Anticonvulsant, Anxiolytic and Antidepressant Properties of the β-caryophyllene in Swiss Mice: Involvement of Benzodiazepine-GABAAergic, Serotonergic and Nitrergic Systems

Author(s): George L. da Silva Oliveira*, José C. Correia L. da Silva, Ana P. dos Santos C. L da Silva, Chistiane M. Feitosa, Fernanda R. de Castro Almeida

Journal Name: Current Molecular Pharmacology

Volume 14 , Issue 1 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Central nervous system disorders such as anxiety, depression and epilepsy are characterized by sharing several molecular mechanisms in common and the involvement of the L-arginine/NO pathway in neurobehavioral studies with β-caryophyllene is still little discussed.

Objectives: One of the objectives of the present study was to demonstrate the anxiolytic behavioral effect of β-caryophyllene (β-CBP) in female Swiss mice, as well as to investigate the molecular mechanisms underlying the results obtained.

Methods: This study evaluated the neurobehavioral effects of β-CBP using the open field test, rota- rod test, elevated plus maze test, novelty suppressed feeding test, tail suspension test and forced swim test, as well as pilocarpine, pentylenetetrazole and isoniazid-induced epileptic seizure models.

Results: The results demonstrated that the neuropharmacological activities of β-CBP may involve benzodiazepine/GABAergic receptors, since the pre-treatment of β-CBP (200 mg/kg) associated with flumazenil (5 mg/kg, benzodiazepine receptor antagonist) and bicuculline (1 mg/kg, selective GABAA receptor antagonist) reestablished the anxiety parameters in the elevated plus-maze test, as well as the results of reduced latency to consume food in the novelty suppressed feeding test. In addition to benzodiazepine/GABAergic receptors, the neuropharmacological properties of β-CBP may be related to inhibition of nitric oxide synthesis, since pre-treatment with L-arginine (500-750 mg/kg) reversed significantly the anxiolytic, antidepressant and anticonvulsant activities of β-CBP.

Conclusion: The results obtained provide additional support in understanding the neuromolecular mechanisms underlying the anxiolytic, antidepressant and anticonvulsive properties of β-CBP in female Swiss mice.

Keywords: β-caryophyllene, benzodiazepine/GABAergic receptors, neurobehavioral effects, neuromolecular mechanisms, nitric oxide, L-arginine/NO pathway.

