Recent Developments of Target Based Coumarin Derivatives as Potential Anticancer Agents

Author(s): Nerella Sridhar Goud*, Pardeep Kumar, Rose Dawn Bharath

Journal Name: Mini-Reviews in Medicinal Chemistry

Volume 20 , Issue 17 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Cancer is the second life-threatening disease worldwide, and it resulted in around 9.6 million deaths globally in 2018. The multidrug-resistant cancers and non-selectivity create an urge for the development of novel anticancer drugs with a diverse mechanism of action. Coumarin is one of the most widely used scaffolds for the development of highly effective anticancer agents. It has versatile anticancer profiles with diverse mechanisms to inhibit tumor progression. The facile synthetic strategies are also favoured for target-based coumarin derivatives. Structural Activity Relationship (SAR) studies determine anticancer potentials with minimal side effects through the substitution pattern of coumarin. A number of coumarin derivatives have been developed against the Galectin-1 (Gal-1), Carbonic anhydrases (CAs), Tubulin protein, and other essential targets for the treatment in cancer therapy. Therefore, in this review, we have mainly focused on different target based coumarin derivatives, and synthetic strategies.

Keywords: Coumarin, cancer, specific targets, synthetic strategies, multidrug-resistant, tubulin protein.

[1]
Dandriyal, J.; Singla, R.; Kumar, M.; Jaitak, V. Recent developments of C-4 substituted coumarin derivatives as anticancer agents. Eur. J. Med. Chem., 2016, 119, 141-168.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.087] [PMID: 27155469]
[2]
Kostova, I. Studying plant-derived coumarins for their pharmacological and therapeutic properties as potential anticancer drugs. Expert Opin. Drug Discov., 2007, 2(12), 1605-1618.
[http://dx.doi.org/10.1517/17460441.2.12.1605] [PMID: 23488904]
[3]
Musa, M.A.; Cooperwood, J.S.; Khan, M.O.F. A review of coumarin derivatives in pharmacotherapy of breast cancer. Curr. Med. Chem., 2008, 15(26), 2664-2679.
[http://dx.doi.org/10.2174/092986708786242877] [PMID: 18991629]
[4]
Peng, X-M.; Damu, G.L.; Zhou, C. Current developments of coumarin compounds in medicinal chemistry. Curr. Pharm. Des., 2013, 19(21), 3884-3930.
[http://dx.doi.org/10.2174/1381612811319210013] [PMID: 23438968]
[5]
Singh, L.K. Priyanka; Singh, V.; Katiyar, D. Design, synthesis and biological evaluation of some new coumarin derivatives as potential antimicrobial agents. Med. Chem., 2015, 11(2), 128-134.
[http://dx.doi.org/10.2174/1573406410666140902110452] [PMID: 25181986]
[6]
Kirsch, G.; Abdelwahab, A.B.; Chaimbault, P. Natural and Synthetic Coumarins with Effects on Inflammation. Molecules, 2016, 21(10), 21.
[http://dx.doi.org/10.3390/molecules21101322] [PMID: 27706093]
[7]
Rezayan, A.H.; Azerang, P.; Sardari, S.; Sarvary, A. Synthesis and biological evaluation of coumarin derivatives as inhibitors of Mycobacterium bovis (BCG). Chem. Biol. Drug Des., 2012, 80(6), 929-936.
[http://dx.doi.org/10.1111/cbdd.12044] [PMID: 22943459]
[8]
Tejada, S.; Martorell, M.; Capo, X.; Tur, J.A.; Pons, A.; Sureda, A. Coumarin and derivates as lipid lowering agents. Curr. Top. Med. Chem., 2017, 17(4), 391-398.
