; Magos, L. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol., 2006, 36(8), 609-662.
[http://dx.doi.org/10.1080/10408440600845619] [PMID: 16973445]
[28]
Hong, M.Y.; Lumibao, J.; Mistry, P.; Saleh, R.; Hoh, E. Fish oil contaminated with persistent organic pollutants reduces antioxidant capacity and induces oxidative stress without affecting its capacity to lower lipid concentrations and systemic inflammation in rats. J. Nutr., 2015, 145(5), 939-944.
[http://dx.doi.org/10.3945/jn.114.206607] [PMID: 25788582]
[29]
Kennedy, E.T.; Luo, H.; Ausman, L.M. Cost implications of alternative sources of (n-3) fatty acid consumption in the United States. J. Nutr., 2012, 142(3), 605S-609S.
[http://dx.doi.org/10.3945/jn.111.152736] [PMID: 22279142]
[30]
Sanders, T.A. DHA status of vegetarians. Prostaglandins Leukot. Essent. Fatty Acids, 2009, 81(2-3), 137-141.
[http://dx.doi.org/10.1016/j.plefa.2009.05.013] [PMID: 19500961]
[31]
Adarme-Vega, T.C.; Lim, D.K.Y.; Timmins, M.; Vernen, F.; Li, Y.; Schenk, P.M. Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microb. Cell Fact., 2012, 11, 96.
[http://dx.doi.org/10.1186/1475-2859-11-96] [PMID: 22830315]
[32]
Lenihan-Geels, G.; Bishop, K.S.; Ferguson, L.R. Alternative sources of omega-3 fats: can we find a sustainable substitute for fish? Nutrients, 2013, 5(4), 1301-1315.
[http://dx.doi.org/10.3390/nu5041301] [PMID: 23598439]
[33]
Hammond, B.G.; Mayhew, D.A.; Holson, J.F.; Nemec, M.D.; Mast, R.W.; Sander, W.J. Safety assessment of DHA-rich microalgae from Schizochytrium sp. Regul. Toxicol. Pharmacol., 2001, 33(2), 205-217.
[http://dx.doi.org/10.1006/rtph.2001.1459] [PMID: 11350203]
[34]
Kroes, R.; Schaefer, E.J.; Squire, R.A.; Williams, G.M. A review of the safety of DHA45-oil. Food Chem. Toxicol., 2003, 41(11), 1433-1446.
[http://dx.doi.org/10.1016/S0278-6915(03)00163-7] [PMID: 12962995]
[35]
Arterburn, L.M.; Oken, H.A.; Hoffman, J.P.; Bailey-Hall, E.; Chung, G.; Rom, D.; Hamersley, J.; McCarthy, D. Bioequivalence of docosahexaenoic acid from different algal oils in capsules and in a DHA-fortified food. Lipids, 2007, 42(11), 1011-1024.
[http://dx.doi.org/10.1007/s11745-007-3098-5] [PMID: 17713804]
[36]
Schmitt, D.; Tran, N.; Peach, J.; Bauter, M.; Marone, P. Toxicologic evaluation of DHA-rich algal oil: Genotoxicity, acute and subchronic toxicity in rats. Food Chem. Toxicol., 2012, 50(10), 3567-3576.
[http://dx.doi.org/10.1016/j.fct.2012.07.054] [PMID: 22898615]
[37]
[38]
https://www.who.int/topics/nutrition/en/ [Accessed 26 September 2019].
[39]
Carlson, S.E.; Colombo, J. Docosahexaenoic acid and arachidonic acid nutrition in early development. Adv. Pediatr., 2016, 63(1), 453-471.
[http://dx.doi.org/10.1016/j.yapd.2016.04.011] [PMID: 27426911]
[40]
Martinez, M. Tissue levels of polyunsaturated fatty acids during early human development. J. Pediatr., 1992, 120(4 Pt 2), S129-S138.
[http://dx.doi.org/10.1016/S0022-3476(05)81247-8] [PMID: 1532827]
[41]
McNamara, R.K.; Vannest, J.J.; Valentine, C.J. Role of perinatal long-chain omega-3 fatty acids in cortical circuit maturation: mechanisms and implications for psychopathology. World J. Psychiatry, 2015, 5(1), 15-34.
[http://dx.doi.org/10.5498/wjp.v5.i1.15] [PMID: 25815252]
[42]
Luchtman, D.W.; Song, C. Cognitive enhancement by omega-3 fatty acids from child-hood to old age: findings from animal and clinical studies. Neuropharmacology, 2013, 64, 550-565.
[http://dx.doi.org/10.1016/j.neuropharm.2012.07.019] [PMID: 22841917]
[43]
Guesnet, P.; Alessandri, J.M. Docosahexaenoic acid (DHA) and the developing Central Nervous System (CNS) - implications for dietary recommendations. Biochimie, 2011, 93(1), 7-12.
[http://dx.doi.org/10.1016/j.biochi.2010.05.005] [PMID: 20478353]
[44]
Gerber, A.J.; Peterson, B.S.; Giedd, J.N.; Lalonde, F.M.; Celano, M.J.; White, S.L.; Wallace, G.L.; Lee, N.R.; Lenroot, R.K. Anatomical brain magnetic resonance imaging of typically developing children and adolescents. J. Am. Acad. Child Adolesc. Psychiatry, 2009, 48(5), 465-470.
[http://dx.doi.org/10.1097/CHI.0b013e31819f2715] [PMID: 19395901]
[45]
Paus, T.; Zijdenbos, A.; Worsley, K.; Collins, D.L.; Blumenthal, J.; Giedd, J.N.; Rapoport, J.L.; Evans, A.C. Structural maturation of neural pathways in children and adolescents: in vivo study. Science, 1999, 283(5409), 1908-1911.
[http://dx.doi.org/10.1126/science.283.5409.1908] [PMID: 10082463]
[46]
Sowell, E.R.; Thompson, P.M.; Holmes, C.J.; Batth, R.; Jernigan, T.L.; Toga, A.W. Localizing age-related changes in brain structure between childhood and adolescence using statistical parametric mapping. Neuroimage, 1999, 9(6 Pt 1), 587-597.
[http://dx.doi.org/10.1006/nimg.1999.0436] [PMID: 10334902]
[47]
Lachman, H.M.; Papolos, D.F. Abnormal signal transduction: a hypothetical model for bipolar affective disorder. Life Sci., 1989, 45(16), 1413-1426.
[http://dx.doi.org/10.1016/0024-3205(89)90031-3] [PMID: 2572951]
[48]
Sinclair, H.M. History of essential fatty acids. Omega-6 essential fatty acids: pathophysiology and roles in clinical medicine., 1990, 1-20.
[49]
Alexander, J.W. Immunonutrition: the role of omega-3 fatty acids. Nutrition, 1998, 14(7-8), 627-633.
[http://dx.doi.org/10.1016/S0899-9007(98)00004-5] [PMID: 9684267]
[50]
Crawford, M.A. The role of essential fatty acids in neural development: implications for perinatal nutrition. Am. J. Clin. Nutr., 1993, 57(5), S703-S709.
[http://dx.doi.org/10.1093/ajcn/57.5.703S] [PMID: 7682751]
[51]
Salem, N., Jr; Litman, B.; Kim, H.Y.; Gawrisch, K. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids, 2001, 36(9), 945-959.
[http://dx.doi.org/10.1007/s11745-001-0805-6] [PMID: 11724467]
[52]
Feller, S.E.; Gawrisch, K.; MacKerell, A.D., Jr Polyunsaturated fatty acids in lipid bilayers: intrinsic and environmental contributions to their unique physical properties. J. Am. Chem. Soc., 2002, 124(2), 318-326.
[http://dx.doi.org/10.1021/ja0118340] [PMID: 11782184]
[53]
Huber, T.; Rajamoorthi, K.; Kurze, V.F.; Beyer, K.; Brown, M.F. Structure of docosahexaenoic acid-containing phospholipid bilayers as studied by (2)H NMR and molecular dynamics simulations. J. Am. Chem. Soc., 2002, 124(2), 298-309.
[http://dx.doi.org/10.1021/ja011383j] [PMID: 11782182]
[54]
Yehuda, S.; Rabinovitz, S.; Carasso, R.L.; Mostofsky, D.I. The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol. Aging, 2002, 23(5), 843-853.
[http://dx.doi.org/10.1016/S0197-4580(02)00074-X] [PMID: 12392789]
[55]
Frisardi, V.; Panza, F.; Seripa, D.; Farooqui, T.; Farooqui, A.A. Glycerophospholipids and glycerophospholipid-derived lipid mediators: a complex meshwork in Alzheimer’s disease pathology. Prog. Lipid Res., 2011, 50(4), 313-330.