[1]
Gertsch, J.; Leonti, M.; Raduner, S.; Racz, I.; Chen, J.Z.; Xie, X.Q.; Altmann, K.H.; Karsak, M.; Zimmer, A. Beta-caryophyllene is a dietary cannabinoid. Proc. Natl. Acad. Sci. USA, 2008, 105(26), 9099-9104.
[http://dx.doi.org/10.1073/pnas.0803601105] [PMID: 18574142]
[2]
Buchbauer, G.; Llic, A. Biological Activities of Selected Mono- and Sesquiterpenes: Possible Uses in Medicine.Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes; Ramawat, K.G.; Mérillon, J.M., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2013, pp. 4109-4159.
[http://dx.doi.org/10.1007/978-3-642-22144-6_183]
[3]
Yang, G.; Wu, P.; Zhou, Z.; He, X.; Meng, W.; Zhang, Z. Direct Hydration of β-Caryophyllene. Ind. Eng. Chem. Res., 2012, 49, 15864-15871.
[http://dx.doi.org/10.1021/ie301294f]
[4]
Almeida, T.S.; Rocha, J.B.T.; Rodrigues, F.F.G.; Campos, A.R.; Costa, J.G.M. Chemical composition, antibacterial and antibiotic modulatory effect of Croton campestris essential oils. Ind. Crops Prod., 2013, 44, 630-633.
[http://dx.doi.org/10.1016/j.indcrop.2012.09.010]
[5]
Oliveira, G.L.D.S.; Machado, K.C.; Machado, K.C.; da Silva, A.P.D.S.C.L.; Feitosa, C.M.; de Castro Almeida, F.R. Non-clinical toxicity of β-caryophyllene, a dietary cannabinoid: Absence of adverse effects in female Swiss mice. Regul. Toxicol. Pharmacol., 2018, 92, 338-346.
[http://dx.doi.org/10.1016/j.yrtph.2017.12.013] [PMID: 29258925]
[6]
Segat, G.C.; Manjavachi, M.N.; Matias, D.O.; Passos, G.F.; Freitas, C.S.; Costa, R.; Calixto, J.B. Antiallodynic effect of β-caryophyllene on paclitaxel-induced peripheral neuropathy in mice. Neuropharmacology, 2017, 125, 207-219.
[http://dx.doi.org/10.1016/j.neuropharm.2017.07.015] [PMID: 28729222]
[7]
Al Mansouri, S.; Ojha, S.; Al Maamari, E.; Al Ameri, M.; Nurulain, S.M.; Bahi, A. The cannabinoid receptor 2 agonist, β-caryophyllene, reduced voluntary alcohol intake and attenuated ethanol-induced place preference and sensitivity in mice. Pharmacol. Biochem. Behav., 2014, 124, 260-268.
[http://dx.doi.org/10.1016/j.pbb.2014.06.025] [PMID: 24999220]
[8]
Kamikubo, R.; Kai, K.; Tsuji-Naito, K.; Akagawa, M. β-Caryophyllene attenuates palmitate-induced lipid accumulation through AMPK signaling by activating CB2 receptor in human HepG2 hepatocytes. Mol. Nutr. Food Res., 2016, 60(10), 2228-2242.
[http://dx.doi.org/10.1002/mnfr.201600197] [PMID: 27234712]
[9]
Baldissera, M.D.; Souza, C.F.; Grando, T.H.; Doleski, P.H.; Boligon, A.A.; Stefani, L.M.; Monteiro, S.G. Hypolipidemic effect of β-caryophyllene to treat hyperlipidemic rats. Naunyn Schmiedebergs Arch. Pharmacol., 2016, 2, 1-9.
[PMID: 27913825]
[10]
Fontes, L.B.A.; Dias, D.D.S.; Aarestrup, B.J.V.; Aarestrup, F.M.; Da Silva Filho, A.A.; Corrêa, J.O.D.A. β-Caryophyllene ameliorates the development of experimental autoimmune encephalomyelitis in C57BL/6 mice. Biomed. Pharmacother., 2017, 91, 257-264.
[http://dx.doi.org/10.1016/j.biopha.2017.04.092] [PMID: 28463791]
[11]
Basha, R.H.; Sankaranarayanan, C. β-Caryophyllene, a natural sesquiterpene lactone attenuates hyperglycemia mediated oxidative and inflammatory stress in experimental diabetic rats. Chem. Biol. Interact., 2016, 245, 50-58.
[http://dx.doi.org/10.1016/j.cbi.2015.12.019] [PMID: 26748309]
[12]