[http://dx.doi.org/10.2174/1568026616666160824102322] [PMID: 27558682]
[9]
Hassan, M.Z.; Osman, H.; Ali, M.A.; Ahsan, M.J. Therapeutic potential of coumarins as antiviral agents. Eur. J. Med. Chem., 2016, 123, 236-255.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.056] [PMID: 27484512]
[10]
Sashidhara, K.V.; Rao, K.B.; Singh, S.; Modukuri, R.K.; Aruna Teja, G.; Chandasana, H.; Shukla, S.; Bhatta, R.S. Synthesis and evaluation of new 3-phenylcoumarin derivatives as potential antidepressant agents. Bioorg. Med. Chem. Lett., 2014, 24(20), 4876-4880.
[http://dx.doi.org/10.1016/j.bmcl.2014.08.037] [PMID: 25239852]
[11]
Kotali, A.; Nasiopoulou, D.A.; Tsoleridis, C.A.; Harris, P.A.; Kontogiorgis, C.A.; Hadjipavlou-Litina, D.J. Antioxidant Activity of 3-[N-(Acylhydrazono)ethyl]-4-hydroxy-coumarins. Molecules, 2016, 21(2), 138.
[http://dx.doi.org/10.3390/molecules21020138] [PMID: 26805812]
[12]
Wang, Y.; Liu, H.; Lu, P.; Mao, R.; Xue, X.; Fan, C.; She, J. Design, synthesis, and in vitro evaluation of Novel 3, 7-Disubstituted coumarin derivatives as potent anticancer agents. Chem. Biol. Drug Des., 2015, 86(4), 637-647.
[http://dx.doi.org/10.1111/cbdd.12531] [PMID: 25626768]
[13]
Emami, S.; Dadashpour, S. Current developments of coumarin-based anti-cancer agents in medicinal chemistry. Eur. J. Med. Chem., 2015, 102, 611-630.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.033] [PMID: 26318068]
[14]
Riveiro, M.E.; De Kimpe, N.; Moglioni, A.; Vázquez, R.; Monczor, F.; Shayo, C.; Davio, C. Coumarins: old compounds with novel promising therapeutic perspectives. Curr. Med. Chem., 2010, 17(13), 1325-1338.
[http://dx.doi.org/10.2174/092986710790936284] [PMID: 20166938]
[15]
Rosskopf, F.; Kraus, J.; Franz, G. Immunological and antitumor effects of coumarin and some derivatives. Pharmazie, 1992, 47(2), 139-142.
[PMID: 1635924]
[16]
Finn, G.; Creaven, B.; Egan, D. Modulation of mitogen-activated protein kinases by 6-nitro-7-hydroxycoumarin mediates apoptosis in renal carcinoma cells. Eur. J. Pharmacol., 2003, 481(2-3), 159-167.
[http://dx.doi.org/10.1016/j.ejphar.2003.09.035] [PMID: 14642781]
[17]
Kim, E-K.; Kwon, K-B.; Shin, B-C.; Seo, E-A.; Lee, Y-R.; Kim, J-S.; Park, J-W.; Park, B-H.; Ryu, D-G. Scopoletin induces apoptosis in human promyeloleukemic cells, accompanied by activations of nuclear factor kappaB and caspase-3. Life Sci., 2005, 77(7), 824-836.
[http://dx.doi.org/10.1016/j.lfs.2005.02.003] [PMID: 15936354]
[18]
Chu, C.Y.; Tsai, Y.Y.; Wang, C.J.; Lin, W.L.; Tseng, T.H. Induction of apoptosis by esculetin in human leukemia cells. Eur. J. Pharmacol., 2001, 416(1-2), 25-32.
[http://dx.doi.org/10.1016/S0014-2999(01)00859-7] [PMID: 11282109]
[19]
Zhang, L.; Xu, Z. Coumarin-containing hybrids and their anticancer activities. Eur. J. Med. Chem., 2019.181111587
[http://dx.doi.org/10.1016/j.ejmech.2019.111587] [PMID: 31404864]
[20]
Kumar, A.; Jaitak, V. Natural products as multidrug resistance modulators in cancer. Eur. J. Med. Chem., 2019, 176, 268-291.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.027] [PMID: 31103904]
[21]
Singh, H.; Singh, J.V.; Bhagat, K.; Gulati, H.K.; Sanduja, M.; Kumar, N.; Kinarivala, N.; Sharma, S. Rational approaches, design strategies, structure activity relationship and mechanistic insights for therapeutic coumarin hybrids. Bioorg. Med. Chem., 2019, 27(16), 3477-3510.
