Azacitidine, as a DNMT Inhibitor Decreases hTERT Gene Expression and Telomerase Activity More Effective Compared with HDAC Inhibitor in Human Head and Neck Squamous Cell Carcinoma Cell Lines

Author(s): Sepideh Atri, Nikoo Nasoohi, Mahshid Hodjat*

Journal Name: Current Molecular Pharmacology

Volume 14 , Issue 1 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Head and neck squamous cell carcinoma (HNSCC) is one of the most fatal malignancies worldwide and despite using various therapeutic strategies for the treatment of HNSCC, the surveillance rate is low. Telomerase has been remarked as the primary target in cancer therapy. Considering the key regulatory role of epigenetic mechanisms in controlling genome expression, the present study aimed to investigate the effects of two epigenetic modulators, a DNA methylation inhibitor and a histone deacetylase inhibitor on cell migration, proliferation, hTERT gene expression, and telomerase activity in HNSCC cell lines.

Methods: Human HNSCC cell lines were treated with Azacitidine and Trichostatin A to investigate their effects on telomerase gene expression and activity. Cell viability, migration, hTERT gene expression, and telomerase activity were studied using MTT colorimetric assay, scratch wound assay, qRT-PCR, and TRAP assay, respectively.

Results: Azacitidine at concentrations of ≤1μM and Trichostatin A at 0.1 to 0.3nM concentrations significantly decreased FaDu and Cal-27 cells migration. The results showed that Azacitidine significantly decreased hTERT gene expression and telomerase activity in FaDu and Cal-27 cell lines. However, there were no significant changes in hTERT gene expression at different concentrations of Trichostatin A in both cell lines. Trichostatin A treatment affected telomerase activity at the high dose of 0.3 nM Trichostatin A.

Conclusion: The findings revealed that unlike histone deacetylase inhibitor, Azacitidine as an inhibitor of DNA methylation decreases telomerase expression in HNSCC cells. This might suggest the potential role of DNA methyltransferase inhibitors in telomerase-based therapeutic approaches in squamous cell carcinoma.

Keywords: Head and neck squamous cell carcinoma, azacitidine, trichostatin A, telomerase, epigenetic modulator, hTERT expression.