Hu, Y.; Zeng, Z.; Wang, B.; Guo, S. Trans-caryophyllene inhibits amyloid β (Aβ) oligomer-induced neuroinflammation in BV-2 microglial cells. Int. Immunopharmacol., 2017, 51, 91-98.
[http://dx.doi.org/10.1016/j.intimp.2017.07.009] [PMID: 28821008]
[13]
Bahi, A.; Al Mansouri, S.; Al Memari, E.; Al Ameri, M.; Nurulain, S.M.; Ojha, S. β-Caryophyllene, a CB2 receptor agonist produces multiple behavioral changes relevant to anxiety and depression in mice. Physiol. Behav., 2014, 135, 119-124.
[http://dx.doi.org/10.1016/j.physbeh.2014.06.003] [PMID: 24930711]
[14]
Hwang, E.S.; Kim, H.B.; Lee, S.; Kim, M.J.; Kim, K.J.; Han, G.; Han, S.Y.; Lee, E.A.; Yoon, J.H.; Kim, D.O.; Maeng, S.; Park, J.H. Antidepressant-like effects of β-caryophyllene on restraint plus stress-induced depression. Behav. Brain Res., 2020, 380112439
[http://dx.doi.org/10.1016/j.bbr.2019.112439] [PMID: 31862467]
[15]
Assis, L.C.; Straliotto, M.R.; Engel, D.; Hort, M.A.; Dutra, R.C.; de Bem, A.F. β-Caryophyllene protects the C6 glioma cells against glutamate-induced excitotoxicity through the Nrf2 pathway. Neuroscience, 2014, 279, 220-231.
[http://dx.doi.org/10.1016/j.neuroscience.2014.08.043] [PMID: 25194788]
[16]
de Oliveira, C.C.; de Oliveira, C.V.; Grigoletto, J.; Ribeiro, L.R.; Funck, V.R.; Grauncke, A.C.B.; de Souza, T.L.; Souto, N.S.; Furian, A.F.; Menezes, I.R.; Oliveira, M.S. Anticonvulsant activity of β-caryophyllene against pentylenetetrazol-induced seizures. Epilepsy Behav., 2016, 56, 26-31.
[http://dx.doi.org/10.1016/j.yebeh.2015.12.040] [PMID: 26827298]
[17]
Cheng, Y.; Dong, Z.; Liu, S. β-Caryophyllene ameliorates the Alzheimer-like phenotype in APP/PS1 Mice through CB2 receptor activation and the PPARγ pathway. Pharmacology, 2014, 94(1-2), 1-12.
[http://dx.doi.org/10.1159/000362689] [PMID: 25171128]
[18]
Ojha, S.; Javed, H.; Azimullah, S.; Haque, M.E. β-Caryophyllene, a phytocannabinoid attenuates oxidative stress, neuroinflammation, glial activation, and salvages dopaminergic neurons in a rat model of Parkinson disease. Mol. Cell. Biochem., 2016, 418(1-2), 59-70.
[http://dx.doi.org/10.1007/s11010-016-2733-y] [PMID: 27316720]
[19]
Bruenig, D.; Morris, C.P.; Mehta, D.; Harvey, W.; Lawford, B.; Young, R.M.; Voisey, J. Nitric oxide pathway genes (NOS1AP and NOS1) are involved in PTSD severity, depression, anxiety, stress and resilience. Gene, 2017, 625, 42-48.
[http://dx.doi.org/10.1016/j.gene.2017.04.048] [PMID: 28465168]
[20]
Sarginson, J.E.; Deakin, J.F.W.; Anderson, I.M.; Downey, D.; Thomas, E.; Elliott, R.; Juhasz, G. Neuronal nitric oxide synthase (NOS1) polymorphisms interact with financial hardship to affect depression risk. Neuropsychopharmacology, 2014, 39(12), 2857-2866.
[http://dx.doi.org/10.1038/npp.2014.137] [PMID: 24917196]
[21]
Möhler, H. The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacology, 2012, 62(1), 42-53.
[http://dx.doi.org/10.1016/j.neuropharm.2011.08.040] [PMID: 21889518]
[22]
Żmudzka, E.; Sałaciak, K.; Sapa, J.; Pytka, K. Serotonin receptors in depression and anxiety: Insights from animal studies. Life Sci., 2018, 210, 106-124.
[http://dx.doi.org/10.1016/j.lfs.2018.08.050] [PMID: 30144453]
[23]
Machado, K.C.; Oliveira, G.L.S.; Machado, K.C.; Islam, M.T.; Junior, A.L.G.; De Sousa, D.P.; Freitas, R.M. Anticonvulsant and behavioral effects observed in mice following treatment with an ester derivative of ferulic acid: Isopentyl ferulate. Chem. Biol. Interact., 2015, 242, 273-279.