[http://dx.doi.org/10.1016/j.plipres.2011.06.001] [PMID: 21703303]
[56]
Kim, H.Y.; Huang, B.X.; Spector, A.A. Phosphatidylserine in the brain: metabolism and function. Prog. Lipid Res., 2014, 56, 1-18.
[http://dx.doi.org/10.1016/j.plipres.2014.06.002] [PMID: 24992464]
[57]
Ikemoto, A.; Kobayashi, T.; Watanabe, S.; Okuyama, H. Membrane fatty acid modifications of PC12 cells by arachidonate or do-cosahexaenoate affect neurite outgrowth but not norepinephrine release. Neurochem. Res., 1997, 22(6), 671-678.
[http://dx.doi.org/10.1023/A:1027393724676] [PMID: 9178949]
[58]
Calderon, F.; Kim, H.Y. Docosahexaenoic acid promotes neurite growth in hippocampal neurons. J. Neurochem., 2004, 90(4), 979-988.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02520.x] [PMID: 15287904]
[59]
Cao, D.; Xue, R.; Xu, J.; Liu, Z. Effects of docosahexaenoic acid on the survival and neurite outgrowth of rat cortical neurons in primary cultures. J. Nutr. Biochem., 2005, 16(9), 538-546.
[http://dx.doi.org/10.1016/j.jnutbio.2005.02.002] [PMID: 16115542]
[60]
Robson, L.G.; Dyall, S.; Sidloff, D.; Michael-Titus, A.T. Omega-3 polyunsaturated fatty acids increase the neurite outgrowth of rat sensory neurones throughout development and in aged animals. Neurobiol. Aging, 2010, 31(4), 678-687.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.05.027] [PMID: 18620782]
[61]
Cao, D.; Kevala, K.; Kim, J.; Moon, H.S.; Jun, S.B.; Lovinger, D.; Kim, H.Y. Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function. J. Neurochem., 2009, 111(2), 510-521.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06335.x] [PMID: 19682204]
[62]
Hishikawa, D.; Hashidate, T.; Shimizu, T.; Shindou, H. Diversity and function of membrane glycerophospholipids generated by the remodeling pathway in mammalian cells. J. Lipid Res., 2014, 55(5), 799-807.
[http://dx.doi.org/10.1194/jlr.R046094] [PMID: 24646950]
[63]
Han, X. Lipidomics for studying metabolism. Nat. Rev. Endocrinol., 2016, 12(11), 668-679.
[http://dx.doi.org/10.1038/nrendo.2016.98] [PMID: 27469345]
[64]
Myers, D.S.; Ivanova, P.T.; Milne, S.B.; Brown, H.A. Quantitative analysis of glycerophospholipids by LC-MS: acquisition, data handling, and interpretation. Biochim. Biophys. Acta, 2011, 1811(11), 748-757.
[http://dx.doi.org/10.1016/j.bbalip.2011.05.015] [PMID: 21683157]
[65]
Shindou, H.; Shimizu, T. Acyl-CoA: lysophospholipid acyltransferases. J. Biol. Chem., 2009, 284(1), 1-5.
[http://dx.doi.org/10.1074/jbc.R800046200] [PMID: 18718904]
[66]
Shindou, H.; Hishikawa, D.; Harayama, T.; Yuki, K.; Shimizu, T. Recent progress on acyl CoA: lysophospholipid acyltransferase research. J. Lipid Res., 2009, 50(Suppl.), S46-S51.
[http://dx.doi.org/10.1194/jlr.R800035-JLR200] [PMID: 18931347]
[67]
Kanoh, H. Biosynthesis of molecular species of phosphatidyl choline and phosphatidyl ethanolamine from radioactive precursors in rat liver slices. Biochim. Biophys. Acta, 1969, 176(4), 756-763.
[http://dx.doi.org/10.1016/0005-2760(69)90256-2] [PMID: 5797088]
[68]
Kanoh, H.; Ohno, K. Substrate-selectivity of rat liver microsomal 1,2-diacylglycerol: CDP-choline(ethanolamine) cho-line(ethanolamine)phosphotransferase in utilizing endogenous substrates. Biochim. Biophys. Acta, 1975, 380(2), 199-207.
[http://dx.doi.org/10.1016/0005-2760(75)90006-5] [PMID: 1120141]
[69]
Cao, J.; Shan, D.; Revett, T.; Li, D.; Wu, L.; Liu, W.; Tobin, J.F.; Gimeno, R.E. Molecular identification of a novel mammalian brain isoform of acyl-CoA: lysophospholipid acyltransferase with prominent ethanolamine lysophospholipid acylating activity, LPEAT2. J. Biol. Chem., 2008, 283(27), 19049-19057.
[http://dx.doi.org/10.1074/jbc.M800364200] [PMID: 18458083]
[70]
Farooqui, A.A.; Rapoport, S.I.; Horrocks, L.A. Membrane phospholipid alterations in Alzheimer’s disease: deficiency of ethanolamine plasmalogens. Neurochem. Res., 1997, 22(4), 523-527.
[http://dx.doi.org/10.1023/A:1027380331807] [PMID: 9130265]
[71]
Delion, S.; Chalon, S.; Guilloteau, D.; Lejeune, B.; Besnard, J.C.; Durand, G. Age-related changes in phospholipid fatty acid composition and monoaminergic neurotransmission in the hippocampus of rats fed a balanced or an n-3 polyunsaturated fatty acid-deficient diet. J. Lipid Res., 1997, 38(4), 680-689.
[PMID: 9144083]
[72]
Söderberg, M.; Edlund, C.; Kristensson, K.; Dallner, G. Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids, 1991, 26(6), 421-425.
[http://dx.doi.org/10.1007/BF02536067] [PMID: 1881238]
[73]
Ginsberg, L.; Rafique, S.; Xuereb, J.H.; Rapoport, S.I.; Gershfeld, N.L. Disease and anatomic specificity of ethanolamine plasmalogen deficiency in Alzheimer’s disease brain. Brain Res., 1995, 698(1-2), 223-226.
[http://dx.doi.org/10.1016/0006-8993(95)00931-F] [PMID: 8581486]
[74]
Guan, Z.; Wang, Y.; Cairns, N.J.; Lantos, P.L.; Dallner, G.; Sindelar, P.J. Decrease and structural modifications of phosphatidylethanolamine plasmalogen in the brain with Alzheimer disease. J. Neuropathol. Exp. Neurol., 1999, 58(7), 740-747.
[http://dx.doi.org/10.1097/00005072-199907000-00008] [PMID: 10411344]
[75]
Chang, J.P.; Su, K.P.; Mondelli, V.; Pariante, C.M. Mondelli. V.; Pariante, C.M. Omega-3 polyunsaturated fatty acids in youths with attention deficit hyperactivity disorder: a systematic review and meta-analysis of clinical trials and biological studies. Neuropsychopharmacology, 2018, 43(3), 534-545.
[http://dx.doi.org/10.1038/npp.2017.160] [PMID: 28741625]
[76]
Chen, J.R.; Hsu, S.F.; Hsu, C.D.; Hwang, L.H.; Yang, S.C. Dietary patterns and blood fatty acid composition in children with attention-deficit hyperactivity disorder in Taiwan. J. Nutr. Biochem., 2004, 15(8), 467-472.
[http://dx.doi.org/10.1016/j.jnutbio.2004.01.008] [PMID: 15302081]
[77]
Cardoso, C.; Afonso, C.; Bandarra, N.M. Dietary DHA, bioaccessibility, and neurobehavioral development in children. Crit. Rev. Food Sci. Nutr., 2018, 58(15), 2617-2631.
[http://dx.doi.org/10.1080/10408398.2017.1338245] [PMID: 28665691]
[78]
Conners, C.K. Conners rating scales-revised: technical manual; Multi-Health Systems, Inc: New York, 2000.
[79]
Richardson, A.J.; Montgomery, P. The Oxford-Durham study: a randomized, controlled trial of dietary supplementation with fatty acids in children with developmental coordination disorder. Pediatrics, 2005, 115(5), 1360-1366.