[1]
Fitzmaurice, C.; Allen, C.; Barber, R.; Barregard, L.; Bhutta, Z.; Brenner, H.; Dicker, D.J.; Chimed-Orchir, O.; Dandona, R.; Dandona, L.; Fleming, T. Global Burden of Disease Cancer Collaboration. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups: 1990 to 2015: A systematic analysis for the global burden of disease study. JAMA Oncol., 2017, 3, 524-548.
[http://dx.doi.org/10.1001/jamaoncol.2016.5688] [PMID: 27918777]
[2]
Noori-Daloii, M.R.; Ebadi, N. Pharmacogenomics and cancer stem cells. Med. Sci. J. Islamic Azad Univ. Tehran Med. Branch, 2015, 25, 1-15.
[3]
Liu, X.; Jiang, L.; Wang, A.; Yu, J.; Shi, F.; Zhou, X. MicroRNA-138 suppresses invasion and promotes apoptosis in head and neck squamous cell carcinoma cell lines. Cancer Lett., 2009, 286(2), 217-222.
[http://dx.doi.org/10.1016/j.canlet.2009.05.030] [PMID: 19540661]
[4]
Fazel, R.; Krumholz, H.M.; Wang, Y.; Ross, J.S.; Chen, J.; Ting, H.H.; Shah, N.D.; Nasir, K.; Einstein, A.J.; Nallamothu, B.K. Exposure to low-dose ionizing radiation from medical imaging procedures. N. Engl. J. Med., 2009, 361(9), 849-857.
[http://dx.doi.org/10.1056/NEJMoa0901249] [PMID: 19710483]
[5]
Zhang, C-L.; Huang, T.; Wu, B-L.; He, W-X.; Liu, D. Stem cells in cancer therapy: opportunities and challenges. Oncotarget, 2017, 8(43), 75756-75766.
[http://dx.doi.org/10.18632/oncotarget.20798] [PMID: 29088907]
[6]
Mu, J.; Wei, L.X. Telomere and telomerase in oncology. Cell Res., 2002, 12(1), 1-7.
[http://dx.doi.org/10.1038/sj.cr.7290104] [PMID: 11942406]
[7]
Montalto, M.C.; Phillips, J.S.; Ray, F.A. Telomerase activation in human fibroblasts during escape from crisis. J. Cell. Physiol., 1999, 180(1), 46-52.
[http://dx.doi.org/10.1002/(SICI)1097-4652(199907)180:1<46::AID-JCP5>3.0.CO;2-K] [PMID: 10362016]
[8]
Capezzone, M.; Cantara, S.; Marchisotta, S.; Filetti, S.; De Santi, M.M.; Rossi, B.; Ronga, G.; Durante, C.; Pacini, F. Short telomeres, telomerase reverse transcriptase gene amplification, and increased telomerase activity in the blood of familial papillary thyroid cancer patients. J. Clin. Endocrinol. Metab., 2008, 93(10), 3950-3957.
[http://dx.doi.org/10.1210/jc.2008-0372] [PMID: 18664542]
[9]
Rai, A.; Naikmasur, V.G.; Sattur, A. Quantification of telomerase activity in normal oral mucosal tissue and oral squamous cell carcinoma. Indian J. Med. Paediatr. Oncol., 2016, 37(3), 183-188.
[http://dx.doi.org/10.4103/0971-5851.190350] [PMID: 27688612]
[10]
Daniel, M.; Peek, G.W.; Tollefsbol, T.O. Regulation of the human catalytic subunit of telomerase (hTERT). Gene, 2012, 498(2), 135-146.
[http://dx.doi.org/10.1016/j.gene.2012.01.095] [PMID: 22381618]
[11]
Lee, J.H.; Khadka, P.; Baek, S.H.; Chung, I.K. CHIP promotes human telomerase reverse transcriptase degradation and negatively regulates telomerase activity. J. Biol. Chem., 2010, 285(53), 42033-42045.
[http://dx.doi.org/10.1074/jbc.M110.149831] [PMID: 20959453]
[12]
Leão, R.; Apolónio, J.D.; Lee, D.; Figueiredo, A.; Tabori, U.; Castelo-Branco, P. Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: clinical impacts in cancer. J. Biomed. Sci., 2018, 25(1), 22.
[http://dx.doi.org/10.1186/s12929-018-0422-8] [PMID: 29526163]
[13]
Zhang, Y.; Toh, L.; Lau, P.; Wang, X. Human telomerase reverse transcriptase (hTERT) is a novel target of the Wnt/β-catenin pathway in human cancer. J. Biol. Chem., 2012, 287(39), 32494-32511.
[http://dx.doi.org/10.1074/jbc.M112.368282] [PMID: 22854964]
[14]
Yin, L.; Hubbard, A.K.; Giardina, C. NF-κ B regulates transcription of the mouse telomerase catalytic subunit. J. Biol. Chem., 2000, 275(47), 36671-36675.
[http://dx.doi.org/10.1074/jbc.M007378200] [PMID: 10970902]
[15]
Dwyer, J.; Li, H.; Xu, D.; Liu, J.P. Transcriptional regulation of telomerase activity: roles of the the Ets transcription factor family. Ann. N. Y. Acad. Sci., 2007, 1114, 36-47.
[http://dx.doi.org/10.1196/annals.1396.022] [PMID: 17986575]
[16]
Berletch, J.B.; Liu, C.; Love, W.K.; Andrews, L.G.; Katiyar, S.K.; Tollefsbol, T.O. Epigenetic and genetic mechanisms contribute to telomerase inhibition by EGCG. J. Cell. Biochem., 2008, 103(2), 509-519.
[http://dx.doi.org/10.1002/jcb.21417] [PMID: 17570133]
[17]
Lewis, K.A.; Tollefsbol, T.O. Regulation of the telomerase reverse transcriptase subunit through epigenetic mechanisms. Front. Genet., 2016, 7, 83.
[http://dx.doi.org/10.3389/fgene.2016.00083] [PMID: 27242892]
[18]
Kulis, M.; Esteller, M. DNA methylation and cancer.Advances in genetics; Academic Press, 2010, Vol. 70, pp. 27-56.
[19]
Adler, L. The Genome, Genes and Brain–Tailored Drugs. Clinical Trials in Psychopharmacology: A Better Brain., 2010, 43-59.
[20]
Rang, F.J.; Boonstra, J. Causes and consequences of age-related changes in DNA methylation: a role for ROS? Biology (Basel), 2014, 3(2), 403-425.
[http://dx.doi.org/10.3390/biology3020403] [PMID: 24945102]
[21]
Hashimshony, T.; Zhang, J.; Keshet, I.; Bustin, M.; Cedar, H. The role of DNA methylation in setting up chromatin structure during development. Nat. Genet., 2003, 34(2), 187-192.
[http://dx.doi.org/10.1038/ng1158] [PMID: 12740577]
[22]
Bechter, O.E.; Eisterer, W.; Dlaska, M.; Kühr, T.; Thaler, J. CpG island methylation of the hTERT promoter is associated with lower telomerase activity in B-cell lymphocytic leukemia. Exp. Hematol., 2002, 30(1), 26-33.
[http://dx.doi.org/10.1016/S0301-472X(01)00760-3] [PMID: 11823034]
[23]
Kumari, A.; Srinivasan, R.; Vasishta, R.K.; Wig, J.D. Positive regulation of human telomerase reverse transcriptase gene expression and telomerase activity by DNA methylation in pancreatic cancer. Ann. Surg. Oncol., 2009, 16(4), 1051-1059.
[http://dx.doi.org/10.1245/s10434-009-0333-8] [PMID: 19194757]
[24]
Yoo, C.B.; Jones, P.A. Epigenetic therapy of cancer: past, present and future. Nat. Rev. Drug Discov., 2006, 5(1), 37-50.
[http://dx.doi.org/10.1038/nrd1930] [PMID: 16485345]
[25]
Noroozi Aghide, A.; Lashgari, N. Epigenetic-Based Cancer Therapy. Paramedic. Sci. Milit Health., 2015, 10, 56-68.
[26]
Issa, J-P.J.; Kantarjian, H.M.; Kirkpatrick, P. Nature Publishing Group, 2005.
[27]
Zhang, M.G.; Lee, J.Y.; Gallo, R.A.; Tao, W.; Tse, D.; Doddapaneni, R.; Pelaez, D. Therapeutic targeting of oncogenic transcription factors by natural products in eye cancer. Pharmacol. Res., 2018, 129, 365-374.
[http://dx.doi.org/10.1016/j.phrs.2017.11.033] [PMID: 29203441]
[28]
Shay, J.W. Role of telomeres and telomerase in aging and cancer. Cancer Discov., 2016, 6(6), 584-593.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0062] [PMID: 27029895]
[29]
Gigek, C.O.; Leal, M.F.; Silva, P.N.O.; Lisboa, L.C.F.; Lima, E.M.; Calcagno, D.Q.; Assumpção, P.P.; Burbano, R.R.; Smith, Mde.A. hTERT methylation and expression in gastric cancer. Biomarkers, 2009, 14(8), 630-636.
[http://dx.doi.org/10.3109/13547500903225912] [PMID: 20001710]
[30]
