Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Melatonin Modulates Lactation by Regulating Prolactin Secretion Via Tuberoinfundibular Dopaminergic Neurons in the Hypothalamus- Pituitary System

Author(s): Hongyang Li, Jingya Wei, Fengtao Ma, Qiang Shan, Duo Gao, Yuhang Jin and Peng Sun*

Volume 21, Issue 8, 2020

Page: [744 - 750] Pages: 7

DOI: 10.2174/1389203721666200511093733

Price: $65

Abstract

In-depth studies have identified many hormones important for controlling mammary growth and maintaining lactation. One of these is melatonin, which is synthesized and secreted by the pineal gland to regulate circadian rhythms, improve antioxidant capacity, and enhance immunity. Prolactin is secreted by the pituitary gland and is associated with the growth and development of mammary glands as well as initiation and maintenance of lactation. The hypothalamus-pituitary system, the most important endocrine system in the body, regulates prolactin secretion mainly through dopamine released from tuberoinfundibular dopaminergic neurons. This review provides a reference for further study and describes the regulation of lactation and prolactin secretion by melatonin, primarily via the protection and stimulation of tuberoinfundibular dopaminergic neurons.

Keywords: Melatonin, prolactin, dopamine, lactation, hypothalamus-pituitary system, tuberoinfundibular dopaminergic neurons.

Graphical Abstract
[1]
Tong, J.J.; Thompson, I.M.; Zhao, X.; Lacasse, P. Effect of the concentration of circulating prolactin on dairy cows’ responsiveness to domperidone injection. J. Dairy Sci., 2018, 101(3), 2579-2587.
[http://dx.doi.org/10.3168/jds.2017-13828] [PMID: 29331457]
[2]
Jimenez-Jorge, S.; Jimenez-Caliani, A.J.; Guerrero, J.M.; Naranjo, M.C.; Lardone, P.J.; Carrillo-Vico, A.; Osuna, C.; Molinero, P. Melatonin synthesis and melatonin-membrane receptor (MT1) expression during rat thymus development: role of the pineal gland. J. Pineal Res., 2005, 39(1), 77-83.
[http://dx.doi.org/10.1111/j.1600-079X.2005.00220.x] [PMID: 15978061]
[3]
Agathokleous, E.; Kitao, M.; Calabrese, E.J. New insights into the role of melatonin in plants and animals. Chem. Biol. Interact., 2019, 299, 163-167.
[http://dx.doi.org/10.1016/j.cbi.2018.12.008] [PMID: 30553720]
[4]
Auldist, M.J.; Turner, S.A.; McMahon, C.D.; Prosser, C.G. Effects of melatonin on the yield and composition of milk from grazing dairy cows in New Zealand. J. Dairy Res., 2007, 74(1), 52-57.
[http://dx.doi.org/10.1017/S0022029906002160] [PMID: 16978437]
[5]
Paul, R.; Phukan, B.C.; Justin Thenmozhi, A.; Manivasagam, T.; Bhattacharya, P.; Borah, A. Melatonin protects against behavioral deficits, dopamine loss and oxidative stress in homocysteine model of Parkinson’s disease. Life Sci., 2018, 192, 238-245.
[http://dx.doi.org/10.1016/j.lfs.2017.11.016] [PMID: 29138117]
[6]
Sarapura, V.D. Prolactin; Humana Press, 1997.
[7]
Riddle, O.; Bates, R.W.; Dykshorn, S.W. The preparation, identification and assay of prolactin-a hormone of the anterior pituitary. Am. J. Physiol., 1933, 105, 191-216.
[http://dx.doi.org/10.1152/ajplegacy.1933.105.1.191]
[8]
Herlant, M. The cells of the adenohypophysis and their functional significance. Int. Rev. Cytol., 1964, 17, 299-382.
[http://dx.doi.org/10.1016/S0074-7696(08)60409-X] [PMID: 5337625]
[9]
Fuxe, K.; Hökfelt, T.; Eneroth, P.; Gustafsson, J.A.; Skett, P. Prolactin-like immunoreactivity: localization in nerve terminals of rat hypothalamus. Science, 1977, 196(4292), 899-900.
[http://dx.doi.org/10.1126/science.323973] [PMID: 323973]
[10]
Nolin, J.M.; Witorsch, R.J. Detection of endogenous immunoreactive prolactin in rat mammary epithelial cells during lactation. Endocrinology, 1976, 99(4), 949-958.