[http://dx.doi.org/10.1016/j.bmc.2019.06.033] [PMID: 31255497]
[22]
Ibrar, A.; Shehzadi, S.A.; Saeed, F.; Khan, I. Developing hybrid molecule therapeutics for diverse enzyme inhibitory action: Active role of coumarin-based structural leads in drug discovery. Bioorg. Med. Chem., 2018, 26(13), 3731-3762.
[http://dx.doi.org/10.1016/j.bmc.2018.05.042] [PMID: 30017112]
[23]
Thakur, A.; Singla, R.; Jaitak, V. Coumarins as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies. Eur. J. Med. Chem., 2015, 101, 476-495.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.010] [PMID: 26188907]
[24]
Kaur, M.; Kohli, S.; Sandhu, S.; Bansal, Y.; Bansal, G. Coumarin: a promising scaffold for anticancer agents. Anticancer. Agents Med. Chem., 2015, 15(8), 1032-1048.
[http://dx.doi.org/10.2174/1871520615666150101125503] [PMID: 25553437]
[25]
Zhang, Y-Y.; Zhang, Q-Q.; Song, J-L.; Zhang, L.; Jiang, C-S.; Zhang, H. Design, synthesis, and antiproliferative evaluation of novel Coumarin/2-Cyanoacryloyl hybrids as apoptosis inducing agents by activation of caspase-dependent pathway. Molecules, 2018, 23(8), 1972.
[http://dx.doi.org/10.3390/molecules23081972] [PMID: 30087276]
[26]
An, R.; Hou, Z.; Li, J-T.; Yu, H-N.; Mou, Y-H.; Guo, C. Design, synthesis and biological evaluation of novel 4-Substituted Coumarin Derivatives as Antitumor Agents. Molecules, 2018, 23(9), 2281.
[http://dx.doi.org/10.3390/molecules23092281] [PMID: 30200625]
[27]
Mustafa, M.S.; El-Abadelah, M.M.; Zihlif, M.A.; Naffa, R.G.; Mubarak, M.S. Synthesis, and antitumor activity of some N1-(coumarin-7-yl) amidrazones and related congeners. Molecules, 2011, 16(5), 4305-4317.
[http://dx.doi.org/10.3390/molecules16054305] [PMID: 21610659]
[28]
Reddy, N.S.; Gumireddy, K.; Mallireddigari, M.R.; Cosenza, S.C.; Venkatapuram, P.; Bell, S.C.; Reddy, E.P.; Reddy, M.V.R. Novel coumarin-3-(N-aryl)carboxamides arrest breast cancer cell growth by inhibiting ErbB-2 and ERK1. Bioorg. Med. Chem., 2005, 13(9), 3141-3147.
[http://dx.doi.org/10.1016/j.bmc.2005.02.051] [PMID: 15809149]
[29]
Penta, Santash Advances in Structure and Activity Relationship of Coumarin Derivatives, 2015 Aug 12th;
[30]
Wang, Z-C.; Qin, Y-J.; Wang, P-F.; Yang, Y-A.; Wen, Q.; Zhang, X.; Qiu, H-Y.; Duan, Y-T.; Wang, Y-T.; Sang, Y-L.; Zhu, H-L. Sulfonamides containing coumarin moieties selectively and potently inhibit carbonic anhydrases II and IX: design, synthesis, inhibitory activity and 3D-QSAR analysis. Eur. J. Med. Chem., 2013, 66, 1-11.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.035] [PMID: 23777898]
[31]
Stanway, S.J.; Purohit, A.; Woo, L.W.; Sufi, S.; Vigushin, D.; Ward, R.; Wilson, R.H.; Stanczyk, F.Z.; Dobbs, N.; Kulinskaya, E.; Elliott, M.; Potter, B.V.; Reed, M.J.; Coombes, R.C. Phase I study of STX 64 (667 Coumate) in breast cancer patients: the first study of a steroid sulfatase inhibitor. Clin. Cancer Res., 2006, 12(5), 1585-1592.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1996] [PMID: 16533785]
[32]
Xu, X-M.; Zhang, M-L.; Zhang, Y.; Zhao, L. Osthole induces lung cancer cell apoptosis through inhibition of inhibitor of apoptosis family proteins. Oncol. Lett., 2016, 12(5), 3779-3784.