Zinn, R.L.; Pruitt, K.; Eguchi, S.; Baylin, S.B.; Herman, J.G. hTERT is expressed in cancer cell lines despite promoter DNA methylation by preservation of unmethylated DNA and active chromatin around the transcription start site. Cancer Res., 2007, 67(1), 194-201.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3396] [PMID: 17210699]
[31]
Meeran, S.M.; Patel, S.N.; Tollefsbol, T.O. Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PLoS One, 2010, 5(7)e11457
[http://dx.doi.org/10.1371/journal.pone.0011457] [PMID: 20625516]
[32]
Guilleret, I.; Yan, P.; Grange, F.; Braunschweig, R.; Bosman, F.T.; Benhattar, J. Hypermethylation of the human telomerase catalytic subunit (hTERT) gene correlates with telomerase activity. Int. J. Cancer, 2002, 101(4), 335-341.
[http://dx.doi.org/10.1002/ijc.10593] [PMID: 12209957]
[33]
Shin, K.H.; Kang, M.K.; Dicterow, E.; Park, N.H. Hypermethylation of the hTERT promoter inhibits the expression of telomerase activity in normal oral fibroblasts and senescent normal oral keratinocytes. Br. J. Cancer, 2003, 89(8), 1473-1478.
[http://dx.doi.org/10.1038/sj.bjc.6601291] [PMID: 14562019]
[34]
Jiang, J.; Zhao, L-J.; Zhao, C.; Zhang, G.; Zhao, Y.; Li, J-R.; Li, X.P.; Wei, L.H. Hypomethylated CpG around the transcription start site enables TERT expression and HPV16 E6 regulates TERT methylation in cervical cancer cells. Gynecol. Oncol., 2012, 124(3), 534-541.
[http://dx.doi.org/10.1016/j.ygyno.2011.11.023] [PMID: 22108635]
[35]
Ahrens, T.D.; Timme, S.; Hoeppner, J.; Ostendorp, J.; Hembach, S.; Follo, M.; Hopt, U.T.; Werner, M.; Busch, H.; Boerries, M.; Lassmann, S. Selective inhibition of esophageal cancer cells by combination of HDAC inhibitors and Azacytidine. Epigenetics, 2015, 10(5), 431-445.
[http://dx.doi.org/10.1080/15592294.2015.1039216] [PMID: 25923331]
[36]
Abbas, A.; Hall, J.A.; Patterson, W.L.III; Ho, E.; Hsu, A.; Al-Mulla, F.; Georgel, P.T. Sulforaphane modulates telomerase activity via epigenetic regulation in prostate cancer cell lines. Biochem. Cell Biol., 2016, 94(1), 71-81.
[http://dx.doi.org/10.1139/bcb-2015-0038] [PMID: 26458818]
[37]
Choi, J-H.; Min, N.Y.; Park, J.; Kim, J.H.; Park, S.H.; Ko, Y.J.; Kang, Y.; Moon, Y.J.; Rhee, S.; Ham, S.W.; Park, A.J.; Lee, K.H. TSA-induced DNMT1 down-regulation represses hTERT expression via recruiting CTCF into demethylated core promoter region of hTERT in HCT116. Biochem. Biophys. Res. Commun., 2010, 391(1), 449-454.
[http://dx.doi.org/10.1016/j.bbrc.2009.11.078] [PMID: 19914212]
[38]
Zhu, K.; Qu, D.; Sakamoto, T.; Fukasawa, I.; Hayashi, M.; Inaba, N. Telomerase expression and cell proliferation in ovarian cancer cells induced by histone deacetylase inhibitors. Arch. Gynecol. Obstet., 2008, 277(1), 15-19.
[http://dx.doi.org/10.1007/s00404-007-0423-4] [PMID: 17680259]
[39]
Khaw, A.K.; Silasudjana, M.; Banerjee, B.; Suzuki, M.; Baskar, R.; Hande, M.P. Inhibition of telomerase activity and human telomerase reverse transcriptase gene expression by histone deacetylase inhibitor in human brain cancer cells. Mutat. Res., 2007, 625(1-2), 134-144.
[http://dx.doi.org/10.1016/j.mrfmmm.2007.06.005] [PMID: 17669439]
[40]
Kumar, A.; Nilednu, P.; Kumar, A.; Sharma, N.K. Epigenetic perturbation driving asleep telomerase reverse transcriptase: Possible therapeutic avenues in carcinoma. Tumour Biol., 2017, 39(3)1010428317695951
[http://dx.doi.org/10.1177/1010428317695951] [PMID: 28347254]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 14
ISSUE: 1
Year: 2021
Published on: 11 May, 2020
Page: [60 - 67]
Pages: 8
DOI: 10.2174/1874467213666200512080122
Price: $65

Article Metrics

PDF: 30
HTML: 2