[http://dx.doi.org/10.1210/endo-99-4-949] [PMID: 789055]
[11]
Gala, R.R.; Shevach, E.M. Evidence for the release of a prolactin-like substance by mouse lymphocytes and macrophages. Proc. Soc. Exp. Biol. Med., 1994, 205(1), 12-19.
[http://dx.doi.org/10.3181/00379727-205-43671] [PMID: 8115347]
[12]
Berczi, I. The role of prolactin in the pathogenesis of autoimmune disease. Endocr. Pathol., 1993, 4, 178-195.
[http://dx.doi.org/10.1007/BF02915460]
[13]
Montgomery, D.W.; LeFevre, J.A.; Ulrich, E.D.; Adamson, C.R.; Zukoski, C.F. Identification of prolactin-like proteins synthesized by normal murine lymphocytes. Endocrinology, 1990, 127(5), 2601-2603.
[http://dx.doi.org/10.1210/endo-127-5-2601] [PMID: 2226335]
[14]
Russell, D.H. New aspects of prolactin and immunity: a lymphocyte-derived prolactin-like product and nuclear protein kinase C activation. Trends Pharmacol. Sci., 1989, 10(1), 40-44.
[http://dx.doi.org/10.1016/0165-6147(89)90106-5] [PMID: 2688216]
[15]
Cecim, M.; Kerr, J.; Bartke, A. Infertility in transgenic mice overexpressing the bovine growth hormone gene: luteal failure secondary to prolactin deficiency. Biol. Reprod., 1995, 52(5), 1162-1166.
[http://dx.doi.org/10.1095/biolreprod52.5.1162] [PMID: 7626717]
[16]
Prigent-Tessier, A.; Pageaux, J.F.; Fayard, J.M.; Lagarde, M.; Laugier, C.; Cohen, H. Prolactin up-regulates prostaglandin E2 production through increased expression of pancreatic-type phospholipase A2 (type I) and prostaglandin G/H synthase 2 in uterine cells. Mol. Cell. Endocrinol., 1996, 122(1), 101-108.
[http://dx.doi.org/10.1016/0303-7207(96)03888-9] [PMID: 8898352]
[17]
Wright, M.L.; Cykowski, L.J.; Lundrigan, L.; Hemond, K.L.; Kochan, D.M.; Faszewski, E.E.; Anuszewski, C.M. Anterior pituitary and adrenal cortical hormones accelerate or inhibit tadpole hindlimb growth and development depending on stage of spontaneous development or thyroxine concentration in induced metamorphosis. J. Exp. Zool., 1994, 270(2), 175-188.
[http://dx.doi.org/10.1002/jez.1402700207] [PMID: 7964553]
[18]
Pérez-Villamil, B.; Bordiú, E.; Puente-Cueva, M. Involvement of physiological prolactin levels in growth and prolactin receptor content of prostate glands and testes in developing male rats. J. Endocrinol., 1992, 132(3), 449-459.
[http://dx.doi.org/10.1677/joe.0.1320449] [PMID: 1564431]
[19]
Lahat, N.; Miller, A.; Shtiller, R.; Touby, E. Differential effects of prolactin upon activation and differentiation of human B lymphocytes. J. Neuroimmunol., 1993, 47(1), 35-40.
[http://dx.doi.org/10.1016/0165-5728(93)90282-4] [PMID: 8376547]
[20]
Sabharwal, P.; Glaser, R.; Lafuse, W.; Varma, S.; Liu, Q.; Arkins, S.; Kooijman, R.; Kutz, L.; Kelley, K.W.; Malarkey, W.B. Prolactin synthesized and secreted by human peripheral blood mononuclear cells: an autocrine growth factor for lymphoproliferation. Proc. Natl. Acad. Sci. USA, 1992, 89(16), 7713-7716.
[http://dx.doi.org/10.1073/pnas.89.16.7713] [PMID: 1502189]
[21]
Stevens, A.M.; Wang, Y.F.; Sieger, K.A.; Lu, H.F.; Yu-Lee, L.Y. Biphasic transcriptional regulation of the interferon regulatory factor-1 gene by prolactin: involvement of gamma-interferon-activated sequence and Stat-related proteins. Mol. Endocrinol., 1995, 9(4), 513-525.