[http://dx.doi.org/10.3892/ol.2016.5170] [PMID: 27895730]
[33]
Chou, F-C.; Chen, H-Y.; Kuo, C-C.; Sytwu, H-K. Role of galectins in tumors and in clinical immunotherapy. Int. J. Mol. Sci., 2018, 19(2), 430.
[http://dx.doi.org/10.3390/ijms19020430] [PMID: 29389859]
[34]
Rabinovich, G.A. Galectin-1 as a potential cancer target. Br. J. Cancer, 2005, 92(7), 1188-1192.
[http://dx.doi.org/10.1038/sj.bjc.6602493] [PMID: 15785741]
[35]
Astorgues-Xerri, L.; Riveiro, M.E.; Tijeras-Raballand, A.; Serova, M.; Neuzillet, C.; Albert, S.; Raymond, E.; Faivre, S. Unraveling galectin-1 as a novel therapeutic target for cancer. Cancer Treat. Rev., 2014, 40(2), 307-319.
[http://dx.doi.org/10.1016/j.ctrv.2013.07.007] [PMID: 23953240]
[36]
Cousin, J.M.; Cloninger, M.J. The role of Galectin-1 in cancer progression, and synthetic multivalent systems for the study of Galectin-1. Int. J. Mol. Sci., 2016, 17(9), 1566.
[http://dx.doi.org/10.3390/ijms17091566] [PMID: 27649167]
[37]
Goud, N.S.; Pooladanda, V.; Mahammad, G.S.; Jakkula, P.; Gatreddi, S.; Qureshi, I.A.; Alvala, R.; Godugu, C.; Alvala, M. Synthesis and biological evaluation of morpholines linked coumarin-triazole hybrids as anticancer agents. Chem. Biol. Drug Des., 2019, 94(5), 1919-1929.
[http://dx.doi.org/10.1111/cbdd.13578] [PMID: 31169963]
[38]
Goud, N.S.; Ghouse, S.M.; Vishnu, J.; Pranay, J.; Alvala, R.; Talla, V.; Qureshi, I.A.; Alvala, M. Synthesis and biological evaluation of novel heterocyclic imines linked coumarin-thiazole hybrids as anticancer agents; ACAMC, 2019, p. 19.
[39]
Pal, K.B.; Mahanti, M.; Huang, X.; Persson, S.; Sundin, A.P.; Zetterberg, F.R.; Oredsson, S.; Leffler, H.; Nilsson, U.J. Quinoline-galactose hybrids bind selectively with high affinity to a galectin-8 N-terminal domain. Org. Biomol. Chem., 2018, 16(34), 6295-6305.
[http://dx.doi.org/10.1039/C8OB01354C] [PMID: 30117507]
[40]
Zhao, H.; Donnelly, A.C.; Kusuma, B.R.; Brandt, G.E.L.; Brown, D.; Rajewski, R.A.; Vielhauer, G.; Holzbeierlein, J.; Cohen, M.S.; Blagg, B.S.J. Engineering an antibiotic to fight cancer: Optimization of the novobiocin scaffold to produce anti-proliferative agents. J. Med. Chem., 2011, 54(11), 3839-3853.
[http://dx.doi.org/10.1021/jm200148p] [PMID: 21553822]
[41]
Supuran, C.T. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov., 2008, 7(2), 168-181.
[http://dx.doi.org/10.1038/nrd2467] [PMID: 18167490]
[42]
Supuran, C.T. Carbonic anhydrases--an overview. Curr. Pharm. Des., 2008, 14(7), 603-614.