[http://dx.doi.org/10.1016/j.cbi.2015.10.003] [PMID: 26456888]
[24]
Deacon, R.M.J. Digging and marble burying in mice: simple methods for in vivo identification of biological impacts. Nat. Protoc., 2006, 1(1), 122-124.
[http://dx.doi.org/10.1038/nprot.2006.20] [PMID: 17406223]
[25]
Onaivi, E.S.; Green, M.R.; Martin, B.R. Pharmacological characterization of cannabinoids in the elevated plus maze. J. Pharmacol. Exp. Ther., 1990, 253(3), 1002-1009.
[PMID: 2162942]
[26]
Santarelli, L.; Saxe, M.; Gross, C.; Surget, A.; Battaglia, F.; Dulawa, S.; Weisstaub, N.; Lee, J.; Duman, R.; Arancio, O.; Belzung, C.; Hen, R. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science, 2003, 301(5634), 805-809.
[http://dx.doi.org/10.1126/science.1083328] [PMID: 12907793]
[27]
Steru, L.; Chermat, R.; Thierry, B.; Mico, J.A.; Lenegre, A.; Steru, M.; Simon, P.; Porsolt, R.D. The automated Tail Suspension Test: a computerized device which differentiates psychotropic drugs. Prog. Neuropsychopharmacol. Biol. Psychiatry, 1987, 11(6), 659-671.
[http://dx.doi.org/10.1016/0278-5846(87)90002-9] [PMID: 2894041]
[28]
Porsolt, R.D.; Anton, G.; Blavet, N.; Jalfre, M. Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur. J. Pharmacol., 1978, 47(4), 379-391.
[http://dx.doi.org/10.1016/0014-2999(78)90118-8] [PMID: 204499]
[29]
Ducottet, C.; Belzung, C. Behaviour in the elevated plus-maze predicts coping after subchronic mild stress in mice. Physiol. Behav., 2004, 81(3), 417-426.
[http://dx.doi.org/10.1016/j.physbeh.2004.01.013] [PMID: 15135013]
[30]
Galdino, P.M.; Nascimento, M.V.M.; Florentino, I.F.; Lino, R.C.; Fajemiroye, J.O.; Chaibub, B.A.; de Paula, J.R.; de Lima, T.C.; Costa, E.A. The anxiolytic-like effect of an essential oil derived from Spiranthera odoratissima A. St. Hil. leaves and its major component, β-caryophyllene, in male mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2012, 38(2), 276-284.
[http://dx.doi.org/10.1016/j.pnpbp.2012.04.012] [PMID: 22542869]
[31]
Paré, W.P. Hyponeophagia in Wistar Kyoto (WKY) rats. Physiol. Behav., 1994, 55(5), 975-978.
[http://dx.doi.org/10.1016/0031-9384(94)90090-6] [PMID: 8022922]
[32]
Simon, P.; Dupuis, R.; Costentin, J. Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. Behav. Brain Res., 1994, 61(1), 59-64.
[http://dx.doi.org/10.1016/0166-4328(94)90008-6] [PMID: 7913324]
[33]
Treit, D.; Fundytus, M. Thigmotaxis as a test for anxiolytic activity in rats. Pharmacol. Biochem. Behav., 1988, 31(4), 959-962.
[http://dx.doi.org/10.1016/0091-3057(88)90413-3] [PMID: 3252289]
[34]
American Psychiatric Association (APS). Diagnostic and Statistical Manual of Mental Disorders, 2013.
[35]
Auvin, S.; NEHLIG, A. Models of Seizures and Status Epilepticus Early in Life A2 - Pitkänen, Asla. In:Models of Seizures and Epilepsy (Second edition). ; Buckmaster, P. S., Ed.; Academic Press, , 2017, pp. 569-586.
[36]
Liu, H.; Song, Z.; Liao, D.; Zhang, T.; Liu, F.; Zhuang, K.; Luo, K.; Yang, L. Neuroprotective effects of trans-caryophyllene against kainic acid induced seizure activity and oxidative stress in mice. Neurochem. Res., 2015, 40(1), 118-123.
[http://dx.doi.org/10.1007/s11064-014-1474-0] [PMID: 25417010]