[PMID: 7659094]
[22]
Freeman, M.E.; Kanyicska, B.; Lerant, A.; Nagy, G. Prolactin: structure, function, and regulation of secretion. Physiol. Rev., 2000, 80(4), 1523-1631.
[http://dx.doi.org/10.1152/physrev.2000.80.4.1523] [PMID: 11015620]
[23]
Pippard, C.; Baylis, P.H. Prolactin stimulates Na+-K+-ATPase activity located in the outer renal medulla of the rat. J. Endocrinol., 1986, 108(1), 95-99.
[http://dx.doi.org/10.1677/joe.0.1080095] [PMID: 3003225]
[24]
Glasow, A.; Breidert, M.; Haidan, A.; Anderegg, U.; Kelly, P.A.; Bornstein, S.R. Functional aspects of the effect of prolactin (PRL) on adrenal steroidogenesis and distribution of the PRL receptor in the human adrenal gland. J. Clin. Endocrinol. Metab., 1996, 81(8), 3103-3111.
[PMID: 8768882]
[25]
Weinhaus, A.J.; Stout, L.E.; Sorenson, R.L. Glucokinase, hexokinase, glucose transporter 2, and glucose metabolism in islets during pregnancy and prolactin-treated islets in vitro: mechanisms for long term up-regulation of islets. Endocrinology, 1996, 137(5), 1640-1649.
[http://dx.doi.org/10.1210/endo.137.5.8612496] [PMID: 8612496]
[26]
Bern, H.A.; Nicoll, C.S. The comparative endocrinology of prolactin, 1977.
[27]
Grattan, D.R.; Kokay, I.C. Prolactin: a pleiotropic neuroendocrine hormone. J. Neuroendocrinol., 2008, 20(6), 752-763.
[http://dx.doi.org/10.1111/j.1365-2826.2008.01736.x] [PMID: 18601698]
[28]
Groner, B. Transcription factor regulation in mammary epithelial cells. Domest. Anim. Endocrinol., 2002, 23(1-2), 25-32.
[http://dx.doi.org/10.1016/S0739-7240(02)00142-X] [PMID: 12142223]
[29]
Houdebine, L.M. Effects of prolactin and progesterone on expression of casein genes. Titration of casein mRNA by hybridization with complementary DNA. Eur. J. Biochem., 1976, 68(1), 219-225.
[http://dx.doi.org/10.1111/j.1432-1033.1976.tb10781.x] [PMID: 964265]
[30]
Jagoda, C.A.; Rillema, J.A. Temporal effect of prolactin on the activities of lactose synthetase, alpha-lactalbumin, and galactosyl transferase in mouse mammary gland explants. Proc. Soc. Exp. Biol. Med., 1991, 197(4), 431-434.
[http://dx.doi.org/10.3181/00379727-197-43278] [PMID: 1908098]
[31]
Rudolph, M.C.; Russell, T.D.; Webb, P.; Neville, M.C.; Anderson, S.M. Prolactin-mediated regulation of lipid biosynthesis genes in vivo in the lactating mammary epithelial cell. Am. J. Physiol. Endocrinol. Metab., 2011, 300(6), E1059-E1068.
[http://dx.doi.org/10.1152/ajpendo.00083.2011] [PMID: 21467304]
[32]
Waters, S.B.; Rillema, J.A. Effect of prolactin on enzymes of lipid biosynthesis in mammary gland explants. Am. J. Physiol., 1988, 255(4 Pt 1), E567-E571.
[PMID: 2902801]
[33]
Grattan, D.R.; Xu, J.; McLachlan, M.J.; Kokay, I.C.; Bunn, S.J.; Hovey, R.C.; Davey, H.W. Feedback regulation of PRL secretion is mediated by the transcription factor, signal transducer, and activator of transcription 5b. Endocrinology, 2001, 142(9), 3935-3940.
[http://dx.doi.org/10.1210/endo.142.9.8385] [PMID: 11517172]
[34]
Ma, F.Y.; Anderson, G.M.; Gunn, T.D.; Goffin, V.; Grattan, D.R.; Bunn, S.J. Prolactin specifically activates signal transducer and activator of transcription 5b in neuroendocrine dopaminergic neurons. Endocrinology, 2005, 146(12), 5112-5119.