[http://dx.doi.org/10.2174/138161208783877884] [PMID: 18336305]
[43]
Supuran, C.T.; Winum, J-Y. Carbonic anhydrase IX inhibitors in cancer therapy: An update. Future Med. Chem., 2015, 7(11), 1407-1414.
[http://dx.doi.org/10.4155/fmc.15.71] [PMID: 26230880]
[44]
Supuran, C.T.; Alterio, V.; Di Fiore, A.; D’ Ambrosio, K.; Carta, F.; Monti, S.M.; De Simone, G. Inhibition of carbonic anhydrase IX targets primary tumors, metastases, and cancer stem cells: Three for the price of one. Med. Res. Rev., 2018, 38(6), 1799-1836.
[http://dx.doi.org/10.1002/med.21497] [PMID: 29635752]
[45]
Mboge, M.Y.; McKenna, R.; Frost, S.C. Advances in Anti-Cancer drug development targeting carbonic anhydrase IX and XII. Top Anticancer Res, 2015, 5, 3-42.
[PMID: 30272043]
[46]
Narella, S.G.; Shaik, M.G.; Mohammed, A.; Alvala, M.; Angeli, A.; Supuran, C.T. Synthesis and biological evaluation of coumarin-1,3,4-oxadiazole hybrids as selective carbonic anhydrase IX and XII inhibitors. Bioorg. Chem., 2019, 87, 765-772.
[http://dx.doi.org/10.1016/j.bioorg.2019.04.004] [PMID: 30974299]
[47]
Thacker, P.S.; Alvala, M.; Arifuddin, M.; Angeli, A.; Supuran, C.T. Design, synthesis and biological evaluation of coumarin-3-carboxamides as selective carbonic anhydrase IX and XII inhibitors. Bioorg. Chem., 2019, 86, 386-392.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.004] [PMID: 30763885]
[48]
Zengin Kurt, B.; Sonmez, F.; Ozturk, D.; Akdemir, A.; Angeli, A.; Supuran, C.T. Synthesis of coumarin-sulfonamide derivatives and determination of their cytotoxicity, carbonic anhydrase inhibitory and molecular docking studies. Eur. J. Med. Chem., 2019, 183111702
[http://dx.doi.org/10.1016/j.ejmech.2019.111702] [PMID: 31542715]
[49]
Congdon, L.M.; Pourpak, A.; Escalante, A.M.; Dorr, R.T.; Landowski, T.H. Proteasomal inhibition stabilizes topoisomerase IIalpha protein and reverses resistance to the topoisomerase II poison ethonafide (AMP-53, 6-ethoxyazonafide). Biochem. Pharmacol., 2008, 75(4), 883-890.
[http://dx.doi.org/10.1016/j.bcp.2007.10.026] [PMID: 18062937]
[50]
Lin, B.; Chen, Z.; Xu, Y.; Zhang, H.; Liu, J.; Qian, X. 7-b, a novel amonafide analogue, cause growth inhibition and apoptosis in Raji cells via a ROS-mediated mitochondrial pathway. Leuk. Res., 2011, 35(5), 646-656.
[http://dx.doi.org/10.1016/j.leukres.2011.01.029] [PMID: 21310484]
[51]
Qian, X.; Li, Z.; Yang, Q. Highly efficient antitumor agents of heterocycles containing sulfur atom: linear and angular thiazonaphthalimides against human lung cancer cell in vitro. Bioorg. Med. Chem., 2007, 15(21), 6846-6851.
[http://dx.doi.org/10.1016/j.bmc.2007.07.008] [PMID: 17707644]
[52]
Govindaiah, P.; Dumala, N.; Grover, P.; Jaya Prakash, M. Synthesis and biological evaluation of novel 4,7-dihydroxycoumarin derivatives as anticancer agents. Bioorg. Med. Chem. Lett., 2019, 29(14), 1819-1824.
[http://dx.doi.org/10.1016/j.bmcl.2019.05.008] [PMID: 31104996]
[53]
Govindaiah, P.; Dumala, N.; Mattan, I.; Grover, P.; Jaya Prakash, M. Design, synthesis, biological and in silico evaluation of coumarin-hydrazone derivatives as tubulin targeted antiproliferative agents. Bioorg. Chem., 2019, •••91103143
[http://dx.doi.org/10.1016/j.bioorg.2019.103143] [PMID: 31374528]
[54]
Shen, X.; Liu, X.; Wan, S.; Fan, X.; He, H.; Wei, R.; Pu, W.; Peng, Y.; Wang, C. Discovery of coumarin as microtubule affinity-regulating kinase 4 inhibitor that sensitize hepatocellular carcinoma to paclitaxel. Front Chem., 2019, 7, 366.
[http://dx.doi.org/10.3389/fchem.2019.00366] [PMID: 31179271]
[55]
Singh, R.K.; Lange, T.S.; Kim, K.K.; Brard, L. A coumarin derivative (RKS262) inhibits cell-cycle progression, causes pro-apoptotic signaling and cytotoxicity in ovarian cancer cells. Invest. New Drugs, 2011, 29(1), 63-72.
[http://dx.doi.org/10.1007/s10637-009-9335-4] [PMID: 19865799]
[56]
Brady, H.; Doubleday, M.; Gayo-Fung, L.M.; Hickman, M.; Khammungkhune, S.; Kois, A.; Lipps, S.; Pierce, S.; Richard, N.; Shevlin, G.; Sutherland, M.K.; Anderson, D.W.; Bhagwat, S.S.; Stein, B. Differential response of estrogen receptors alpha and beta to SP500263, a novel potent selective estrogen receptor modulator. Mol. Pharmacol., 2002, 61(3), 562-568.
[http://dx.doi.org/10.1124/mol.61.3.562] [PMID: 11854436]
[57]
Zhao, H.; Yan, B.; Peterson, L.B.; Blagg, B.S.J. 3-Arylcoumarin derivatives manifest anti-proliferative activity through Hsp90 inhibition. ACS Med. Chem. Lett., 2012, 3(4), 327-331.
[http://dx.doi.org/10.1021/ml300018e] [PMID: 23316269]
[58]
Zhao, H.; Blagg, B.S.J. Novobiocin analogues with second-generation noviose surrogates. Bioorg. Med. Chem. Lett., 2013, 23(2), 552-557.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.022] [PMID: 23234644]
[59]
Nasr, T.; Bondock, S.; Youns, M. Anticancer activity of new coumarin substituted hydrazide-hydrazone derivatives. Eur. J. Med. Chem., 2014, 76, 539-548.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.026] [PMID: 24607878]
[60]
Zhang, W.; Li, Z.; Zhou, M.; Wu, F.; Hou, X.; Luo, H.; Liu, H.; Han, X.; Yan, G.; Ding, Z.; Li, R. Synthesis and biological evaluation of 4-(1,2,3-triazol-1-yl)coumarin derivatives as potential antitumor agents. Bioorg. Med. Chem. Lett., 2014, 24(3), 799-807.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.095] [PMID: 24418772]
[61]
Wu, X-Q.; Huang, C.; Jia, Y-M.; Song, B-A.; Li, J.; Liu, X-H. Novel coumarin-dihydropyrazole thio-ethanone derivatives: Design, synthesis and anticancer activity. Eur. J. Med. Chem., 2014, 74, 717-725.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.014] [PMID: 24119869]
[62]
Aoki, T.; Hyohdoh, I.; Furuichi, N.; Ozawa, S.; Watanabe, F.; Matsushita, M.; Sakaitani, M.; Ori, K.; Takanashi, K.; Harada, N.; Tomii, Y.; Tabo, M.; Yoshinari, K.; Aoki, Y.; Shimma, N.; Iikura, H. The sulfamide moiety affords higher inhibitory activity and oral bioavailability to a series of coumarin dual selective RAF/MEK inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(23), 6223-6227.
[http://dx.doi.org/10.1016/j.bmcl.2013.10.001] [PMID: 24157370]
[63]
Elshemy, H.A.H.; Zaki, M.A. Design and synthesis of new coumarin hybrids and insight into their mode of antiproliferative action. Bioorg. Med. Chem., 2017, 25(3), 1066-1075.
[http://dx.doi.org/10.1016/j.bmc.2016.12.019] [PMID: 28038941]
[64]
Salem, M.A.; Helal, M.H.; Gouda, M.A.; Ammar, Y.A.; El-Gaby, M.S.A.; Abbas, S.Y. An overview on synthetic strategies to coumarins. Synth. Commun., 2018, 48, 1534-1550.
[http://dx.doi.org/10.1080/00397911.2018.1455873]
[65]
Augustine, J.K.; Bombrun, A.; Ramappa, B.; Boodappa, C. An efficient One-Pot synthesis of coumarins mediated by propylphosphonic Anhydride (T3P) via the perkin condensation. Tetrahedron Lett., 2012, 53, 4422-4425.
[http://dx.doi.org/10.1016/j.tetlet.2012.06.037]
[66]
Kim, D.; Min, M.; Hong, S. One-pot catalysis of dehydrogenation of cyclohexanones to phenols and oxidative Heck coupling: expedient synthesis of coumarins. Chem. Commun. (Camb.), 2013, 49(38), 4021-4023.
[http://dx.doi.org/10.1039/c3cc41296b] [PMID: 23549621]
[67]
Kim, S.; Kang, D.; Lee, C-H.; Lee, P.H. Synthesis of substituted coumarins via Brønsted acid mediated condensation of allenes with substituted phenols or anisoles. J. Org. Chem., 2012, 77(15), 6530-6537.
[http://dx.doi.org/10.1021/jo301086k] [PMID: 22793871]
[68]
Ferguson, J.; Zeng, F.; Alper, H. Synthesis of coumarins via Pd-catalyzed oxidative cyclocarbonylation of 2-vinylphenols. Org. Lett., 2012, 14(21), 5602-5605.
[http://dx.doi.org/10.1021/ol302725x] [PMID: 23092533]
[69]
Yoshida, H.; Ito, Y.; Ohshita, J. Three-component coupling using arynes and DMF: straightforward access to coumarins via ortho-quinone methides. Chem. Commun. (Camb.), 2011, 47(30), 8512-8514.
[http://dx.doi.org/10.1039/c1cc11955a] [PMID: 21607267]
[70]
Albadi, J.; Shirini, F.; Abasi, J.; Armand, N.; Motaharizadeh, T.A. green, efficient and recyclable Poly(4-Vinylpyridine)-Supported copper iodide catalyst for the synthesis of coumarin derivatives under solvent-free conditions. C. R. Chim., 2013, 16, 407-411.
[http://dx.doi.org/10.1016/j.crci.2012.10.002]
[71]
Borah, K.J.; Borah, R. Ytterbium triflate promoted coupling of phenols and propiolic acids: Synthesis of coumarins. Tetrahedron Letters., 2011, 142, 1253-1257.
[72]
Fiorito, S.; Epifano, F.; Taddeo, V.A.; Genovese, S. Ytterbium triflate promoted coupling of phenols and propiolic acids: Synthesis of coumarins. Tetrahedron Lett., 2016, 57, 2939-2942.
[http://dx.doi.org/10.1016/j.tetlet.2016.05.087]
[73]
Gadakh, S.K.; Dey, S.; Sudalai, A. Rh-Catalyzed synthesis of coumarin derivatives from phenolic acetates and acrylates via C-H bond activation. J. Org. Chem., 2015, 80(22), 11544-11550.
[http://dx.doi.org/10.1021/acs.joc.5b01713] [PMID: 26509478]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 17
Year: 2020
Published on: 18 November, 2020
Page: [1754 - 1766]
Pages: 13
DOI: 10.2174/1389557520666200510000718
Price: $65

Article Metrics

PDF: 30
HTML: 3
EPUB: 1
PRC: 1