Development of Gemcitabine Loaded PLGA/Lecithin Nanoparticles for Non-Small Cell Lung Cancer Therapy

Author(s): Ozgur Esim*, Cansel K. Ozkan, Meral Sarper, Ayhan Savaser*, Yalcin Ozkan

Journal Name: Current Drug Delivery

Volume 17 , Issue 7 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Compared to polymeric nanoparticles prepared using non-lipid surfactants, lecithin addition forms larger nanoparticles and exhibits higher drug loading and the stability of nanoparticles can be conferred by adding Vitamin E Polyethylene Glycol Succinate (TPGS) into the formulation.

Aim: The aim of this study is to prepare Gemcitabine (Gem) loaded lecithin/PLGA nanoparticles. Moreover, the effect of TPGS and sodium cholate (SK) on the preparation of lecithin/PLGA nanoparticles was compared.

Methods: It was found that while PC addition into PLGATPGS nanoparticles formed larger particles (251.3± 6.0 nm for Gem-PLGATPGS NPs and 516,9 ± 3.9 nm for Gem-PLGA-PCTPGS NPs), the particle size of PLGASK nanoparticles was not affected by lecithin addition (p>0.05).

Results: In cytotoxicity studies, it was found that the SK-MES-1 cell inhibition rates of Gem-PLGATPGS NPs, Gem-PLGA-PCTPGS NPs, Gem-PLGASK NPs, Gem-PLGA-PCSK NPs were similar with free Gem (p>0.05). In cytotoxicity studies, it was found that the encapsulation into nanoparticles did not change the cytotoxicity of the drug. However, higher cellular uptake has been observed when the lecithin was used in the preparation of PLGA nanoparticles.

Conclusion: Compared with free Gem, the Gem-loaded nanoparticles enhanced the uptake of the drug by SK-MES-1 cells which can increase the effect of gemcitabine for non-small cell lung cancer therapy.

Keywords: Gemcitabine, PLGA-lecithin nanoparticles, cancer, TPGS, sodium cholate, SK-MES-1.