[http://dx.doi.org/10.1210/en.2005-0770] [PMID: 16123156]
[35]
Campo Verde Arboccó, F.; Persia, F.A.; Hapon, M.B.; Jahn, G.A. Hypothyroidism decreases JAK/STAT signaling pathway in lactating rat mammary gland. Mol. Cell. Endocrinol., 2017, 450, 14-23.
[http://dx.doi.org/10.1016/j.mce.2017.04.003] [PMID: 28390952]
[36]
Wall, E.H.; Crawford, H.M.; Ellis, S.E.; Dahl, G.E.; McFadden, T.B. Mammary response to exogenous prolactin or frequent milking during early lactation in dairy cows. J. Dairy Sci., 2006, 89(12), 4640-4648.
[http://dx.doi.org/10.3168/jds.S0022-0302(06)72514-0] [PMID: 17106096]
[37]
Lollivier, V.; Lacasse, P.; Angulo Arizala, J.; Lamberton, P.; Wiart, S.; Portanguen, J.; Bruckmaier, R.; Boutinaud, M. In vivo inhibition followed by exogenous supplementation demonstrates galactopoietic effects of prolactin on mammary tissue and milk production in dairy cows. J. Dairy Sci., 2015, 98(12), 8775-8787.
[http://dx.doi.org/10.3168/jds.2015-9853] [PMID: 26387019]
[38]
Lacasse, P.; Lollivier, V.; Bruckmaier, R.M.; Boisclair, Y.R.; Wagner, G.F.; Boutinaud, M. Effect of the prolactin-release inhibitor quinagolide on lactating dairy cows. J. Dairy Sci., 2011, 94(3), 1302-1309.
[http://dx.doi.org/10.3168/jds.2010-3649] [PMID: 21338795]
[39]
Lacasse, P.; Ollier, S. The dopamine antagonist domperidone increases prolactin concentration and enhances milk production in dairy cows. J. Dairy Sci., 2015, 98(11), 7856-7864.
[http://dx.doi.org/10.3168/jds.2015-9865] [PMID: 26298751]
[40]
Lacasse, P.; Ollier, S.; Lollivier, V.; Boutinaud, M. New insights into the importance of prolactin in dairy ruminants. J. Dairy Sci., 2016, 99(1), 864-874.
[http://dx.doi.org/10.3168/jds.2015-10035] [PMID: 26547648]
[41]
Woodside, B. Prolactin and the hyperphagia of lactation. Physiol. Behav., 2007, 91(4), 375-382.
[http://dx.doi.org/10.1016/j.physbeh.2007.04.015] [PMID: 17498759]
[42]
Woodside, B.; Budin, R.; Wellman, M.K.; Abizaid, A. Many mouths to feed: the control of food intake during lactation. Front. Neuroendocrinol., 2012, 33(3), 301-314.
[http://dx.doi.org/10.1016/j.yfrne.2012.09.002] [PMID: 23000403]
[43]
Ladyman, S.R.; Grattan, D.R. Region-specific reduction in leptin-induced phosphorylation of signal transducer and activator of transcription-3 (STAT3) in the rat hypothalamus is associated with leptin resistance during pregnancy. Endocrinology, 2004, 145(8), 3704-3711.
[http://dx.doi.org/10.1210/en.2004-0338] [PMID: 15142988]
[44]
Ladyman, S.R.; Fieldwick, D.M.; Grattan, D.R. Suppression of leptin-induced hypothalamic JAK/STAT signalling and feeding response during pregnancy in the mouse. Reproduction, 2012, 144(1), 83-90.
[http://dx.doi.org/10.1530/REP-12-0112] [PMID: 22580369]
[45]
Ollier, S.; Zhao, X.; Lacasse, P. Effect of prolactin-release inhibition on milk production and mammary gland involution at drying-off in cows. J. Dairy Sci., 2013, 96(1), 335-343.
[http://dx.doi.org/10.3168/jds.2012-5955] [PMID: 23164222]
[46]
Ollier, S.; Zhao, X.; Lacasse, P. Effects of feed restriction and prolactin-release inhibition at drying off on metabolism and mammary gland involution in cows. J. Dairy Sci., 2014, 97(8), 4942-4954.