[http://dx.doi.org/10.1542/peds.2004-2164] [PMID: 15867048]
[80]
Cornu, C.; Mercier, C.; Ginhoux, T.; Masson, S.; Mouchet, J.; Nony, P.; Kassai, B.; Laudy, V.; Berquin, P.; Franc, N.; Le Heuzey, M.F.; Desombre, H.; Revol, O. A double-blind placebo-controlled randomised trial of omega-3 supplementation in children with moderate ADHD symptoms. Eur. Child Adolesc. Psychiatry, 2018, 27(3), 377-384.
[http://dx.doi.org/10.1007/s00787-017-1058-z] [PMID: 28993963]
[81]
Ward, A.; Crean, S.; Mercaldi, C.J.; Collins, J.M.; Boyd, D.; Cook, M.N.; Arrighi, H.M. Prevalence of apolipoprotein E4 genotype and homozygotes (APOE e4/4) among patients diagnosed with Alzheimer’s disease: a systematic review and meta-analysis. Neuroepidemiology, 2012, 38(1), 1-17.
[http://dx.doi.org/10.1159/000334607] [PMID: 22179327]
[82]
Alzheimer’s Association. 2014 Alzheimer’s disease facts and figures. Alzheimers Dement., 2014, 10(2), e47-e92.
[http://dx.doi.org/10.1016/j.jalz.2014.02.001] [PMID: 24818261]
[83]
Tsay, H.J.; Huang, Y.C.; Huang, F.L.; Chen, C.P.; Tsai, Y.C.; Wang, Y.H.; Wu, M.F.; Chiang, F.Y.; Shiao, Y.J. Amyloid β peptide-mediated neurotoxicity is attenuated by the proliferating microglia more potently than by the quiescent phenotype. J. Biomed. Sci., 2013, 20, 78.
[http://dx.doi.org/10.1186/1423-0127-20-78] [PMID: 24152138]
[84]
Zhang, D.; Hu, X.; Qian, L.; Chen, S.H.; Zhou, H.; Wilson, B.; Miller, D.S.; Hong, J.S. Microglial MAC1 receptor and PI3K are essential in mediating β-amyloid peptide-induced microglial activation and subsequent neurotoxicity. J. Neuroinflammation, 2011, 8(1), 3.
[http://dx.doi.org/10.1186/1742-2094-8-3] [PMID: 21232086]
[85]
Hock, C.; Heese, K.; Hulette, C.; Rosenberg, C.; Otten, U. Region-specific neurotrophin imbalances in Alzheimer disease: decreased levels of brain-derived neurotrophic factor and increased levels of nerve growth factor in hippocampus and cortical areas. Arch. Neurol., 2000, 57(6), 846-851.
[http://dx.doi.org/10.1001/archneur.57.6.846] [PMID: 10867782]
[86]
Song, C.; Zhang, Y.; Dong, Y. Acute and subacute IL-1β administrations differentially modulate neuroimmune and neurotrophic systems: possible implications for neuroprotection and neurodegeneration. J. Neuroinflammation, 2013, 10, 59.
[http://dx.doi.org/10.1186/1742-2094-10-59] [PMID: 23651534]
[87]
Astarita, G.; Jung, K.M.; Berchtold, N.C.; Nguyen, V.Q.; Gillen, D.L.; Head, E.; Cotman, C.W.; Piomelli, D. Deficient liver biosynthesis of docosahexaenoic acid correlates with cognitive impairment in Alzheimer’s disease. PLoS One, 2010, 5(9)e12538
[http://dx.doi.org/10.1371/journal.pone.0012538] [PMID: 20838618]
[88]
De Mel, D.; Suphioglu, C. Fishy business: effect of omega-3 fatty acids on zinc transporters and free zinc availability in human neuronal cells. Nutrients, 2014, 6(8), 3245-3258.
[http://dx.doi.org/10.3390/nu6083245] [PMID: 25195602]
[89]
Calon, F.; Cole, G. Neuroprotective action of omega-3 polyunsaturated fatty acids against neurodegenerative diseases: evidence from animal studies. Prostaglandins Leukot. Essent. Fatty Acids, 2007, 77(5-6), 287-293.
[http://dx.doi.org/10.1016/j.plefa.2007.10.019] [PMID: 18037281]
[90]
Zhao, Y.; Calon, F.; Julien, C.; Winkler, J.W.; Petasis, N.A.; Lukiw, W.J.; Bazan, N.G. Docosahexaenoic acid-derived neuroprotectin D1 induces neuronal survival via secretase- and PPARγ-mediated mechanisms in Alzheimer’s disease models. PLoS One, 2011, 6(1)e15816
[http://dx.doi.org/10.1371/journal.pone.0015816] [PMID: 21246057]
[91]
Minogue, A.M.; Lynch, A.M.; Loane, D.J.; Herron, C.E.; Lynch, M.A. Modulation of amyloid-beta-induced and age-associated changes in rat hippocampus by eicosapentaenoic acid. J. Neurochem., 2007, 103(3), 914-926.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04848.x] [PMID: 17711425]
[92]
Nisbet, R.M.; Polanco, J.C.; Ittner, L.M.; Götz, J. Tau aggregation and its interplay with amyloid-β. Acta Neuropathol., 2015, 129(2), 207-220.
[http://dx.doi.org/10.1007/s00401-014-1371-2] [PMID: 25492702]
[93]
Ma, Q.L.; Yang, F.; Rosario, E.R.; Ubeda, O.J.; Beech, W.; Gant, D.J.; Chen, P.P.; Hudspeth, B.; Chen, C.; Zhao, Y.; Vinters, H.V.; Frautschy, S.A.; Cole, G.M. Beta-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J. Neurosci., 2009, 29(28), 9078-9089.
[http://dx.doi.org/10.1523/JNEUROSCI.1071-09.2009] [PMID: 19605645]
[94]
Cansev, M.; Wurtman, R.J.; Sakamoto, T.; Ulus, I.H. Oral administration of circulating precursors for membrane phosphatides can promote the synthesis of new brain synapses. Alzheimers Dement, 2008, 4(1)(Suppl.1), S153-S168.
[http://dx.doi.org/10.1016/j.jalz.2007.10.005] [PMID: 18631994]
[95]
Yuki, D.; Sugiura, Y.; Zaima, N.; Akatsu, H.; Takei, S.; Yao, I.; Maesako, M.; Kinoshita, A.; Yamamoto, T.; Kon, R.; Sugiyama, K.; Setou, M. DHA-PC and PSD-95 decrease after loss of synaptophysin and before neuronal loss in patients with Alzheimer’s disease. Sci. Rep., 2014, 4, 7130.
[http://dx.doi.org/10.1038/srep07130] [PMID: 25410733]
[96]
Wurtman, R.J.; Cansev, M.; Ulus, I.H. Synapse formation is enhanced by oral administration of uridine and DHA, the circulating precursors of brain phosphatides. J. Nutr. Health Aging, 2009, 13(3), 189-197.
[http://dx.doi.org/10.1007/s12603-009-0056-3] [PMID: 19262950]
[97]
Franco-Iborra, S.; Vila, M.; Perier, C. The Parkinson disease mitochondrial hypothesis: where are we at? Neuroscientist, 2016, 22(3), 266-277.
[http://dx.doi.org/10.1177/1073858415574600] [PMID: 25761946]
[98]
Jankovic, J. Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry, 2008, 79(4), 368-376.
[http://dx.doi.org/10.1136/jnnp.2007.131045] [PMID: 18344392]
[99]
Blum-Degen, D.; Müller, T.; Kuhn, W.; Gerlach, M.; Przuntek, H.; Riederer, P. Interleukin-1 β and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci. Lett., 1995, 202(1-2), 17-20.
[http://dx.doi.org/10.1016/0304-3940(95)12192-7] [PMID: 8787820]
[100]
Kouchaki, E.; Kakhaki, R.D.; Tamtaji, O.R.; Dadgostar, E.; Behnam, M.; Nikoueinejad, H.; Akbari, H. Increased serum levels of TNF-α and decreased serum levels of IL-27 in patients with Parkinson disease and their correlation with disease severity. Clin. Neurol. Neurosurg., 2018, 166, 76-79.
[http://dx.doi.org/10.1016/j.clineuro.2018.01.022] [PMID: 29408778]
[101]
Fabelo, N.; Martín, V.; Santpere, G.; Marín, R.; Torrent, L.; Ferrer, I.; Díaz, M. Severe alterations in lipid composition of frontal cortex lipid rafts from Parkinson’s disease and incidental Parkinson’s disease. Mol. Med., 2011, 17(9-10), 1107-1118.