[37]
Wongsamitkul, N.; Maldifassi, M.C.; Simeone, X.; Baur, R.; Ernst, M.; Sigel, E. α subunits in GABAA receptors are dispensable for GABA and diazepam action. Sci. Rep., 2017, 7(1), 15498.
[http://dx.doi.org/10.1038/s41598-017-15628-7] [PMID: 29138471]
[38]
Smart, T.G.; Stephenson, F.A. A half century of γ-aminobutyric acid. Brain Neurosci. Adv., 2019, 32398212819858249
[http://dx.doi.org/10.1177/2398212819858249] [PMID: 32166183]
[39]
Cryan, J.F.; Slattery, D.A. GABAB Receptors and Depression: Current Status. In: Advances in Pharmacology; Blackburn, T. P, Ed.; Academic Press, 2010, 58, pp. 427-451.
[40]
Olsen, R.W. GABAA receptor: Positive and negative allosteric modulators. Neuropharmacology, 2018, 136(Pt A), 10-22.
[http://dx.doi.org/10.1016/j.neuropharm.2018.01.036] [PMID: 29407219]
[41]
Kessler, A.; Sahin-Nadeem, H.; Lummis, S.C.; Weigel, I.; Pischetsrieder, M.; Buettner, A.; Villmann, C. GABA(A) receptor modulation by terpenoids from Sideritis extracts. Mol. Nutr. Food Res., 2014, 58(4), 851-862.
[http://dx.doi.org/10.1002/mnfr.201300420] [PMID: 24273211]
[42]
Bento, A.F.; Marcon, R.; Dutra, R.C.; Claudino, R.F.; Cola, M.; Leite, D.F.; Calixto, J.B. β-Caryophyllene inhibits dextran sulfate sodium-induced colitis in mice through CB2 receptor activation and PPARγ pathway. Am. J. Pathol., 2011, 178(3), 1153-1166.
[http://dx.doi.org/10.1016/j.ajpath.2010.11.052] [PMID: 21356367]
[43]
García, M.C.; Cinquina, V.; Palomo-Garo, C.; Rábano, A.; Fernández-Ruiz, J. Identification of CB₂ receptors in human nigral neurons that degenerate in Parkinson’s disease. Neurosci. Lett., 2015, 587, 1-4.
[http://dx.doi.org/10.1016/j.neulet.2014.12.003] [PMID: 25481767]
[44]
Javed, H.; Azimullah, S.; Haque, M.E.; Ojha, S.K. Cannabinoid Type 2 (CB2) Receptors Activation Protects against Oxidative Stress and Neuroinflammation Associated Dopaminergic Neurodegeneration in Rotenone Model of Parkinson’s Disease. Front. Neurosci., 2016, 10, 321.
[http://dx.doi.org/10.3389/fnins.2016.00321] [PMID: 27531971]
[45]
Sieghart, W. Chapter Three - Allosteric Modulation of GABAA Receptors via Multiple Drug-Binding Sites. In: Advances in Pharmacology; Rudolph, U., Ed.; Academic Press, 2015, 72, pp. 53-96.
[46]
Zhang, H.Y.; Gao, M.; Liu, Q.R.; Bi, G.H.; Li, X.; Yang, H.J.; Gardner, E.L.; Wu, J.; Xi, Z.X. Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice. Proc. Natl. Acad. Sci. USA, 2014, 111(46), E5007-E5015.
[http://dx.doi.org/10.1073/pnas.1413210111] [PMID: 25368177]
[47]
Wallace, M.J.; Martin, B.R.; DeLorenzo, R.J. Evidence for a physiological role of endocannabinoids in the modulation of seizure threshold and severity. Eur. J. Pharmacol., 2002, 452(3), 295-301.
[http://dx.doi.org/10.1016/S0014-2999(02)02331-2] [PMID: 12359270]
[48]
Wallace, M.J.; Blair, R.E.; Falenski, K.W.; Martin, B.R.; DeLorenzo, R.J. The endogenous cannabinoid system regulates seizure frequency and duration in a model of temporal lobe epilepsy. J. Pharmacol. Exp. Ther., 2003, 307(1), 129-137.
[http://dx.doi.org/10.1124/jpet.103.051920] [PMID: 12954810]
[49]
Ramirez-Mahaluf, J.P.; Compte, A. Serotonergic Modulation of Cognition in Prefrontal Cortical Circuits in Major Depression A2 - Anticevic, Alan.Computational Psychiatry; Murray, J.D., Ed.; Academic Press, 2018, pp. 27-46.
[http://dx.doi.org/10.1016/B978-0-12-809825-7.00002-X]
[50]
de Oliveira, D.R.; da Silva, D.M.; Florentino, I.F.; de Brito, A.F.; Fajemiroye, J.O.; da Silva, D.P.B.; da Rocha, F.F.; Costa, E.A.; Galdino, P.M. Monoamine Involvement in the Antidepressant-Like Effect of β-Caryophyllene. CNS Neurol. Disord. Drug Targets, 2018, 17(4), 309-320.
[http://dx.doi.org/10.2174/1871527317666180420150249] [PMID: 29676236]
[51]
Gonçalves, A.E.; Bürger, C.; Amoah, S.K.S.; Tolardo, R.; Biavatti, M.W.; de Souza, M.M. The antidepressant-like effect of Hedyosmum brasiliense and its sesquiterpene lactone, podoandin in mice: evidence for the involvement of adrenergic, dopaminergic and serotonergic systems. Eur. J. Pharmacol., 2012, 674(2-3), 307-314.
[http://dx.doi.org/10.1016/j.ejphar.2011.11.009] [PMID: 22115892]
[52]
Hu, Y.; Zhu, D.Y. Chapter Six - Hippocampus and Nitric Oxide. In: Litwack, G. Vitamins & Hormones; Academic Press, 2014, 96, pp. 127-160.
[53]
Chang, H.J.; Kim, J.M.; Lee, J.C.; Kim, W.K.; Chun, H.S. Protective effect of β-caryophyllene, a natural bicyclic sesquiterpene, against cerebral ischemic injury. J. Med. Food, 2013, 16(6), 471-480.
[http://dx.doi.org/10.1089/jmf.2012.2283] [PMID: 23734999]
[54]
Chen, B.; Choi, H.; Hirsch, L.J.; Katz, A.; Legge, A.; Buchsbaum, R.; Detyniecki, K. Psychiatric and behavioral side effects of antiepileptic drugs in adults with epilepsy. Epilepsy Behav., 2017, 76, 24-31.
[http://dx.doi.org/10.1016/j.yebeh.2017.08.039] [PMID: 28931473]
[55]
Sartori, S.B.; Singewald, N. Novel pharmacological targets in drug development for the treatment of anxiety and anxiety-related disorders. Pharmacol. Ther., 2019, 204107402
[http://dx.doi.org/10.1016/j.pharmthera.2019.107402] [PMID: 31470029]
[56]
Sharma, C.; Al Kaabi, J.M.; Nurulain, S.M.; Goyal, S.N.; Kamal, M.A.; Ojha, S. Polypharmacological Properties and Therapeutic Potential of β-Caryophyllene: A Dietary Phytocannabinoid of Pharmaceutical Promise. Curr. Pharm. Des., 2016, 22(21), 3237-3264.
[http://dx.doi.org/10.2174/1381612822666160311115226] [PMID: 26965491]
[57]
Schmitt, D.; Levy, R.; Carroll, B. Toxicological Evaluation of β-Caryophyllene Oil: Subchronic Toxicity in Rats. Int. J. Toxicol., 2016, 35(5), 558-567.
[http://dx.doi.org/10.1177/1091581816655303] [PMID: 27358239]
[58]
Bastaki, M.; Api, A.M.; Aubanel, M.; Bauter, M.; Cachet, T.; Demyttenaere, J.C.R.; Diop, M.M.; Harman, C.L.; Hayashi, S.M.; Krammer, G.; Lu, V.; Marone, P.A.; Mendes, O.; Renskers, K.J.; Schnabel, J.; Tsang, S.Y.; Taylor, S.V. Dietary administration of β-caryophyllene and its epoxide to Sprague-Dawley rats for 90 days. Food Chem. Toxicol., 2020, 135110876
[http://dx.doi.org/10.1016/j.fct.2019.110876] [PMID: 31610257]
[59]
Tian, X.; Peng, J.; Zhong, J.; Yang, M.; Pang, J.; Lou, J.; Li, M.; An, R.; Zhang, Q.; Xu, L.; Dong, Z. β-Caryophyllene protects in vitro neurovascular unit against oxygen-glucose deprivation and re-oxygenation-induced injury. J. Neurochem., 2016, 139(5), 757-768.
[http://dx.doi.org/10.1111/jnc.13833] [PMID: 27565895]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 14
ISSUE: 1
Year: 2021
Published on: 09 May, 2020
Page: [36 - 51]
Pages: 16
DOI: 10.2174/1874467213666200510004622
Price: $65

Article Metrics

PDF: 36
HTML: 3