[http://dx.doi.org/10.3168/jds.2014-7914] [PMID: 24881791]
[47]
Ollier, S.; Zhao, X.; Lacasse, P. Effects of feed restriction and prolactin-release inhibition at drying-off on susceptibility to new intramammary infection in cows. J. Dairy Sci., 2015, 98(1), 221-228.
[http://dx.doi.org/10.3168/jds.2014-8426] [PMID: 25465546]
[48]
García, M.C.; López, M.; Gualillo, O.; Seoane, L.M.; Diéguez, C.; Señarís, R.M. Hypothalamic levels of NPY, MCH, and prepro-orexin mRNA during pregnancy and lactation in the rat: role of prolactin. FASEB J., 2003, 17(11), 1392-1400.
[http://dx.doi.org/10.1096/fj.02-0933com] [PMID: 12890692]
[49]
Rijnberk, A. Hypothalamus-pituitary system.Clinical Endocrinology of Dogs and Cats; Rijnberk, A., Ed.; Springer: Dordrecht, 1996.
[http://dx.doi.org/10.1007/978-94-009-0105-6_2]
[50]
Fitzgerald, P.; Dinan, T.G. Prolactin and dopamine: what is the connection? A review article. J. Psychopharmacol. (Oxford), 2008, 22(2)(Suppl.), 12-19.
[http://dx.doi.org/10.1177/0269216307087148] [PMID: 18477617]
[51]
Grattan, D.R. 60 YEARS OF NEUROENDOCRINOLOGY: The hypothalamo-prolactin axis. J. Endocrinol., 2015, 226(2), T101-T122.
[http://dx.doi.org/10.1530/JOE-15-0213] [PMID: 26101377]
[52]
Thongmak, S.; Sarika, W.; Rattanakul, C. A delay-differential equations model of prolactin secretion: effects of dopamine and thyrotropin-releasing hormone. Nonlinear Stud., 2010, 17, 81-93.
[53]
Saleem, M.; Martin, H.; Coates, P. Prolactin Biology and Laboratory Measurement: An Update on Physiology and Current Analytical Issues. Clin. Biochem. Rev., 2018, 39(1), 3-16.
[PMID: 30072818]
[54]
Ben-Jonathan, N.; Hnasko, R. Dopamine as a prolactin (PRL) inhibitor. Endocr. Rev., 2001, 22(6), 724-763.
[http://dx.doi.org/10.1210/edrv.22.6.0451] [PMID: 11739329]
[55]
Gonzalez-Iglesias, A.E.; Murano, T.; Li, S.; Tomić, M.; Stojilkovic, S.S. Dopamine inhibits basal prolactin release in pituitary lactotrophs through pertussis toxin-sensitive and -insensitive signaling pathways. Endocrinology, 2008, 149(4), 1470-1479.
[http://dx.doi.org/10.1210/en.2007-0980] [PMID: 18096663]
[56]
Enjalbert, A.; Bockaert, J. Pharmacological characterization of the D2 dopamine receptor negatively coupled with adenylate cyclase in rat anterior pituitary. Mol. Pharmacol., 1983, 23(3), 576-584.
[PMID: 6306429]
[57]
McDonald, W.M.; Sibley, D.R.; Kilpatrick, B.F.; Caron, M.G. Dopaminergic inhibition of adenylate cyclase correlates with high affinity agonist binding to anterior pituitary D2 dopamine receptors. Mol. Cell. Endocrinol., 1984, 36(3), 201-209.
[http://dx.doi.org/10.1016/0303-7207(84)90037-6] [PMID: 6540722]
[58]
Cronin, M.J.; Myers, G.A.; MacLeod, R.M.; Hewlett, E.L. Pertussis toxin uncouples dopamine agonist inhibition of prolactin release. Am. J. Physiol., 1983, 244(5), E499-E504.
[PMID: 6682634]
[59]
Arbogast, L.A.; Voogt, J.L. Hyperprolactinemia increases and hypoprolactinemia decreases tyrosine hydroxylase messenger ribonucleic acid levels in the arcuate nuclei, but not the substantia nigra or zona incerta. Endocrinology, 1991, 128(2), 997-1005.
[http://dx.doi.org/10.1210/endo-128-2-997] [PMID: 1703487]
[60]
Ma, F.Y.; Grattan, D.R.; Goffin, V.; Bunn, S.J. Prolactin-regulated tyrosine hydroxylase activity and messenger ribonucleic acid expression in mediobasal hypothalamic cultures: the differential role of specific protein kinases. Endocrinology, 2005, 146(1), 93-102.