[1]
Abratt, R.P.; Bezwoda, W.R.; Falkson, G.; Goedhals, L.; Hacking, D.; Rugg, T.A. Efficacy and safety profile of gemcitabine in non-small-cell lung cancer: a phase II study. J. Clin. Oncol., 1994, 12(8), 1535-1540.
[http://dx.doi.org/10.1200/JCO.1994.12.8.1535] [PMID: 8040664]
[2]
Zhang, Y.; Kim, W.Y.; Huang, L. Systemic delivery of gemcitabine triphosphate via LCP nanoparticles for NSCLC and pancreatic cancer therapy. Biomaterials, 2013, 34(13), 3447-3458.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.063] [PMID: 23380359]
[3]
Sloat, B.R.; Sandoval, M.A.; Li, D.; Chung, W-G.; Lansakara-P, D.S.; Proteau, P.J.; Kiguchi, K.; DiGiovanni, J.; Cui, Z. In vitro and in vivo anti-tumor activities of a gemcitabine derivative carried by nanoparticles. Int. J. Pharm., 2011, 409(1-2), 278-288.
[http://dx.doi.org/10.1016/j.ijpharm.2011.02.037] [PMID: 21371545]
[4]
Réjiba, S.; Reddy, L.H.; Bigand, C.; Parmentier, C.; Couvreur, P.; Hajri, A. Squalenoyl gemcitabine nanomedicine overcomes the low efficacy of gemcitabine therapy in pancreatic cancer. Nanomedicine (Lond.), 2011, 7(6), 841-849.
[http://dx.doi.org/10.1016/j.nano.2011.02.012] [PMID: 21419876]
[5]
Brusa, P.; Immordino, M.L.; Rocco, F.; Cattel, L. Antitumor activity and pharmacokinetics of liposomes containing lipophilic gemcitabine prodrugs. Anticancer Res., 2007, 27(1A), 195-199.
[PMID: 17352232]
[6]
Martins, S.; Sarmento, B.; Ferreira, D.C.; Souto, E.B. Lipid-based colloidal carriers for peptide and protein delivery--liposomes versus lipid nanoparticles. Int. J. Nanomedicine, 2007, 2(4), 595-607.
[PMID: 18203427]
[7]
Joshi, G.; Kumar, A.; Sawant, K. Enhanced bioavailability and intestinal uptake of Gemcitabine HCl loaded PLGA nanoparticles after oral delivery. Eur. J. Pharm. Sci., 2014, 60, 80-89.
[http://dx.doi.org/10.1016/j.ejps.2014.04.014] [PMID: 24810394]
[8]
Gang, J.; Park, S-B.; Hyung, W.; Choi, E.H.; Wen, J.; Kim, H-S.; Shul, Y-G.; Haam, S.; Song, S.Y. Magnetic poly ε-caprolactone nanoparticles containing Fe3O4 and gemcitabine enhance anti-tumor effect in pancreatic cancer xenograft mouse model. J. Drug Target., 2007, 15(6), 445-453.
[http://dx.doi.org/10.1080/10611860701453901] [PMID: 17613663]
[9]
Hosseinzadeh, H.; Atyabi, F.; Dinarvand, R.; Ostad, S.N. Chitosan-Pluronic nanoparticles as oral delivery of anticancer gemcitabine: preparation and in vitro study. Int. J. Nanomedicine, 2012, 7, 1851-1863.
[PMID: 22605934]
[10]
Lim, J.H.; You, S.K.; Baek, J-S.; Hwang, C.J.; Na, Y.G.; Shin, S.C.; Cho, C.W. Preparation and evaluation of polymeric microparticulates for improving cellular uptake of gemcitabine. Int. J. Nanomedicine, 2012, 7, 2307-2314.
[PMID: 22661887]
[11]
Ravi Kumar, M.N.; Bakowsky, U.; Lehr, C.M. Preparation and characterization of cationic PLGA nanospheres as DNA carriers. Biomaterials, 2004, 25(10), 1771-1777.
[http://dx.doi.org/10.1016/j.biomaterials.2003.08.069] [PMID: 14738840]
[12]
Cheow, W.S.; Hadinoto, K. Factors affecting drug encapsulation and stability of lipid-polymer hybrid nanoparticles. Colloids Surf. B Biointerfaces, 2011, 85(2), 214-220.
[http://dx.doi.org/10.1016/j.colsurfb.2011.02.033] [PMID: 21439797]
[13]
Sonvico, F.; Cagnani, A.; Rossi, A.; Motta, S.; Di Bari, M.T.; Cavatorta, F.; Alonso, M.J.; Deriu, A.; Colombo, P. Formation of self-organized nanoparticles by lecithin/chitosan ionic interaction. Int. J. Pharm., 2006, 324(1), 67-73.
[http://dx.doi.org/10.1016/j.ijpharm.2006.06.036] [PMID: 16973314]
[14]
Martin-Banderas, L.; Durán-Lobato, M.; Muñoz-Rubio, I.; Alvarez-Fuentes, J.; Fernández-Arevalo, M.; Holgado, M.A. Functional PLGA NPs for oral drug delivery: recent strategies and developments. Mini Rev. Med. Chem., 2013, 13(1), 58-69.
[http://dx.doi.org/10.2174/138955713804484721] [PMID: 22974367]
[15]
Zhu, N.; Cui, F.Z.; Hu, K.; Zhu, L. Biomedical modification of poly(L-lactide) by blending with lecithin. J. Biomed. Mater. Res. A, 2007, 82(2), 455-461.
[http://dx.doi.org/10.1002/jbm.a.31159] [PMID: 17295251]
[16]
Park, S.; Kim, J.; Lim, J.; Kim, C. Surface-modified magnetic nanoparticles with lecithin for applications in biomedicine. Curr. Appl. Phys., 2008, 8(6), 706-709.
[http://dx.doi.org/10.1016/j.cap.2007.05.009]
[17]
Cheow, W.S.; Hadinoto, K. Lipid-polymer hybrid nanoparticles with rhamnolipid-triggered release capabilities as anti-biofilm drug delivery vehicles. Particuology, 2012, 10(3), 327-333.
[http://dx.doi.org/10.1016/j.partic.2011.08.007]
[18]
Singh, R.; Shakya, A.K.; Naik, R.; Shalan, N. Stability-indicating HPLC determination of gemcitabine in pharmaceutical formulations. Int. J. Anal. Chem., 2015, 2015, 862592.
[http://dx.doi.org/10.1155/2015/862592]
[19]
Garcia-Fuentes, M.; Alonso, M.J.; Torres, D. Design and characterization of a new drug nanocarrier made from solid-liquid lipid mixtures. J. Colloid Interface Sci., 2005, 285(2), 590-598.
[http://dx.doi.org/10.1016/j.jcis.2004.10.012] [PMID: 15837476]
[20]
Young, T.J.; Johnson, K.P.; Pace, G.W.; Mishra, A.K. Phospholipid-stabilized nanoparticles of cyclosporine A by rapid expansion from supercritical to aqueous solution. AAPS PharmSciTech, 2004, 5(1), E11.
[PMID: 15198532]
[21]
Liu, J.; Gong, T.; Wang, C.; Zhong, Z.; Zhang, Z. Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles: preparation and characterization. Int. J. Pharm., 2007, 340(1-2), 153-162.
[http://dx.doi.org/10.1016/j.ijpharm.2007.03.009] [PMID: 17428627]
[22]
Yü-ksel, A.; Şahin‐Yeşilçubuk, N. Encapsulation of structured lipids containing medium-and long chain fatty acids by complex coacervation of gelatin and gum arabic. J. Food Process Eng., 2018, 41(8), e12907.
[http://dx.doi.org/10.1111/jfpe.12907]
[23]
Müller, R.H.; Jacobs, C.; Kayser, O. Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv. Drug Deliv. Rev., 2001, 47(1), 3-19.
[http://dx.doi.org/10.1016/S0169-409X(00)00118-6] [PMID: 11251242]
[24]
Cheow, W.S.; Hadinoto, K. Enhancing encapsulation efficiency of highly water-soluble antibiotic in poly (lactic-co-glycolic acid) nanoparticles: modifications of standard nanoparticle preparation methods. Colloids Surf. A Physicochem. Eng. Asp., 2010, 370(1-3), 79-86.
[http://dx.doi.org/10.1016/j.colsurfa.2010.08.050]
[25]
Wohlfart, S.; Khalansky, A.S.; Gelperina, S.; Maksimenko, O.; Bernreuther, C.; Glatzel, M.; Kreuter, J. Efficient chemotherapy of rat glioblastoma using doxorubicin-loaded PLGA nanoparticles with different stabilizers. PLoS One, 2011, 6(5), e19121.
[http://dx.doi.org/10.1371/journal.pone.0019121] [PMID: 21573151]
[26]
Aggarwal, S.; Gupta, S.; Pabla, D.; Murthy, R.S.R. Gemcitabine-loaded PLGA-PEG immunonanoparticles for targeted chemotherapy of pancreatic cancer. Cancer Nanotech., 2013, 4(6), 145.
[http://dx.doi.org/10.1007/s12645-013-0046-3]
[27]
Li, J.M.; Chen, W.; Wang, H.; Jin, C.; Yu, X.J.; Lu, W.Y.; Cui, L.; Fu, D.L.; Ni, Q.X.; Hou, H-M. Preparation of albumin nanospheres loaded with gemcitabine and their cytotoxicity against BXPC-3 cells in vitro. Acta Pharmacologica. Sinica., 2009, 30(9), 1337.
[http://dx.doi.org/10.1038/aps.2009.125]
[28]
Jia, L.; Zheng, J.J.; Jiang, S.M.; Huang, K.H. Preparation, physicochemical characterization and cytotoxicity in vitro of gemcitabine-loaded PEG-PDLLA nanovesicles. World J. Gastroenterol., 2010, 16(8), 1008.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 7
Year: 2020
Published on: 15 September, 2020
Page: [622 - 628]
Pages: 7
DOI: 10.2174/1567201817666200512094145
Price: $65

Article Metrics

PDF: 18
HTML: 2