[http://dx.doi.org/10.2119/molmed.2011.00119] [PMID: 21717034]
[102]
Lee, S.A.; Kim, H.J.; Chang, K.C.; Baek, J.C.; Park, J.K.; Shin, J.K.; Choi, W.J.; Lee, J.H.; Paik, W.Y. DHA and EPA down-regulate COX-2 expression through suppression of NF-kappaB activity in LPS treated human umbilical vein endothelial cells. Korean J. Physiol. Pharmacol., 2009, 13(4), 301-307.
[http://dx.doi.org/10.4196/kjpp.2009.13.4.301] [PMID: 19885014]
[103]
Cansev, M.; Ulus, I.H.; Wang, L.; Maher, T.J.; Wurtman, R.J. Restorative effects of uridine plus docosahexaenoic acid in a rat model of Parkinson’s disease. Neurosci. Res., 2008, 62(3), 206-209.
[http://dx.doi.org/10.1016/j.neures.2008.07.005] [PMID: 18761383]
[104]
Tanriover, G.; Seval-Celik, Y.; Ozsoy, O.; Akkoyunlu, G.; Savcioglu, F.; Hacioglu, G.; Demir, N.; Agar, A. The effects of docosahexaenoic acid on glial derived neurotrophic factor and neurturin in bilateral rat model of Parkinson’s disease. Folia Histochem. Cytobiol., 2010, 48(3), 434-441.
[http://dx.doi.org/10.2478/v10042-010-0047-6] [PMID: 21071351]
[105]
Tamtaji, O.R.; Taghizadeh, M.; Aghadavod, E.; Mafi, A.; Dad-gostar, E.; Kakhaki, R.D.; Abolhassani, J.; Asemi, Z. The effects of omega-3 fatty acids and vitamin E co-supplementation on gene expression related to inflammation, insulin and lipid in patients with Parkinson’s disease: a randomized, double-blind, placebo-controlled trial. Clin. Neurol. Neurosurg., 2019, 176, 116-21.
[106]
Birch, E.E.; Castañeda, Y.S.; Wheaton, D.H.; Birch, D.G.; Uauy, R.D.; Hoffman, D.R. Visual maturation of term infants fed long-chain polyunsaturated fatty acid-supplemented or control formula for 12 mo. Am. J. Clin. Nutr., 2005, 81(4), 871-879.
[http://dx.doi.org/10.1093/ajcn/81.4.871] [PMID: 15817866]
[107]
Campoy, C.; Escolano-Margarit, M.V.; Anjos, T.; Szajewska, H.; Uauy, R. Omega 3 fatty acids on child growth, visual acuity and neurodevelopment. Br. J. Nutr., 2012, 107(S2), S85-S106.
[http://dx.doi.org/10.1017/S0007114512001493] [PMID: 22591907]
[108]
Niu, S.L.; Mitchell, D.C.; Lim, S.Y.; Wen, Z.M.; Kim, H.Y.; Salem, N., Jr; Litman, B.J. Reduced G protein-coupled signaling efficiency in retinal rod outer segments in response to n-3 fatty acid deficiency. J. Biol. Chem., 2004, 279(30), 31098-31104.
[http://dx.doi.org/10.1074/jbc.M404376200] [PMID: 15145938]
[109]
Jastrzebska, B.; Debinski, A.; Filipek, S.; Palczewski, K. Role of membrane integrity on G protein-coupled receptors: rhodopsin stability and function. Prog. Lipid Res., 2011, 50(3), 267-277.
[http://dx.doi.org/10.1016/j.plipres.2011.03.002] [PMID: 21435354]
[110]
Lien, E.L.; Hammond, B.R. Nutritional influences on visual development and function. Prog. Retin. Eye Res., 2011, 30(3), 188-203.
[http://dx.doi.org/10.1016/j.preteyeres.2011.01.001] [PMID: 21296184]
[111]
Litman, B.J.; Niu, S.L.; Polozova, A.; Mitchell, D.C. The role of docosahexaenoic acid containing phospholipids in modulating G protein-coupled signaling pathways: visual transduction. J. Mol. Neurosci., 2001, 16(2-3), 237-242.
[http://dx.doi.org/10.1385/JMN:16:2-3:237] [PMID: 11478379]
[112]
Sandre, P.C.; de Velasco, P.C.; Serfaty, C.A. The impact of low omega-3 fatty acids diet on the development of the visual system.Handbook of Nutrition, Diet, and the Eye; Preedy, V.R.; Watson,R.R., Eds; Academic Press; , 2019, pp. 369-395.
[113]
Yazu, H.; Fukagawa, K.; Okada, N.; Fujishima, H. Effects of docosahexaenoic acid on chemokine expression in human conjunctival fibroblasts. Curr. Eye Res., 2019, 1-6.
[PMID: 31364439]
[114]
Gao, Y.; Su, J.; Zhang, Y.; Chan, A.; Sin, J.H.; Wu, D.; Min, K.; Gronert, K. Dietary DHA amplifies LXA4 circuits in tissues and lymph node PMN and is protective in immune-driven dry eye disease. Mucosal Immunol., 2018, 11(6), 1674-1683.
[http://dx.doi.org/10.1038/s41385-018-0070-z] [PMID: 30104626]
[115]
Allaire, J.; Couture, P.; Leclerc, M.; Charest, A.; Marin, J.; Lépine, M.C.; Talbot, D.; Tchernof, A.; Lamarche, B. A randomized, crossover, head-to-head comparison of eicosapentaenoic acid and docosahexaenoic acid supplementation to reduce inflammation markers in men and women: the Comparing EPA to DHA (ComparED) Study. Am. J. Clin. Nutr., 2016, 104(2), 280-287.
[http://dx.doi.org/10.3945/ajcn.116.131896] [PMID: 27281302]
[116]
Allaire, J.; Vors, C.; Tremblay, A.J.; Marin, J.; Charest, A.; Tchernof, A.; Couture, P.; Lamarche, B. High-dose DHA has more profound effects on LDL-related features than high-dose EPA: the ComparED study. J. Clin. Endocrinol. Metab., 2018, 103(8), 2909-2917.
[http://dx.doi.org/10.1210/jc.2017-02745] [PMID: 29846653]
[117]
Pichler, G.; Amigo, N.; Tellez-Plaza, M.; Pardo-Cea, M.A.; Dominguez-Lucas, A.; Marrachelli, V.G.; Monleon, D.; Martin-Escudero, J.C.; Ascaso, J.F.; Chaves, F.J.; Carmena, R.; Redon, J. LDL particle size and composition and incident cardiovascular disease in a South-European population: the Hortega-Liposcale follow-up study. Int. J. Cardiol., 2018, 264, 172-178.
[http://dx.doi.org/10.1016/j.ijcard.2018.03.128] [PMID: 29628276]
[118]
Hirayama, S.; Miida, T. Small dense LDL: an emerging risk factor for cardiovascular disease. Clin. Chim. Acta, 2012, 414, 215-224.
[http://dx.doi.org/10.1016/j.cca.2012.09.010] [PMID: 22989852]
[119]
Innes, J.K.; Calder, P.C. The differential effects of eicosapentaenoic acid and docosahexaenoic acid on cardiometabolic risk factors: a systematic review. Int. J. Mol. Sci., 2018, 19(2), 532.
[http://dx.doi.org/10.3390/ijms19020532] [PMID: 29425187]
[120]
Mayer, K.; Merfels, M.; Muhly-Reinholz, M.; Gokorsch, S.; Rosseau, S.; Lohmeyer, J.; Schwarzer, N.; Krüll, M.; Suttorp, N.; Grimminger, F.; Seeger, W. ω-3 fatty acids suppress monocyte adhesion to human endothelial cells: role of endothelial PAF generation. Am. J. Physiol. Heart Circ. Physiol., 2002, 283(2), H811-H818.
[http://dx.doi.org/10.1152/ajpheart.00235.2002] [PMID: 12124231]
[121]
Li, Q.; Zhang, Q.; Wang, M.; Liu, F.; Zhao, S.; Ma, J.; Luo, N.; Li, N.; Li, Y.; Xu, G.; Li, J. Docosahexaenoic acid affects endothelial nitric oxide synthase in caveolae. Arch. Biochem. Biophys., 2007, 466(2), 250-259.
[http://dx.doi.org/10.1016/j.abb.2007.06.023] [PMID: 17662956]
[122]
Mori, T.A.; Woodman, R.J. The independent effects of eicosapentaenoic acid and docosahexaenoic acid on cardiovascular risk factors in humans. Curr. Opin. Clin. Nutr. Metab. Care, 2006, 9(2), 95-104.
[http://dx.doi.org/10.1097/01.mco.0000214566.67439.58] [PMID: 16477172]
[123]
Guillot, N.; Caillet, E.; Laville, M.; Calzada, C.; Lagarde, M.; Véricel, E. Increasing intakes of the long-chain ω-3 docosahexaenoic acid: effects on platelet functions and redox status in healthy men. FASEB J., 2009, 23(9), 2909-2916.
[http://dx.doi.org/10.1096/fj.09-133421] [PMID: 19443612]
[124]
Calder, P.C. Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochem. Soc. Trans., 2017, 45(5), 1105-1115.
[http://dx.doi.org/10.1042/BST20160474] [PMID: 28900017]
[125]
Lorente-Cebrián, S.; Costa, A.G.; Navas-Carretero, S.; Zabala, M.; Martínez, J.A.; Moreno-Aliaga, M.J. Role of omega-3 fatty acids in obesity, metabolic syndrome, and cardiovascular diseases: a review of the evidence. J. Physiol. Biochem., 2013, 69(3), 633-651.
[http://dx.doi.org/10.1007/s13105-013-0265-4] [PMID: 23794360]
[126]
Anand, R.G.; Alkadri, M.; Lavie, C.J.; Milani, R.V. The role of fish oil in arrhythmia prevention. J. Cardiopulm. Rehabil. Prev., 2008, 28(2), 92-98.
[http://dx.doi.org/10.1097/01.HCR.0000314202.09676.f0] [PMID: 18360184]
[127]
Mozaffarian, D.; Psaty, B.M.; Rimm, E.B.; Lemaitre, R.N.; Burke, G.L.; Lyles, M.F.; Lefkowitz, D.; Siscovick, D.S. Fish intake and risk of incident atrial fibrillation. Circulation, 2004, 110(4), 368-373.
[http://dx.doi.org/10.1161/01.CIR.0000138154.00779.A5] [PMID: 15262826]
[128]
Geelen, A.; Brouwer, I.A.; Schouten, E.G.; Maan, A.C.; Katan, M.B.; Zock, P.L. Effects of n-3 fatty acids from fish on premature ventricular complexes and heart rate in humans. Am. J. Clin. Nutr., 2005, 81(2), 416-420.
[http://dx.doi.org/10.1093/ajcn.81.2.416] [PMID: 15699229]
[129]
Lavie, C.J.; Milani, R.V.; Mehra, M.R.; Ventura, H.O. Omega-3 polyunsaturated fatty acids and cardiovascular diseases. J. Am. Coll. Cardiol., 2009, 54(7), 585-594.
[http://dx.doi.org/10.1016/j.jacc.2009.02.084] [PMID: 19660687]
[130]
Saravanan, P.; Davidson, N.C.; Schmidt, E.B.; Calder, P.C. Cardiovascular effects of marine omega-3 fatty acids. Lancet, 2010, 376(9740), 540-550.
[http://dx.doi.org/10.1016/S0140-6736(10)60445-X] [PMID: 20638121]
[131]
Rapp, J.H.; Connor, W.E.; Lin, D.S.; Porter, J.M. Dietary eicosapentaenoic acid and docosahexaenoic acid from fish oil. Their incorporation into advanced human atherosclerotic plaques. Arterioscler. Thromb., 1991, 11(4), 903-911.
[http://dx.doi.org/10.1161/01.ATV.11.4.903] [PMID: 1829632]
[132]
Calder, P.C. Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance. Biochim. Biophys. Acta, 2015, 1851(4), 469-484.
[http://dx.doi.org/10.1016/j.bbalip.2014.08.010] [PMID: 25149823]
[133]
Campos-Staffico, A.M.; Costa, A.P.R.; Carvalho, L.S.F.; Moura, F.A.; Santos, S.N.; Coelho-Filho, O.R.; Nadruz, W., Jr; Quinaglia, E. Silva, J.C.; Sposito, A.C. Omega-3 intake is associated with attenuated inflammatory response and cardiac re-modeling after myocardial infarction. Nutr. J., 2019, 18(1), 29.
[http://dx.doi.org/10.1186/s12937-019-0455-1] [PMID: 31060562]
[134]
Chen, B.; Rao, J.; Ding, Y.; McClements, D.J.; Decker, E.A. Lipid oxidation in base algae oil and water-in-algae oil emulsion: impact of natural antioxidants and emulsifiers. Food Res. Int., 2016, 85, 162-169.
[http://dx.doi.org/10.1016/j.foodres.2016.04.038] [PMID: 29544831]
[135]
Frankel, E.N. Lipid oxidation, 2nd; Woodhead publishing limited:UK,. 2012, pp 488.
[136]
Arab-Tehrany, E.; Jacquot, M.; Gaiani, C.; Imran, M.; Desobry, S.; Linder, M. Beneficial effects and oxidative stability of omega-3 long-chain polyunsaturated fatty acids. Trends Food Sci. Technol., 2012, 25(1), 24-33.
[http://dx.doi.org/10.1016/j.tifs.2011.12.002]
[137]
Sun, Y.E.; Wang, W.D.; Chen, H.W.; Li, C. Autoxidation of unsaturated lipids in food emulsion. Crit. Rev. Food Sci. Nutr., 2011, 51(5), 453-466.
[http://dx.doi.org/10.1080/10408391003672086] [PMID: 21491270]
[138]
Uluata, S.; McClements, D.J.; Decker, E.A. Riboflavin-induced oxidation in fish oil-in-water emulsions: impact of particle size and optical transparency. Food Chem., 2016, 213, 457-461.
[http://dx.doi.org/10.1016/j.foodchem.2016.06.103] [PMID: 27451204]
[139]
Kim, T.S.; Decker, E.A.; Lee, J. Antioxidant capacities of a-tocopherol, trolox, ascorbic acid, and ascorbyl palmitate in riboflavin photosensitized oil-in water emulsions. Food Chem., 2012, 133, 68-75.
[http://dx.doi.org/10.1016/j.foodchem.2011.12.069] [PMID: 23199992]
[140]
Kim, T.S.; Decker, E.A.; Lee, J. Effects of chlorophyll photosensitisation on the oxidative stability in oil-in-water emulsions. Food Chem., 2012, 133, 1449-1455.
[141]
Asnaashari, M.; Farhoosh, R.; Sharif, A. Antioxidant activity of gallic acid and methyl gallate in triacylglycerols of Kilka fish oil and its oil-in-water emulsion. Food Chem., 2014, 159, 439-444.
[http://dx.doi.org/10.1016/j.foodchem.2014.03.038] [PMID: 24767079]
[142]
Zhang, Y.; Tan, C.; Abbas, S.; Eric, K.; Xia, S.; Zhang, X. Modified SPI improves the emulsion properties and oxidative stability of fish oil microcapsules. Food Hydrocoll., 2015, 51, 108-117.
[http://dx.doi.org/10.1016/j.foodhyd.2015.05.001]
[143]
Falkeborg, M.; Guo, Z. Dodecenyl Succinylated Alginate (DSA) as a novel dual-function emulsifier for improved fish oil-in-water emulsions. Food Hydrocoll., 2015, 46, 10-18.
[http://dx.doi.org/10.1016/j.foodhyd.2014.12.011]
[144]
Feizollahi, E.; Hadian, Z.; Honarvar, Z. Food fortification with omega-3 fatty acids; microencapsulation as an addition method. Curr. Nutr. Food Sci., 2018, 14(2), 90-103.
[http://dx.doi.org/10.2174/1573401313666170728151350]
[145]
Garaiova, I.; Guschina, I.A.; Plummer, S.F.; Tang, J.; Wang, D.; Plummer, N.T. A randomised cross-over trial in healthy adults indicating improved absorption of omega-3 fatty acids by pre-emulsification. Nutr. J., 2007, 6(1), 4.
[http://dx.doi.org/10.1186/1475-2891-6-4] [PMID: 17254329]
[146]
Ikeda, I. Digestion and absorption of structured lipids.Fat digestion and absorption; Chrisyophe, A.G.; DeVriese, S., Eds; AOCS Press Champaign: IL,, 2000, pp. 235-243.
[147]
Bottino, N.R.; Vandenburg, G.A.; Reiser, R. Resistance of certain long-chain polyunsaturated fatty acids of marine oils to pancreatic lipase hydrolysis. Lipids, 1967, 2(6), 489-493.
[http://dx.doi.org/10.1007/BF02533177] [PMID: 17805793]
[148]
Raatz, S.K.; Redmon, J.B.; Wimmergren, N.; Donadio, J.V.; Bibus, D.M. Enhanced absorption of n-3 fatty acids from emulsified compared with encapsulated fish oil. J. Am. Diet. Assoc., 2009, 109(6), 1076-1081.
[http://dx.doi.org/10.1016/j.jada.2009.03.006] [PMID: 19465191]
[149]
Kumar Dey, T.; Ghosh, S.; Ghosh, M.; Koley, H.; Dhar, P. Comparative study of gastrointestinal absorption of EPA & DHA rich fish oil from nano and conventional emulsion for-mulation in rats. Food Res. Int., 2012, 49(1), 72-79.
[http://dx.doi.org/10.1016/j.foodres.2012.07.056]
[150]
Ahn, S.H.; Lim, S.J.; Ryu, Y.M.; Park, H.R.; Suh, H.J.; Han, S.H. Absorption rate of krill oil and fish oil in blood and brain of rats. Lipids Health Dis., 2018, 17(1), 162.
[http://dx.doi.org/10.1186/s12944-018-0812-7] [PMID: 30021606]
[151]
Cook, C.M.; Hallaråker, H.; Sæbø, P.C.; Innis, S.M.; Kelley, K.M.; Sanoshy, K.D.; Berger, A.; Maki, K.C. Bioavailability of long chain omega-3 polyunsaturated fatty acids from phospholipid-rich herring roe oil in men and women with mildly elevated triacylglycerols. Prostaglandins Leukot. Essent. Fatty Acids, 2016, 111, 17-24.
[http://dx.doi.org/10.1016/j.plefa.2016.01.007] [PMID: 27151222]
[152]
Singh, H.; Singh, J.; Singh, S.K.; Singh, N.; Paul, S.; Sohal, H.S.; Gupta, U.; Jain, S.K. Vitamin E TPGS based palatable, oxidatively and physically stable emulsion of microalgae DHA oil for infants, children and food fortification. J. Dispers. Sci. Technol., 2019, 2, 1-6.
[http://dx.doi.org/10.1080/01932691.2019.1634587]
[153]
Gullapalli, R.P. Soft gelatin capsules (softgels). J. Pharm. Sci., 2010, 99(10), 4107-4148.
[http://dx.doi.org/10.1002/jps.22151] [PMID: 20737624]
[154]
Widenhorn-Müller, K.; Schwanda, S.; Scholz, E.; Spitzer, M.; Bode, H. Effect of supplementation with long-chain ω-3 polyunsaturated fatty acids on behavior and cognition in children with Attention Deficit/Hyperactivity Disorder (ADHD): a randomized placebo-controlled intervention trial. Prostaglandins Leukot. Essent. Fatty Acids, 2014, 91(1-2), 49-60.
[http://dx.doi.org/10.1016/j.plefa.2014.04.004] [PMID: 24958525]
[155]
Haug, I.J.; Sagmo, L.B.; Zeiss, D.; Olsen, I.C.; Draget, K.I.; Seternes, T. Bioavailability of EPA and DHA delivered by gelled emulsions and soft gel capsules. Eur. J. Lipid Sci. Technol., 2011, 113(2), 137-145.
[http://dx.doi.org/10.1002/ejlt.201000450]
[156]
Schneider, I.; Schuchardt, J.P.; Meyer, H.; Hahn, A. Effect of gastric acid resistant coating of fish oil capsules on intestinal uptake of eicosapentaenoic acid and docosahexaenoic acid. J. Funct. Foods, 2011, 3(2), 129-133.
[http://dx.doi.org/10.1016/j.jff.2011.03.001]
[157]
McClements, D.J.; Rao, J. Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit. Rev. Food Sci. Nutr., 2011, 51(4), 285-330.
[http://dx.doi.org/10.1080/10408398.2011.559558] [PMID: 21432697]
[158]
Berton-Carabin, C.C.; Ropers, M.H.; Genot, C. Lipid oxidation in oil-in-water emulsions: involvement of the interfacial layer. Compr. Rev. Food Sci. Food Saf., 2014, 13, 945-977.
[http://dx.doi.org/10.1111/1541-4337.12097]
[159]
Wang, H.; Liu, F.; Yang, L.; Zu, Y.; Wang, H.; Qu, S.; Zhang, Y. Oxidative stability of fish oil supplemented with carnosic acid compared with synthetic antioxidants during long-term storage. Food Chem., 2011, 128(1), 93-99.
[http://dx.doi.org/10.1016/j.foodchem.2011.02.082] [PMID: 25214334]
[160]
Zou, L.; Akoh, C.C. Antioxidant activities of annatto and palm tocotrienol-rich fractions in fish oil and structured lipid-based infant formula emulsion. Food Chem., 2015, 168, 504-511.
[http://dx.doi.org/10.1016/j.foodchem.2014.07.098] [PMID: 25172741]
[161]
Nielsen, N.S.; Horn, A.F.; Jacobsen, C. Effect of emulsifier type, pH and iron on oxidative stability of 5% fish oil-in-water emulsions. Eur. J. Lipid Sci. Technol., 2013, 115(8), 874-889.
[http://dx.doi.org/10.1002/ejlt.201200303]
[162]
O’ Dwyer, S.P.; O’ Beirne, D.; Eidhin, D.N.; O’ Kennedy, B.T. Effects of sodium caseinate concentration and storage conditions on the oxidative stability of oil-in-water emulsions. Food Chem., 2013, 138(2-3), 1145-1152.
[http://dx.doi.org/10.1016/j.foodchem.2012.09.138] [PMID: 23411225]
[163]
Adjonu, R.; Doran, G.; Torley, P.; Agboola, S. Whey protein peptides as components of nanoemulsions: a review of emulsifying and biological functionalities. J. Food Eng., 2014, 122, 15-27.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.08.034]
[164]
Ries, D.; Ye, A.; Haisman, D.; Singh, H. Antioxidant properties of caseins and whey proteins in model oil-in-water emulsions. Int. Dairy J., 2010, 20(2), 72-78.
[http://dx.doi.org/10.1016/j.idairyj.2009.09.001]
[165]
Díaz, M.; Decker, E.A. Antioxidant mechanisms of caseinophosphopeptides and casein hydrolysates and their application in ground beef. J. Agric. Food Chem., 2004, 52(26), 8208-8213.
[http://dx.doi.org/10.1021/jf048869e] [PMID: 15612819]
[166]
Waraho, T.; McClements, D.J.; Decker, E.A. Mechanisms of lipid oxidation in food dispersions. Trends Food Sci. Technol., 2011, 22(1), 3-13.
[http://dx.doi.org/10.1016/j.tifs.2010.11.003]
[167]
Qiu, C.; Zhao, M.; Decker, E.A.; McClements, D.J. Influence of protein type on oxidation and digestibility of fish oil-in-water emulsions: gliadin, caseinate, and whey protein. Food Chem., 2015, 175, 249-257.
[http://dx.doi.org/10.1016/j.foodchem.2014.11.112] [PMID: 25577077]
[168]
Owens, C.; Griffin, K.; Khouryieh, H.; Williams, K. Creaming and oxidative stability of fish oil-in-water emulsions stabilized by whey protein-xanthan-locust bean complexes: impact of pH. Food Chem., 2018, 239, 314-322.
[http://dx.doi.org/10.1016/j.foodchem.2017.06.096] [PMID: 28873574]
[169]
Dickinson, E. Colloids in food: ingredients, structure, and stability. Annu. Rev. Food Sci. Technol., 2015, 6, 211-233.
[http://dx.doi.org/10.1146/annurev-food-022814-015651] [PMID: 25422877]
[170]
Dwyer, J.T.; Wiemer, K.L.; Dary, O.; Keen, C.L.; King, J.C.; Miller, K.B.; Philbert, M.A.; Tarasuk, V.; Taylor, C.L.; Gaine, P.C.; Jarvis, A.B.; Bailey, R.L. Fortification and health: challenges and opportunities. Adv. Nutr., 2015, 6(1), 124-131.
[http://dx.doi.org/10.3945/an.114.007443] [PMID: 25593151]
[171]
Lidich, N.; Garti-Levy, S.; Aserin, A.; Garti, N. Potentiality of microemulsion systems in treatment of ophthalmic disorders: keratoconus and dry eye syndrome - in vivo study. Colloids Surf. B Biointerfaces, 2019, 173, 226-232.
[http://dx.doi.org/10.1016/j.colsurfb.2018.09.063] [PMID: 30300828]
[172]
Gumus, C.E.; Decker, E.A.; McClements, D.J. Impact of legume protein type and location on lipid oxidation in fish oil-in-water emulsions: lentil, pea, and faba bean proteins. Food Res. Int., 2017, 100(Pt 2), 175-185.
[http://dx.doi.org/10.1016/j.foodres.2017.08.029] [PMID: 28888438]
[173]
Bai, L.; Huan, S.; Li, Z.; McClements, D.J. Comparison of emulsifying properties of food-grade polysaccharides in oil-in-water emulsions: gum arabic, beet pectin, and corn fiber gum. Food Hydrocoll., 2017, 66, 144-153.
[http://dx.doi.org/10.1016/j.foodhyd.2016.12.019]
[174]
Wang, Y.H.; Wan, Z.L.; Yang, X.Q.; Wang, J.M.; Guo, J.; Lin, Y. Colloidal complexation of zein hydrolysate with tannic acid: constructing peptides-based nanoemulsions for alga oil delivery. Food Hydrocoll., 2016, 54, 40-48.
[http://dx.doi.org/10.1016/j.foodhyd.2015.09.020]
[175]
Chityala, P.K.; Khouryieh, H.; Williams, K.; Conte, E. Effect of xanthan/enzyme-modified guar gum mixtures on the stability of whey protein isolate stabilized fish oil-in-water emulsions. Food Chem., 2016, 212, 332-340.
[http://dx.doi.org/10.1016/j.foodchem.2016.05.187] [PMID: 27374540]
[176]
García-Moreno, P.J.; Guadix, A.; Guadix, E.M.; Jacobsen, C. Physical and oxidative stability of fish oil-in-water emulsions stabilized with fish protein hydrolysates. Food Chem., 2016, 203, 124-135.
[http://dx.doi.org/10.1016/j.foodchem.2016.02.073] [PMID: 26948597]
[177]
Lane, K.E.; Li, W.; Smith, C.J.; Derbyshire, E.J. The development of vegetarian omega-3 oil in water nanoemulsions suitable for integration into functional food products. J. Funct. Foods, 2016, 23, 306-314.
[http://dx.doi.org/10.1016/j.jff.2016.02.043]
[178]
Singh, B.; Bandopadhyay, S.; Kapil, R.; Singh, R.; Katare, O. Self-Emulsifying Drug Delivery Systems (SEDDS): formulation development, characterization, and applications. Crit. Rev. Ther. Drug Carrier Syst., 2009, 26(5), 427-521.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i5.10] [PMID: 20136631]
[179]
Kohli, K.; Chopra, S.; Dhar, D.; Arora, S.; Khar, R.K. Self-emulsifying drug delivery systems: an approach to enhance oral bioavailability. Drug Discov. Today, 2010, 15(21-22), 958-965.
[http://dx.doi.org/10.1016/j.drudis.2010.08.007] [PMID: 20727418]
[180]
Puri, R.; Mahajan, M.; Sahajpal, N.S.; Singh, H.; Singh, H.; Jain, S.K. Self-nanoemulsifying drug delivery system of docosahexanoic acid: development, in vitro, in vivo characterization. Drug Dev. Ind. Pharm., 2016, 42(7), 1032-1041.
[http://dx.doi.org/10.3109/03639045.2015.1107089] [PMID: 26559059]
[181]
Fujii, H.; Yamagata, M.; Mochida Seiyaku, K.K. Self-emulsifying composition of OMEGA3 fatty acid United States patent US 8,618,168, 2013.
[182]
Onoue, S.; Uchida, A.; Kuriyama, K.; Nakamura, T.; Seto, Y.; Kato, M.; Hatanaka, J.; Tanaka, T.; Miyoshi, H.; Yamada, S. Novel solid self-emulsifying drug delivery system of coenzyme Q10 with improved photochemical and pharmacokinetic behaviors. Eur. J. Pharm. Sci., 2012, 46(5), 492-499.
[http://dx.doi.org/10.1016/j.ejps.2012.03.015] [PMID: 22498005]
[183]
Recharla, N.; Riaz, M.; Ko, S.; Park, S. Novel technologies to enhance solubility of food-derived bioactive compounds: a review. J. Funct. Foods, 2017, 39, 63-73.
[http://dx.doi.org/10.1016/j.jff.2017.10.001]
[184]
Flanagan, J.; Singh, H. Microemulsions: a potential delivery system for bioactives in food. Crit. Rev. Food Sci. Nutr., 2006, 46(3), 221-237.
[http://dx.doi.org/10.1080/10408690590956710] [PMID: 16527754]
[185]
Vestland, T.L.; Jacobsen, Ø.; Sande, S.A.; Myrset, A.H.; Klaveness, J. Compactible powders of omega-3 and β-cyclodextrin. Food Chem., 2015, 185, 151-158.
[http://dx.doi.org/10.1016/j.foodchem.2015.03.132] [PMID: 25952853]
[186]
Vestland, T.L.; Jacobsen, Ø.; Sande, S.A.; Myrset, A.H.; Klaveness, J. Characterization of omega-3 tablets. Food Chem, 2016. 197(Pt A), 496-502.
[http://dx.doi.org/10.1016/j.foodchem.2015.10.142]
[187]
Vestland, T.L.; Petersen, L.B.; Myrset, A.H.; Klaveness, J. Oxidative stability of omega‐3 tablets. Eur. J. Lipid Sci. Technol., 2017, 119(2)1500322
[http://dx.doi.org/10.1002/ejlt.201500322]
[188]
Li, X.; Kanjwal, M.A.; Lin, L.; Chronakis, I.S.; Chronakis, I.S. Electrospun polyvinyl-alcohol nanofibers as oral fast-dissolving delivery system of caffeine and riboflavin. Colloids Surf. B Biointerfaces, 2013, 103(1), 182-188.
[http://dx.doi.org/10.1016/j.colsurfb.2012.10.016] [PMID: 23201736]
[189]
Moomand, K.; Lim, L.T. Oxidative stability of encapsulated fish oil in electrospun zein fibres. Food Res. Int., 2014, 62, 523-532.
[http://dx.doi.org/10.1016/j.foodres.2014.03.054]
[190]
Torres-Giner, S.; Martinez-Abad, A.; Ocio, M.J.; Lagaron, J.M. Stabilization of a nutraceutical omega-3 fatty acid by encapsulation in ultrathin electrosprayed zein prolamine. J. Food Sci., 2010, 75(6), N69-N79.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01678.x] [PMID: 20722943]
[191]
Yang, H.; Wen, P.; Feng, K.; Zong, M.H.; Lou, W.Y.; Wu, H. Encapsulation of fish oil in a coaxial electrospun nanofibrous mat and its properties. RSC Advances, 2017, 7(24), 14939-14946.
[http://dx.doi.org/10.1039/C7RA00051K]
[192]
García-Moreno, P.J.; Stephansen, K.; van der Kruijs, J.; Gua-dix, A.; Guadix, E.M.; Chronakis, I.S.; Jacobsen, C. Encapsula-tion of fish oil in nanofibers by emulsion electrospinning: physical characterization and oxidative stability. J. Food Eng., 2016, 183, 39-49.
[http://dx.doi.org/10.1016/j.jfoodeng.2016.03.015]
[193]
Kushwaha, A.K.; Kawtikwar, P.S. Zein as a natural film forming agent: a review. Int. J. Pharm. Technol., 2013, 5(2), 2578-2593.
[194]
Shahriar, S.M.S.; Mondal, J.; Hasan, M.N.; Revuri, V.; Lee, D.Y.; Lee, Y.K. Electrospinning nanofibers for therapeutics delivery. Nanomaterials (Basel), 2019, 9(4), 532.
[http://dx.doi.org/10.3390/nano9040532] [PMID: 30987129]
[195]
Desai, K.G.; Jin Park, H. Recent developments in microencapsulation of food ingredients. Dry. Technol., 2005, 23(7), 1361-1394.
[http://dx.doi.org/10.1081/DRT-200063478]
[196]
Bejrapha, P.; Min, S.G.; Surassmo, S.; Choi, M.J. Physicothermal properties of freeze-dried fish oil nanocapsules frozen un-der different conditions. Dry. Technol., 2010, 28(4), 481-489.
[http://dx.doi.org/10.1080/07373931003613684]
[197]
Morales-Medina, R.; Tamm, F.; Guadix, A.M.; Guadix, E.M.; Drusch, S. Functional and antioxidant properties of hydrolysates of sardine (S. pilchardus) and horse mackerel (T. mediterraneus) for the microencapsulation of fish oil by spray-drying. Food Chem., 2016, 194, 1208-1216.
[http://dx.doi.org/10.1016/j.foodchem.2015.08.122] [PMID: 26471673]
[198]
Patrick, K.E.; Lv, Y.; Muhamyankaka, V.; Denis, O.; Bouelet, I.S. Development of EPA-DHA microcapsules supplemented probiotic fermented milk; Akademik GIDA, 2013, p. 11.
[199]
Encina, C.; Vergara, C.; Giménez, B.; Oyarzún-Ampuero, F.; Robert, P. Conventional spray-drying and future trends for the microen-capsulation of fish oil. Trends Food Sci. Technol., 2016, 56, 46-60.
[http://dx.doi.org/10.1016/j.tifs.2016.07.014]
[200]
Tirgar, M.; Jinap, S.; Zaidul, I.S.; Mirhosseini, H. Suitable coating material for microencapsulation of spray-dried fish oil. J. Food Sci. Technol., 2015, 52(7), 4441-4449.
[http://dx.doi.org/10.1007/s13197-014-1515-3] [PMID: 26139910]
[201]
Calvo, P.; Castano, A. L.; Lozano, M.; Gonzalez-Gomez, D. Influence of the microencapsulation on the quality parameters and shelf-life of extra-virgin olive oil encapsulated in the presence of BHT and different capsule wall components. Food Res. Int, 2012, 45(1) 256e261
[202]
McClements, D.J. Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter, 2012, 8(6), 1719-1729.
[http://dx.doi.org/10.1039/C2SM06903B]
[203]
Tonon, R.V.; Grosso, C.R.; Hubinger, M.D. Influence of emulsion composition and inlet air temperature on the microencapsulation of flaxseed oil by spray drying. Food Res. Int., 2011, 44(1), 282-289.
[http://dx.doi.org/10.1016/j.foodres.2010.10.018]
[204]
Fang, Z.; Bhandari, B. Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chem., 2011, 129(3), 1139-1147.
[http://dx.doi.org/10.1016/j.foodchem.2011.05.093] [PMID: 25212349]
[205]
Eratte, D.; Wang, B.; Dowling, K.; Barrow, C.J.; Adhikari, B.P. Complex coacervation with whey protein isolate and gum arabic for the microencapsulation of omega-3 rich tuna oil. Food Funct., 2014, 5(11), 2743-2750.
[http://dx.doi.org/10.1039/C4FO00296B] [PMID: 25008146]
[206]
Kaushik, P.; Dowling, K.; Barrow, C.J.; Adhikari, B. Microen-capsulation of omega-3 fatty acids: a review of microencapsulation and characterization methods. J. Funct. Foods, 2015, 19, 868-881.
[http://dx.doi.org/10.1016/j.jff.2014.06.029]
[207]
Gu, X.; Campbell, L.J.; Euston, S.R. Influence of sugars on the characteristics of glucono-δ-lactone-induced soy protein isolate gels. Food Hydrocoll., 2009, 23(2), 314-326.
[http://dx.doi.org/10.1016/j.foodhyd.2008.01.005]
[208]
Shu, B.; Yu, W.; Zhao, Y.; Liu, X. Study on microencapsulation of lycopene by spray-drying. J. Food Eng., 2006, 76(4), 664-669.
[http://dx.doi.org/10.1016/j.jfoodeng.2005.05.062]
[209]
Matalanis, A.; Jones, O.G.; McClements, D.J. Structured polymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds. Food Hydrocoll., 2011, 25(8), 1865-1880.
[http://dx.doi.org/10.1016/j.foodhyd.2011.04.014]
[210]
Binsi, P.K.; Nayak, N.; Sarkar, P.C.; Jeyakumari, A.; Muhamed Ashraf, P.; Ninan, G.; Ravishankar, C.N. Structural and oxidative stabilization of spray dried fish oil microencapsulates with gum arabic and sage polyphenols: characterization and release kinetics. Food Chem., 2017, 219, 158-168.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.126] [PMID: 27765212]
[211]
Sliwinski, E.L.; Roubos, P.J.; Zoet, F.D.; van Boekel, M.A.J.S.; Wouters, J.T.M. Effects of heat on physicochemical properties of whey protein stabilised emulsions. Colloids Surf. B Biointerfaces, 2003, 31, 231-242.
[http://dx.doi.org/10.1016/S0927-7765(03)00143-7]
[212]
Wang, C.; Killpatrick, A.; Humphrey, A.; Guo, M. Whey protein functional properties and applications in food formulation. Whey protein production, chemistry, functionality, and applications; Guo, M., Ed.; John Wiley & Sons, 2019, pp. 157-204.
[http://dx.doi.org/10.1002/9781119256052.ch7]
[213]
Chang, H.W.; Tan, T.B.; Tan, P.Y.; Nehdi, I.A.; Sbihi, H.M.; Tan, C.P. Microencapsulation of fish oil-in-water emulsion using thiol-modified β-lactoglobulin fibrils-chitosan complex. J. Food Eng., 2019, 264109680
[http://dx.doi.org/10.1016/j.jfoodeng.2019.07.027]
[214]
Carneiro, H.C.F.; Tonon, R.V.; Grosso, C.R.F.; Hubinger, M.D. Encapsulation efficiency and oxidative stability of flaxseed oil mi-croencapsulated by spray drying using different combinations of wall materials. J. Food Eng., 2013, 115(4), 443-451.
[http://dx.doi.org/10.1016/j.jfoodeng.2012.03.033]
[215]
Di Giorgio, L.; Salgado, P.R.; Mauri, A.N. Encapsulation of fish oil in soybean protein particles by emulsification and spray drying. Food Hydrocoll., 2019, 87, 891-901.
[http://dx.doi.org/10.1016/j.foodhyd.2018.09.024]
[216]
Shao, W.; Pan, X.; Liu, X.; Teng, F.; Yuan, S. Microencapsulation of algal oil using spray drying technology. Food Technol. Biotechnol., 2018, 56(1), 65-70.
[http://dx.doi.org/10.17113/ftb.56.01.18.5452] [PMID: 29795998]
[217]
Yuan, Y.; Kong, Z.Y.; Sun, Y.E.; Zeng, Q.Z.; Yang, X.Q. Com-plex coacervation of soy protein with chitosan: constructing antioxidant microcapsule for algal oil delivery. Lebensm. Wiss. Technol., 2017, 75, 171-179.
[http://dx.doi.org/10.1016/j.lwt.2016.08.045]
[218]
Liu, L.; Qu, X.; Li, X.; Bora, A.F.; Chen, P.; Wang, H.; Wang, C. Effect of exopolysaccharides-producing strain on oxidation stability of DHA micro algae oil microcapsules. Food Biosci., 2018, 23, 60-66.
[http://dx.doi.org/10.1016/j.fbio.2018.02.010]
[219]
Chen, X.W.; Chen, Y.J.; Wang, J.M.; Guo, J.; Yin, S.W.; Yang, X.Q. Phytosterol structured algae oil nanoemulsions and powders: improving antioxidant and flavor properties. Food Funct., 2016, 7(9), 3694-3702.
[http://dx.doi.org/10.1039/C6FO00449K] [PMID: 27501908]
[220]
Chen, W.; Wang, H.; Zhang, K.; Gao, F.; Chen, S.; Li, D. Physi-cochemical properties and storage stability of microencapsulated DHA-rich oil with different wall materials. Appl. Biochem. Biotechnol., 2016, 179(7), 1129-1142.
[http://dx.doi.org/10.1007/s12010-016-2054-3] [PMID: 27003283]
[221]
Botrel, D.A.; Borges, S.V.; Fernandes, R.V.B.; Antoniassi, R.; de Faria-Machado, A.F.; Feitosa, J.P.A.; de Paula, R.C.M. Application of cashew tree gum on the production and stability of spray-dried fish oil. Food Chem., 2017, 221, 1522-1529.
[http://dx.doi.org/10.1016/j.foodchem.2016.10.141] [PMID: 27979124]
[222]
Bakry, A.M.; Fang, Z.; Ni, Y.; Cheng, H.; Chen, Y.Q.; Liang, L. Stability of tuna oil and tuna oil/peppermint oil blend microen-capsulated using whey protein isolate in combination with carboxymethyl cellulose or pullulan. Food Hydrocoll., 2016, 60, 559-571.
[http://dx.doi.org/10.1016/j.foodhyd.2016.04.026]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 6
Year: 2020
Published on: 06 August, 2020
Page: [483 - 504]
Pages: 22
DOI: 10.2174/1567201817666200512103402
Price: $65

Article Metrics

PDF: 21
HTML: 1