[http://dx.doi.org/10.1210/en.2004-0800] [PMID: 15388649]
[61]
Cardinali, D.P.; Rosner, J.M. Metabolism of serotonin by the rat retina in vitro. J. Neurochem., 1971, 18(9), 1769-1770.
[http://dx.doi.org/10.1111/j.1471-4159.1971.tb03752.x] [PMID: 5571113]
[62]
Tosini, G.; Menaker, M. The clock in the mouse retina: melatonin synthesis and photoreceptor degeneration. Brain Res., 1998, 789(2), 221-228.
[http://dx.doi.org/10.1016/S0006-8993(97)01446-7] [PMID: 9573370]
[63]
Liu, C.; Fukuhara, C.; Wessel, J.H., III; Iuvone, P.M.; Tosini, G. Localization of Aa-nat mRNA in the rat retina by fluorescence in situ hybridization and laser capture microdissection. Cell Tissue Res., 2004, 315(2), 197-201.
[http://dx.doi.org/10.1007/s00441-003-0822-1] [PMID: 14618388]
[64]
Champier, J.; Claustrat, B.; Besançon, R.; Eymin, C.; Killer, C.; Jouvet, A.; Chamba, G.; Fèvre-Montange, M. Evidence for tryptophan hydroxylase and hydroxy-indol-O-methyl-transferase mRNAs in human blood platelets. Life Sci., 1997, 60(24), 2191-2197.
[http://dx.doi.org/10.1016/S0024-3205(97)00234-8] [PMID: 9188762]
[65]
Carrillo-Vico, A.; Calvo, J.R.; Abreu, P.; Lardone, P.J.; García-Mauriño, S.; Reiter, R.J.; Guerrero, J.M. Evidence of melatonin synthesis by human lymphocytes and its physiological significance: possible role as intracrine, autocrine, and/or paracrine substance. FASEB J., 2004, 18(3), 537-539.
[http://dx.doi.org/10.1096/fj.03-0694fje] [PMID: 14715696]
[66]
Bubenik, G.A. Gastrointestinal melatonin: localization, function, and clinical relevance. Dig. Dis. Sci., 2002, 47(10), 2336-2348.
[http://dx.doi.org/10.1023/A:1020107915919] [PMID: 12395907]
[67]
Slominski, A.; Wortsman, J.; Tobin, D.J. The cutaneous serotoninergic/melatoninergic system: securing a place under the sun. FASEB J., 2005, 19(2), 176-194.
[http://dx.doi.org/10.1096/fj.04-2079rev] [PMID: 15677341]
[68]
Slominski, A.; Fischer, T.W.; Zmijewski, M.A.; Wortsman, J.; Semak, I.; Zbytek, B.; Slominski, R.M.; Tobin, D.J. On the role of melatonin in skin physiology and pathology. Endocrine, 2005, 27(2), 137-148.
[http://dx.doi.org/10.1385/ENDO:27:2:137] [PMID: 16217127]
[69]
Murch, S.J. KrishnaRaj, S.; Saxena, P.K. Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St. John’s wort (Hypericum perforatum L. cv. Anthos) plants. Plant Cell Rep., 2000, 19(7), 698-704.
[http://dx.doi.org/10.1007/s002990000206] [PMID: 30754808]
[70]
Nesbitt, A.D.; Leschziner, G.D.; Peatfield, R.C. Headache, drugs and sleep. Cephalalgia, 2014, 34(10), 756-766.
[http://dx.doi.org/10.1177/0333102414542662] [PMID: 25053748]
[71]
Schomerus, C.; Korf, H.W. Mechanisms regulating melatonin synthesis in the mammalian pineal organ. Ann. N. Y. Acad. Sci., 2005, 1057, 372-383.
[http://dx.doi.org/10.1196/annals.1356.028] [PMID: 16399907]
[72]
Claustrat, B.; Brun, J.; Chazot, G. The basic physiology and pathophysiology of melatonin. Sleep Med. Rev., 2005, 9(1), 11-24.
[http://dx.doi.org/10.1016/j.smrv.2004.08.001] [PMID: 15649735]
[73]
Arendt, J.; Skene, D.J. Melatonin as a chronobiotic. Sleep Med. Rev., 2005, 9(1), 25-39.
