Nanoliposome Precursors for Shape Modulation: Use of Heuristic Algorithm and QBD Principles for Encapsulating Phytochemicals

Author(s): Sameer J. Nadaf, Suresh G. Killedar*

Journal Name: Current Drug Delivery

Volume 17 , Issue 7 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Background: Screening of multiple methods is worthless for formulators due to material losses, wastage of time, and expenditures. It is imperative to make a quick decision.

Objective: The present investigation describes the systematic approach to select the best suitable method for the development of nanoliposomes (NL), the precursor of nanocochleates encapsulating curcumin using Analytic Hierarchy Process (AHP).

Methods: Pair-wise comparison matrices were used to achieve the overall priority weight and ranking for the selection of appropriate technique. Furthermore, Plackett-Burman screening Design (PBD) was exploited to investigate specific effects of associated formulation and process variables on particle size (Y1), drug content (Y2), and entrapment efficiency (Y3), while fabricating NL.

Results: Results revealed the reliability of the pair-wise comparison matrices and selected the ethanol injection method with the highest priority weight (0.337). Bland-Altman plot and control chart validated the results of AHP. The preparation of vesicles with the preferred diameter and size distribution was essentially fulfilled. Stirring speed (X5), amount of phospholipid (X4), and cholesterol (X8) showed significant influence (p<0.05) on Y1 and Y3, PBD revealed. These factors can be further optimized using the design of experiments.

Conclusion: AHP being an effective tool, has assisted in selecting the best alternative for fabricating NL, whilst PBD enabled a clear understanding of the effects of diverse formulation variables on responses studied. Results ensure that NL is a riveting candidate for modulating effectively into tailormade diverse shaped nanoformulations for further in vitro and in vivo studies.

Keywords: Nanoliposomes, decision making, analytic hierarchy process, nanocochleates, curcumin, PBD.

Rizvi, S.A.A.; Saleh, A.M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J., 2018, 26(1), 64-70.
[] [PMID: 29379334]
Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol., 2018, 9, 1050-1074.
[] [PMID: 29719757]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931.
Patra, J.K.; Baek, K.H. Green nanobiotechnology: factors affecting synthesis and characterization techniques. J. Nanomater., 2014, 12, e417305.
Wang, E.C.; Wang, A.Z. Nanoparticles and their applications in cell and molecular biology. Integr. Biol., 2014, 6(1), 9-26.
[] [PMID: 24104563]
Ali, A.; Zafar, H.; Zia, M.; Ul Haq, I.; Phull, A.R.; Ali, J.S.; Hussain, A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl., 2016, 9, 49-67.
[] [PMID: 27578966]
Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci., 2016, 17(9), 1534.
[] [PMID: 27649147]
Orimoto, Y.; Watanabe, K.; Yamashita, K.; Uehara, M.; Nakamur, H.; Furuya, T.; Maeda, H. Application of artificial neural networks to rapid data analysis in combinatorial nanoparticle syntheses. J. Phys. Chem. C, 2012, 116, 17885-17896.
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[] [PMID: 30231877]
He, H.; Lu, Y.; Qi, J.; Zhu, Q.; Chen, Z.; Wu, W. Adapting liposomes for oral drug delivery. Acta Pharm. Sin. B, 2019, 9(1), 36-48.
[] [PMID: 30766776]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[] [PMID: 23432972]
Harini, L.; Srivastava, S.; Gnanakumar, G.P.; Karthikeyan, B.; Ross, C.; Krishnakumar, V.; Kannan, V.R.; Sundar, K.; Kathiresan, T. An ingenious non-spherical mesoporous silica nanoparticle cargo with curcumin induces mitochondria-mediated apoptosis in breast cancer (MCF-7) cells. Oncotarget, 2019, 10(11), 1193-1208.
[] [PMID: 30838091]
Xingjun, Z.; Chau, V.O.; Taylor, M.; Smith, B.R. Non-spherical micro- and nanoparticles in nanomedicine. Mater. Horiz., 2019, 6, 1094-1121.
Little, C.A.; Batchelor-McAuley, C.; Young, N.P.; Compton, R.G. Shape and size of non-spherical silver nanoparticles: implications for calculating nanoparticle number concentrations. Nanoscale, 2018, 10(34), 15943-15947.
[] [PMID: 30124715]
Ta, H.T.; Truong, N.P.; Whittaker, A.K.; Davis, T.P.; Peter, K. The effects of particle size, shape, density and flow characteristics on particle margination to vascular walls in cardiovascular diseases. Expert Opin. Drug Deliv., 2018, 15(1), 33-45.
[] [PMID: 28388248]
Toy, R.; Peiris, P.M.; Ghaghada, K.B.; Karathanasis, E. Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine (Lond.), 2014, 9(1), 121-134.
[] [PMID: 24354814]
Cooley, M.; Sarode, A.; Hoore, M.; Fedosov, D.A.; Mitragotri, S.; Sen Gupta, A. Influence of particle size and shape on their margination and wall-adhesion: implications in drug delivery vehicle design across nano-to-micro scale. Nanoscale, 2018, 10(32), 15350-15364.
[] [PMID: 30080212]
Decuzzi, P.; Godin, B.; Tanaka, T.; Lee, S.Y.; Chiappini, C.; Liu, X.; Ferrari, M. Size and shape effects in the biodistribution of intravascularly injected particles. J. Control. Release, 2010, 141(3), 320-327.
[] [PMID: 19874859]
Devarajan, P.V.; Jindal, A.B.; Patil, R.R.; Mulla, F.; Gaikwad, R.V.; Samad, A. Particle shape: a new design parameter for passive targeting in splenotropic drug delivery. J. Pharm. Sci., 2010, 99(6), 2576-2581.
[] [PMID: 20091830]
Bothiraja, C.; Yojana, B.D.; Pawar, A.P.; Shaikh, K.S.; Thorat, U.H. Fisetin-loaded nanocochleates: formulation, characterisation, in vitro anticancer testing, bioavailability and biodistribution study. Expert Opin. Drug Deliv., 2014, 11(1), 17-29.
[] [PMID: 24294925]
Delmarre, D.; Lu, R.; Tatton, N. Cochleate-mediated delivery. Drug Deliv. Technol., 2004, 9(4), 64-69.
Liu, Y.; Tan, J.; Thomas, A.; Ou-Yang, D.; Muzykantov, V.R. The shape of things to come: importance of design in nanotechnology for drug delivery. Ther. Deliv., 2012, 3(2), 181-194.
[] [PMID: 22834196]
Kunasekaran, V.; Krishnamoorthy, K. Multi criteria decision making to select the best method for the preparation of solid lipid nanoparticles of rasagiline mesylate using analytic hierarchy process. J. Adv. Pharm. Technol. Res., 2014, 5(3), 115-121.
[] [PMID: 25126532]
Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci., 2008, 1(1), 83-98.
Schmidt, K.; Aumann, I.; Hollander, I.; Damm, K.; von der Schulenburg, J.M.G. Applying the analytic hierarchy process in healthcare research: a systematic literature review and evaluation of reporting. BMC Med. Inform. Decis. Mak., 2015, 15, 112.
[] [PMID: 26703458]
Abdullah, A.H.; Holtorf, A.P.; Al-Hussaini, M.; Lemay, J.; Alowayesh, M.; Kaló, Z. Stakeholder driven development of a multi-criteria decision analysis tool for purchasing off-patent pharmaceuticals in Kuwait. J. Pharm. Policy Pract., 2019, 12, 9.
[] [PMID: 31011430]
Kumar, S.; Vaidya, O.S. Analytic hierarchy process: an overview of applications. Eur. J. Oper. Res., 2006, 169(1), 1-29.
Marco, C.; Stuart, C.R.; Kerry, K. Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment. Ecol. Indic., 2014, 46, 138-148.
Mu, E.; Pereyra-Rojas, M. Practical decision making, understanding the analytic hierarchy process; Springer Briefs in Operations Res, 2017, p. 111.
Saaty, T.L.; Vargas, L.G. Models, methods, concepts and applications of the analytic hierarchy process. Int. Series Operat. Res. Manag Sci, 2012, 175, 1-345.
Toniazzo, T.; Peres, M.S.; Ramos, A.P.; Pinho, S.C. Encapsulation of quercetin in liposomes by ethanol injection and physicochemical characterization of dispersions and lyophilized vesicles. Food Biosci., 2017, 19, 17-25.
Jaafar-Maalej, C.; Diab, R.; Andrieu, V.; Elaissari, A.; Fessi, H. Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J. Liposome Res., 2010, 20(3), 228-243.
[] [PMID: 19899957]
Doğan, N.O. Bland-Altman analysis: a paradigm to understand correlation and agreement. Turk. J. Emerg. Med., 2018, 18(4), 139-141.
[] [PMID: 30533555]
Kalra, A. Decoding the Bland-Altman plot: basic review. J. Pract. Cardiovasc. Sci., 2017, 3, 36-38.
Evans, C.C.; Zasadzinski, J. Encapsulating vesicles and colloids from cochleate cylinders. Langumuir, 2003, 19(8), 3109-3113.
Nasef, A.M.; Gardouh, A.R.; Ghorab, M.M. Formulation and in-vitro evaluation of pantoprazole loaded pH-sensitive polymeric nanoparticles. Future J. Pharma. Sci., 2017, 3, 103-117.
Nadaf, S.J.; Killedar, S.G. method development and validation for estimation of curcumin in fabricated nano-sized formulation: inter-laboratory comparison, capability and statistical analysis. Pharm. Methods, 2018, 9(2), 56-63.
Ducat, E.; Brion, M.; Lecomte, F.; Evrard, B.; Piel, G. The experimental design as practical approach to develop and optimize a formulation of peptide-loaded liposomes. AAPS PharmSciTech, 2010, 11(2), 966-975.
[] [PMID: 20512433]
Shaker, S.; Gardouh, A.R.; Ghorab, M.M. Factors affecting liposomes particle size prepared by ethanol injection method. Res. Pharm. Sci., 2017, 12(5), 346-352.
[] [PMID: 28974972]
Taghizadeh, S.M.; Bajgholi, S. A new liposomal-drug-in-adhesive patch for transdermal delivery of sodium diclofenac. J. Biomater. Nanobiotechnol., 2011, 2, 576-581.
Surianarayanan, R.; Shivakumar, H.G.; Vegesna, N.S.K.; Srivastava, A. Effect of sample concentration on the characterization of liposomes using dynamic light scattering technique. Pharm. Methods, 2016, 7(1), 70-74.
Chen, J.; Ping, Q.N.; Guo, J.X.; Chu, X.Z.; Song, M.M. Effect of phospholipid composition on characterization of liposomes containing 9-nitrocamptothecin. Drug Dev. Ind. Pharm., 2006, 32(6), 719-726.
[] [PMID: 16885127]
Wu, H.; Yu, M.; Miao, Y.; He, S.; Dai, Z.; Song, W.; Liu, Y.; Song, S.; Ahmad, E.; Wang, D.; Gan, Y. Cholesterol-tuned liposomal membrane rigidity directs tumor penetration and anti-tumor effect. Acta Pharm. Sin. B, 2019, 9(4), 858-870.
[] [PMID: 31384544]
Melzak, K.A.; Melzak, S.A.; Gizeli, E.; Toca-Herrera, J.L. Cholesterol organization in phosphatidylcholine liposomes: a surface plasmon resonance study. Materials (Basel), 2012, 5, 2306-2325.
Duangjit, S.; Pamornpathomkul, B.; Opanasopit, P.; Rojanarata, T.; Obata, Y.; Takayama, K.; Ngawhirunpat, T. Role of the charge, carbon chain length, and content of surfactant on the skin penetration of meloxicam-loaded liposomes. Int. J. Nanomed., 2014, 9, 2005-2017.
[] [PMID: 24851047]
Zhang, Y.L.; Frangos, J.A.; Chachisvilis, M. Laurdan fluorescence senses mechanical strain in the lipid bilayer membrane. Biochem. Biophys. Res. Commun., 2006, 347(3), 838-841.
[] [PMID: 16857174]
Al-Quadeib, B.T.; Radwan, M.A.; Siller, L.; Horrocks, B.; Wright, M.C. Stealth amphotericin B nanoparticles for oral drug delivery: in vitro optimization. Saudi Pharm. J., 2015, 23(3), 290-302.
[] [PMID: 26106277]
Xia, S.; Xu, S. Ferrous sulfate liposomes: preparation, stability and application in fluid milk. Food Res. Int., 2005, 38, 289-296.
Rantamäki, A.H.; Ruokonen, S.K.; Sklavounos, E.; Kyllönen, L.; King, A.W.T.; Wiedmer, S.K. Impact of surface-active guanidinium-, tetramethylguanidinium-, and cholinium-based ionic liquids on Vibrio fischeri cells and dipalmitoylphosphatidylcholine liposomes. Sci. Rep., 2017, 7, 46673.
[] [PMID: 28429753]
Porfire, A.; Achim, M.; Barbalata, C.; Rus, I.; Tomuta, I.; Cristea, C. Pharmaceutical development of liposomes using the QbD approach; Liposomes – Adv. Persp, 2019, pp. 1-20.
Wagner, A.; Vorauer-Uhl, K. Preparation of liposomes: a novel application of microengineered membranes-from laboratory scale to large scale. Colloids Surf. B Biointerfaces, 2011, 112, 272-278.
Laouini, A.; Charcosset, C.; Fessi, H.; Holdich, R.G.; Vladisavljević, G.T. Preparation of liposomes: a novel application of microengineered membranes--from laboratory scale to large scale. Colloids Surf. B Biointerfaces, 2013, 112, 272-278.
[] [PMID: 23999143]
Song, J.; Shi, F.; Zhang, Z.; Zhu, F.; Xue, J.; Tan, X.; Zhang, L.; Jia, X. Formulation and evaluation of celastrol-loaded liposomes. Molecules, 2011, 16(9), 7880-7892.
[] [PMID: 22143548]
Rushmi, Z.T.; Akter, N.; Mow, R.J.; Afroz, M.; Kazi, M.; de Matas, M.; Rahman, M.; Shariare, M.H. The impact of formulation attributes and process parameters on black seed oil loaded liposomes and their performance in animal models of analgesia. Saudi Pharm. J., 2017, 25(3), 404-412.
[] [PMID: 28344496]
Justo, O.R.; Moraes, A.M. Analysis of process parameters on the characteristics of liposomes prepared by ethanol injection with a view to process scale-up: effect of temperature and batch volume. Opthalmoly. Retina, 2011, 89(6), 785-792.
Deniz, A.; Sade, A.; Severcan, F.; Keskin, D.; Tezcaner, A.; Banerjee, S. Celecoxib-loaded liposomes: effect of cholesterol on encapsulation and in vitro release characteristics. Biosci. Rep., 2010, 30(5), 365-373.
[] [PMID: 19900165]
Begum, M.Y.; Abbulu, K.; Sudhakar, M.; Anees, A. Celecoxib – encapsulated liposomes of long alkyl chain lipids: formulation, characterization and in vitro performance. Pharm. Sin., 2012, 3(1), 117-125.
Zaru, M.; Mourtas, S.; Klepetsanis, P.; Fadda, A.M.; Antimisiaris, S.G. Liposomes for drug delivery to the lungs by nebulization. Eur. J. Pharm. Biopharm., 2007, 67(3), 655-666.
[] [PMID: 17540552]
Fang, J.Y.; Hong, C.T.; Chiu, W.T.; Wang, Y.Y. Effect of liposomes and niosomes on skin permeation of enoxacin. Int. J. Pharm., 2001, 219(1-2), 61-72.
[] [PMID: 11337166]
Mohammed, A.R.; Weston, N.; Coombes, A.G.A.; Fitzgerald, M.; Perrie, Y. Liposome formulation of poorly water soluble drugs: optimisation of drug loading and ESEM analysis of stability. Int. J. Pharm., 2004, 285(1-2), 23-34.
[] [PMID: 15488676]
Murakami, H.; Kawashima, Y.; Niwa, T.; Hino, T.; Takeuchi, H.; Kobyashi, M. Influence of the degrees of hydrolyzation and polymerization of poly(vinyl alcohol) on the preparation and properties of poly(D,L-lactide-co-glycolide) nanoparticle. Int. J. Pharm., 1997, 149(1), 43-49.
Liu, J.; Gong, T.; Wang, C.; Zhong, Z.; Zhang, Z. Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles: preparation and characterization. Int. J. Pharm., 2007, 340(1-2), 153-162.
[] [PMID: 17428627]
Das, S.; Suresh, P.K.; Desmukh, R. Design of Eudragit RL 100 nanoparticles by nanoprecipitation method for ocular drug delivery. Nanomedicine (London.), 2010, 6(2), 318-323.
[] [PMID: 19800990]
Zhang, X.; Qi, J.; Lu, Y.; Hu, X.; He, W.; Wu, W. Enhanced hypoglycemic effect of biotin-modified liposomes loading insulin: effect of formulation variables, intracellular trafficking, and cytotoxicity. Nanoscale Res. Lett., 2014, 9(1), 185.
[] [PMID: 24739082]
Grant, G.J.; Barenholz, Y.; Piskoun, B.; Bansinath, M.; Turndorf, H.; Bolotin, E.M. DRV liposomal bupivacaine: preparation, characterization, and in vivo evaluation in mice. Pharm. Res., 2001, 18(3), 336-343.
[] [PMID: 11442274]
Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: importance and enhancement techniques. isrn pharm., 2012, 10, . article id 195727,
Cooper, D.L.; Harirforoosh, S. Effect of formulation variables on preparation of celecoxib loaded polylactide-co-glycolide nanoparticles. PLoS One, 2014, 9(12), e113558.
[] [PMID: 25502102]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 15 September, 2020
Page: [599 - 612]
Pages: 14
DOI: 10.2174/1567201817666200512102532
Price: $65

Article Metrics

PDF: 14