[http://dx.doi.org/10.1016/j.smrv.2004.05.002] [PMID: 15649736]
[74]
Armstrong, S.M. Melatonin and circadian control in mammals. Experientia, 1989, 45(10), 932-938.
[http://dx.doi.org/10.1007/BF01953050] [PMID: 2680573]
[75]
Peschke, E.; Bähr, I.; Mühlbauer, E. Experimental and clinical aspects of melatonin and clock genes in diabetes. J. Pineal Res., 2015, 59(1), 1-23.
[http://dx.doi.org/10.1111/jpi.12240] [PMID: 25904189]
[76]
Liu, Y.; Yang, Y.; Li, W.; Ao, H.; Zhang, Y.; Zhou, R.; Li, K. Effects of melatonin on the synthesis of estradiol and gene expression in pig granulosa cells. J. Pineal Res., 2018, •••e12546
[77]
Söderquist, F.; Janson, E.T.; Rasmusson, A.J.; Ali, A.; Stridsberg, M.; Cunningham, J.L. Melatonin Immunoreactivity in Malignant Small Intestinal Neuroendocrine Tumours. PLoS One, 2016, 11(10)e0164354
[http://dx.doi.org/10.1371/journal.pone.0164354] [PMID: 27736994]
[78]
Fernández-Gil, B.; Moneim, A.E.; Ortiz, F.; Shen, Y.Q.; Soto-Mercado, V.; Mendivil-Perez, M.; Guerra-Librero, A.; Acuña-Castroviejo, D.; Molina-Navarro, M.M.; García-Verdugo, J.M.; Sayed, R.K.; Florido, J.; Luna, J.D.; López, L.C.; Escames, G. Melatonin protects rats from radiotherapy-induced small intestine toxicity. PLoS One, 2017, 12(4)e0174474
[http://dx.doi.org/10.1371/journal.pone.0174474] [PMID: 28403142]
[79]
Srinivasan, V.; Pandi-Perumal, S.R.; Maestroni, G.J.M.; Esquifino, A.I.; Hardeland, R.; Cardinali, D.P. Role of melatonin in neurodegenerative diseases. Neurotox. Res., 2005, 7(4), 293-318.
[http://dx.doi.org/10.1007/BF03033887] [PMID: 16179266]
[80]
Bondy, S.; Sharman, E.H. Melatonin; Oxidative Stress, and the Aging Brain, 2010.
[81]
Matsubara, E.; Bryant-Thomas, T.; Pacheco Quinto, J.; Henry, T.L.; Poeggeler, B.; Herbert, D.; Cruz-Sanchez, F.; Chyan, Y.J.; Smith, M.A.; Perry, G.; Shoji, M.; Abe, K.; Leone, A.; Grundke-Ikbal, I.; Wilson, G.L.; Ghiso, J.; Williams, C.; Refolo, L.M.; Pappolla, M.A.; Chain, D.G.; Neria, E. Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer’s disease. J. Neurochem., 2003, 85(5), 1101-1108.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01654.x] [PMID: 12753069]
[82]
Tian, Y.M.; Zhang, G.Y.; Dai, Y.R. Melatonin rejuvenates degenerated thymus and redresses peripheral immune functions in aged mice. Immunol. Lett., 2003, 88(2), 101-104.
[http://dx.doi.org/10.1016/S0165-2478(03)00068-3] [PMID: 12880677]
[83]
Arias, J.; Melean, E.; Valero, N.; Pons, H.; Chacín-Bonilla, L.; Larreal, Y.; Bonilla, E. Effect of melatonin on lymphocyte proliferation and production of interleukin-2 (IL-2) and interleukin-1 beta (IL-1 beta) in mice splenocytes. Invest. Clin., 2003, 44(1), 41-50.
[PMID: 12703182]
[84]
Pandi-Perumal, S.R.; Srinivasan, V.; Maestroni, G.J.; Cardinali, D.P.; Poeggeler, B.; Hardeland, R. Melatonin: Nature’s most versatile biological signal? FEBS J., 2006, 273(13), 2813-2838.
[http://dx.doi.org/10.1111/j.1742-4658.2006.05322.x] [PMID: 16817850]
[85]
Petrovski, K.R.; Trajcev, M.; Buneski, G. A review of the factors affecting the costs of bovine mastitis. J. S. Afr. Vet. Assoc., 2006, 77(2), 52-60.
[http://dx.doi.org/10.4102/jsava.v77i2.344] [PMID: 17120619]
[86]
Seegers, H.; Fourichon, C.; Beaudeau, F. Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet. Res., 2003, 34(5), 475-491.
[http://dx.doi.org/10.1051/vetres:2003027] [PMID: 14556691]
[87]
Yu, G.M.; Kubota, H.; Okita, M.; Maeda, T. The anti-inflammatory and antioxidant effects of melatonin on LPS-stimulated bovine mammary epithelial cells. PLoS One, 2017, 12(5)e0178525
[http://dx.doi.org/10.1371/journal.pone.0178525] [PMID: 28542575]
[88]
Shao, G.; Tian, Y.; Wang, H.; Liu, F.; Xie, G. Protective effects of melatonin on lipopolysaccharide-induced mastitis in mice. Int. Immunopharmacol., 2015, 29(2), 263-268.
[http://dx.doi.org/10.1016/j.intimp.2015.11.011] [PMID: 26590117]
[89]
Yang, M.; Shi, J.; Tian, J.; Tao, J.; Chai, M.; Wang, J.; Xu, Z.; Song, Y.; Zhu, K.; Ji, P.; Liu, G. Exogenous melatonin reduces somatic cell count of milk in Holstein cows. Sci. Rep., 2017, 7, 43280.
[http://dx.doi.org/10.1038/srep43280] [PMID: 28240296]
[90]
Lacasse, P.; Vinet, C.M.; Petitclerc, D. Effect of prepartum photoperiod and melatonin feeding on milk production and prolactin concentration in dairy heifers and cows. J. Dairy Sci., 2014, 97(6), 3589-3598.
[http://dx.doi.org/10.3168/jds.2013-7615] [PMID: 24704221]
[91]
Molik, E.; Misztal, T.; Romanowicz, K.; Zieba, D. Short-day and melatonin effects on milking parameters, prolactin profiles and growth-hormone secretion in lactating sheep. Small Rumin. Res., 2013, 109, 182-187.
[http://dx.doi.org/10.1016/j.smallrumres.2012.10.006]
[92]
Prandi, A.; Romagnoli, G.; Chiesa, F.; Tamanini, C. Plasma prolactin variations and onset of ovarian activity in lactating anestrous goats given melatonin. Anim. Reprod. Sci., 1987, 13, 291-297.
[http://dx.doi.org/10.1016/0378-4320(87)90066-2]
[93]
Fahn, S.; Cohen, G. The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it. Ann. Neurol., 1992, 32(6), 804-812.
[http://dx.doi.org/10.1002/ana.410320616] [PMID: 1471873]
[94]
Iacovitti, L.; Stull, N.D.; Johnston, K. Melatonin rescues dopamine neurons from cell death in tissue culture models of oxidative stress. Brain Res., 1997, 768(1-2), 317-326.
[http://dx.doi.org/10.1016/S0006-8993(97)00668-9] [PMID: 9369331]
[95]
Mehraein, F.; Talebi, R.; Jameie, B.; Joghataie, M.T.; Madjd, Z. Neuroprotective effect of exogenous melatonin on dopaminergic neurons of the substantia nigra in ovariectomized rats. Iran. Biomed. J., 2011, 15(1-2), 44-50.
[PMID: 21725499]
[96]
Ben-Jonathan, N. Hypothalamic control of prolactin synthesis and secretion.Prolactin; Horseman, N.D., Ed.; Kluwer Academic Publishers: Norwell, Massachusetts, 2001, pp. 1-24.
[97]
Chu, Y.S.; Shieh, K.R.; Yuan, Z.F.; Pan, J.T. Stimulatory and entraining effect of melatonin on tuberoinfundibular dopaminergic neuron activity and inhibition on prolactin secretion. J. Pineal Res., 2000, 28(4), 219-226.
[http://dx.doi.org/10.1034/j.1600-079X.2000.280404.x] [PMID: 10831157]
[98]
Shieh, K.R.; Chu, Y.S.; Pan, J.T. Circadian change of dopaminergic neuron activity: effects of constant light and melatonin. Neuroreport, 1997, 8(9-10), 2283-2287.
[http://dx.doi.org/10.1097/00001756-199707070-00037] [PMID: 9243626]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy