Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Recent Advances in the Development of “Curcumin Inspired” Compounds as New Therapeutic Agents

Author(s): Gabriela L. Borosky* and Kenneth K. Laali*

Volume 20, Issue 15, 2020

Page: [1543 - 1558] Pages: 16

DOI: 10.2174/1389557520666200508083302

Price: $65

Abstract

Despite a huge body of research in the past two decades investigating the antioxidant, antiinflammatory, anti-microbial, and anti-carcinogenic properties of curcumin (CUR), a CUR-based antitumor drug is yet to be developed. Lack of success in achieving this goal stems from CUR’s unfavorable biophysicochemical features, particularly poor solubility, low bioavailability, and rapid metabolism, coupled with a complex biological profile making it difficult to determine its mechanism of action. A significant body of literature aimed at improving its physicochemical properties through synthesis or by designing delivery methods has been published, and the progress in these areas has been reviewed. The present review aims to summarize recent progress in the synthesis of structurally diverse “curcumin-inspired” compounds along with computational docking and bioassay studies, through which a number of promising analogs have been identified that warrant further study.

Keywords: New synthetic curcuminoids, biological activity, molecular docking, drug design, protein inhibitors, anticarcinogens.

Graphical Abstract
[1]
Hewlings, S.J.; Kalman, D.S. Curcumin: A review of its’ effects on human health. Foods, 2017, 6(10), 92-102.
[http://dx.doi.org/10.3390/foods6100092] [PMID: 29065496]
[2]
Gupta, S.C.; Prasad, S.; Kim, J.H.; Patchva, S.; Webb, L.J.; Priyadarsini, I.K.; Aggarwal, B.B. Multitargeting by curcumin as revealed by molecular interaction studies. Nat. Prod. Rep., 2011, 28(12), 1937-1955.
[http://dx.doi.org/10.1039/c1np00051a] [PMID: 21979811]
[3]
Vyas, A.; Dandawate, P.; Padhye, S.; Ahmad, A.; Sarkar, F. Perspectives on new synthetic curcumin analogs and their potential anticancer properties. Curr. Pharm. Des., 2013, 19(11), 2047-2069.
[PMID: 23116312]
[4]
Mimeault, M.; Batra, S.K. Potential applications of curcumin and its novel synthetic analogs and nanotechnology-based formulations in cancer prevention and therapy. Chin. Med., 2011, 6, 31.
[http://dx.doi.org/10.1186/1749-8546-6-31] [PMID: 21859497]
[5]
Kunnumakkara, A.B.; Bordoloi, D.; Harsha, C.; Banik, K.; Gupta, S.C.; Aggarwal, B.B. Curcumin mediates anticancer effects by modulating multiple cell signaling pathways. Clin. Sci. (Lond.), 2017, 131(15), 1781-1799.
[http://dx.doi.org/10.1042/CS20160935] [PMID: 28679846]
[6]
Priyadarsini, K.I. The chemistry of curcumin: From extraction to therapeutic agent. Molecules, 2014, 19(12), 20091-20112.
[http://dx.doi.org/10.3390/molecules191220091] [PMID: 25470276]
[7]
Liu, W.; Zhai, Y.; Heng, X.; Che, F.Y.; Chen, W.; Sun, D.; Zhai, G. Oral bioavailability of curcumin: Problems and advancements. J. Drug Target., 2016, 24(8), 694-702.
[http://dx.doi.org/10.3109/1061186X.2016.1157883] [PMID: 26942997]
[8]
Cheng, C.; Peng, S.; Li, Z.; Zou, L.; Liu, W. Improved bioavailability of curcumin in liposomes prepared using a pH-driven, organic solvent-free, easily scalable process. RSC Advances, 2017, 7, 25978-25986.
[http://dx.doi.org/10.1039/C7RA02861J]
[9]
Zhang, L.; Man, S.; Qiu, H.; Liu, Z.; Zhang, M.; Ma, L.; Gao, W. Curcumin-cyclodextrin complexes enhanced the anti-cancer effects of curcumin. Environ. Toxicol. Pharmacol., 2016, 48, 31-38.
[http://dx.doi.org/10.1016/j.etap.2016.09.021] [PMID: 27716533]
[10]
Peng, S.; Li, Z.; Zou, L.; Liu, W.; Liu, C.; McClements, D.J. Improving curcumin solubility and bioavailability by encapsulation in saponin-coated curcumin nanoparticles prepared using a simple pH-driven loading method. Food Funct., 2018, 9(3), 1829-1839.
[http://dx.doi.org/10.1039/C7FO01814B] [PMID: 29517797]
[11]
Nikolic, I.; Mitsou, E.; Pantelic, I.; Randjelovic, D.; Markovic, B.; Papadimitriou, V.; Xenakis, A.; Lunter, D.J.; Zugic, A.; Savic, S. Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect? Eur. J. Pharm. Sci., 2020, 142, 105135-105144.
[http://dx.doi.org/10.1016/j.ejps.2019.105135] [PMID: 31682974]
[12]
Yavarpour-Bali, H.; Ghasemi-Kasman, M.; Pirzadeh, M. Curcumin-loaded nanoparticles: A novel therapeutic strategy in treatment of central nervous system disorders. Int. J. Nanomedicine, 2019, 14, 4449-4460.
[http://dx.doi.org/10.2147/IJN.S208332] [PMID: 31417253]
[13]
Sneharani, A.H. Curcumin-sunflower protein nanoparticles-A potential anti-inflammatory agent. J. Food Biochem., 2019, 43(8), e12909
[http://dx.doi.org/10.1111/jfbc.12909] [PMID: 31368579]
[14]
Jeliński, T.; Przybyłek, M.; Cysewski, P. Natural deep eutectic solvents as agents for improving solubility, stability and delivery of curcumin. Pharm. Res., 2019, 36(8), 116-125.
[http://dx.doi.org/10.1007/s11095-019-2643-2] [PMID: 31161340]
[15]
Huang, Y.; Hu, L.; Huang, S.; Xu, W.; Wan, J.; Wang, D.; Zheng, G.; Xia, Z. Curcumin-loaded galactosylated BSA nanoparticles as targeted drug delivery carriers inhibit hepatocellular carcinoma cell proliferation and migration. Int. J. Nanomedicine, 2018, 13, 8309-8323.
[http://dx.doi.org/10.2147/IJN.S184379] [PMID: 30584302]
[16]
Bairwa, K.; Grover, J.; Kania, M.; Jachak, S.M. Recent developments in chemistry and biology of curcumin analogues. RSC Advances, 2014, 4, 13946-13978.
[http://dx.doi.org/10.1039/c4ra00227j]
[17]
Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The essential medicinal chemistry of curcumin. Miniperspective. J. Med. Chem., 2017, 60(5), 1620-1637.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00975] [PMID: 28074653]
[18]
Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. Curcumin may (not) defy science. ACS Med. Chem. Lett., 2017, 8(5), 467-470.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00139] [PMID: 28523093]
[19]
Bahadori, F.; Demiray, M. A realistic view on “The essential medicinal chemistry of curcumin”. ACS Med. Chem. Lett., 2017, 8(9), 893-896.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00284] [PMID: 28947929]
[20]
Bachmeier, B.E.; Killian, P.H.; Melchart, D. The role of curcumin in prevention and management of metastatic disease. Int. J. Mol. Sci., 2018, 19(6), 1716.
[http://dx.doi.org/10.3390/ijms19061716] [PMID: 29890744]
[21]
Bandyopadhyay, D. Farmer to pharmacist: Curcumin as an anti-invasive and antimetastatic agent for the treatment of cancer. Front Chem., 2014, 2, 113.
[http://dx.doi.org/10.3389/fchem.2014.00113] [PMID: 25566531]
[22]
Mishra, S.; Patel, S.; Halpani, C.G. Recent updates in curcumin pyrazole and isoxazole derivatives: synthesis and biological application. Chem. Biodivers., 2019, 16(2), e1800366
[http://dx.doi.org/10.1002/cbdv.201800366] [PMID: 30460748]
[23]
Tomren, M.A.; Másson, M.; Loftsson, T.; Tønnesen, H.H. Studies on curcumin and curcuminoids XXXI. Symmetric and asymmetric curcuminoids: Stability, activity and complexation with cyclodextrin. Int. J. Pharm., 2007, 338(1-2), 27-34.
[http://dx.doi.org/10.1016/j.ijpharm.2007.01.013] [PMID: 17298869]
[24]
Burapan, S.; Kim, M.; Han, J. Curcuminoid demethylation as an alternative metabolism by human intestinal microbiota. J. Agric. Food Chem., 2017, 65(16), 3305-3310.
[http://dx.doi.org/10.1021/acs.jafc.7b00943] [PMID: 28401758]
[25]
Iqbal, N.; Iqbal, N. Human epidermal growth factor receptor 2 (HER2) in cancers: Overexpression and therapeutic implications. Mol. Biol. Int., 2014., 2014852748
[http://dx.doi.org/10.1155/2014/852748] [PMID: 25276427]
[26]
Alroy, I.; Yarden, Y. The ErbB signaling network in embryogenesis and oncogenesis: Signal diversification through combinatorial ligand-receptor interactions. FEBS Lett., 1997, 410(1), 83-86.
[http://dx.doi.org/10.1016/S0014-5793(97)00412-2] [PMID: 9247128]
[27]
Hynes, N.E.; Lane, H.A. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat. Rev. Cancer, 2005, 5(5), 341-354.
[http://dx.doi.org/10.1038/nrc1609] [PMID: 15864276]
[28]
McTigue, M.; Murray, B.W.; Chen, J.H.; Deng, Y-L.; Solowiej, J.; Kania, R.S. Molecular conformations, interactions, and properties associated with drug efficiency and clinical performance among VEGFR TK inhibitors. Proc. Natl. Acad. Sci. USA, 2012, 109(45), 18281-18289.
[http://dx.doi.org/10.1073/pnas.1207759109] [PMID: 22988103]
[29]
Wan, S.B.; Yang, H.; Zhou, Z.; Cui, Q-C.; Chen, D.; Kanwar, J.; Mohammad, I.; Dou, Q.P.; Chan, T.H. Evaluation of curcumin acetates and amino acid conjugates as proteasome inhibitors. Int. J. Mol. Med., 2010, 26(4), 447-455.
[PMID: 20818481]
[30]
Tan, K-L.; Koh, S-B.; Ee, R.P-L.; Khan, M.; Go, M-L. Curcumin analogues with potent and selective anti-proliferative activity on acute promyelocytic leukemia: involvement of accumulated misfolded nuclear receptor co-repressor (N-CoR) protein as a basis for selective activity. ChemMedChem, 2012, 7(9), 1567-1579.
[http://dx.doi.org/10.1002/cmdc.201200293] [PMID: 22887959]
[31]
Milacic, V.; Banerjee, S.; Landis-Piwowar, K.R.; Sarkar, F.H.; Majumdar, A.P.N.; Dou, Q.P. Curcumin inhibits the proteasome activity in human colon cancer cells in vitro and in vivo. Cancer Res., 2008, 68(18), 7283-7292.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6246] [PMID: 18794115]
[32]
Zhang, C.; Spevak, W.; Zhang, Y.; Burton, E.A.; Ma, Y.; Habets, G.; Zhang, J.; Lin, J.; Ewing, T.; Matusow, B.; Tsang, G.; Marimuthu, A.; Cho, H.; Wu, G.; Wang, W.; Fong, D.; Nguyen, H.; Shi, S.; Womack, P.; Nespi, M.; Shellooe, R.; Carias, H.; Powell, B.; Light, E.; Sanftner, L.; Walters, J.; Tsai, J.; West, B.L.; Visor, G.; Rezaei, H.; Lin, P.S.; Nolop, K.; Ibrahim, P.N.; Hirth, P.; Bollag, G. RAF inhibitors that evade paradoxical MAPK pathway activation. Nature, 2015, 526(7574), 583-586.
[http://dx.doi.org/10.1038/nature14982] [PMID: 26466569]
[33]
Souers, A.J.; Leverson, J.D.; Boghaert, E.R.; Ackler, S.L.; Catron, N.D.; Chen, J.; Dayton, B.D.; Ding, H.; Enschede, S.H.; Fairbrother, W.J.; Huang, D.C.S.; Hymowitz, S.G.; Jin, S.; Khaw, S.L.; Kovar, P.J.; Lam, L.T.; Lee, J.; Maecker, H.L.; Marsh, K.C.; Mason, K.D.; Mitten, M.J.; Nimmer, P.M.; Oleksijew, A.; Park, C.H.; Park, C-M.; Phillips, D.C.; Roberts, A.W.; Sampath, D.; Seymour, J.F.; Smith, M.L.; Sullivan, G.M.; Tahir, S.K.; Tse, C.; Wendt, M.D.; Xiao, Y.; Xue, J.C.; Zhang, H.; Humerickhouse, R.A.; Rosenberg, S.H.; Elmore, S.W. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med., 2013, 19(2), 202-208.
[http://dx.doi.org/10.1038/nm.3048] [PMID: 23291630]
[34]
Wilson, P.M.; Danenberg, P.V.; Johnston, P.G.; Lenz, H.J.; Ladner, R.D. Standing the test of time: Targeting thymidylate biosynthesis in cancer therapy. Nat. Rev. Clin. Oncol., 2014, 11(5), 282-298.
[http://dx.doi.org/10.1038/nrclinonc.2014.51] [PMID: 24732946]
[35]
Ackland, S.P.; Clarke, S.J.; Beale, P.; Peters, G.J. Thymidylate synthase inhibitors. Update Cancer Ther., 2006, 1, 403-427.
[http://dx.doi.org/10.1016/j.uct.2006.09.001]
[36]
Tello-Franco, V.; Lozada-García, M.C.; Soriano-García, M. Experimental and computational studies on the inhibition of acetylcholinesterase by curcumin and some of its derivatives. Curr. Comput. Aided Drug Des., 2013, 9(2), 289-298. [and references therein].
[http://dx.doi.org/10.2174/15734099113099990007] [PMID: 23106780]
[37]
Bukhari, S.N.A.; Jantan, I.; Unsal Tan, O.; Sher, M.; Naeem-Ul-Hassan, M.; Qin, H.L. Biological activity and molecular docking studies of curcumin-related α,β-unsaturated carbonyl-based synthetic compounds as anticancer agents and mushroom tyrosinase inhibitors. J. Agric. Food Chem., 2014, 62(24), 5538-5547.
[http://dx.doi.org/10.1021/jf501145b] [PMID: 24901506]
[38]
Meiyanto, E.; Putri, D.D.P.; Susidarti, R.A.; Murwanti, R.; Sardjiman, A.F.; Fitriasari, A.; Husnaa, U.; Purnomo, H.; Kawaichi, M. Curcumin and its analogues (PGV-0 and PGV-1) enhance sensitivity of resistant MCF-7 cells to doxorubicin through inhibition of HER2 and NF-kB activation. Asian Pac. J. Cancer Prev., 2014, 15(1), 179-184.
[http://dx.doi.org/10.7314/APJCP.2014.15.1.179] [PMID: 24528023]
[39]
Yim-im, W.; Sawatdichaikul, O.; Semsri, S.; Horata, N.; Mokmak, W.; Tongsima, S.; Suksamrarn, A.; Choowongkomon, K. Computational analyses of curcuminoid analogs against kinase domain of HER2. BMC Bioinformatics, 2014, 15, 261-273.
[http://dx.doi.org/10.1186/1471-2105-15-261] [PMID: 25089037]
[40]
Yadav, I.S.; Nandekar, P.P.; Srivastavaa, S.; Sangamwar, A.; Chaudhury, A.; Agarwal, S.M. Ensemble docking and molecular dynamics identify knoevenagel curcumin derivatives with potent anti-EGFR activity. Gene, 2014, 539(1), 82-90.
[http://dx.doi.org/10.1016/j.gene.2014.01.056] [PMID: 24491504]
[41]
Ahsan, M.J.; Choudhary, K.; Jadav, S.S.; Yasmin, S.; Ansari, M.Y.; Sreenivasulu, R. Synthesis, antiproliferative activity, and molecular docking studies of curcumin analogues bearing pyrazole ring. Med. Chem. Res., 2015, 24, 4166-4180.
[http://dx.doi.org/10.1007/s00044-015-1457-y]
[42]
Bayomi, S.M.; El-Kashef, H.A.; El-Ashmawy, M.B.; Nasr, M.N.A.; El-Sherbeny, M.A.; Abdel-Aziz, N.I.; El-Sayed, M.A.; Suddek, G.M.; El-Messery, S.M.; Ghaly, M.A. Synthesis and biological evaluation of new curcumin analogues as antioxidant and antitumor agents: Molecular modeling study. Eur. J. Med. Chem., 2015, 101, 584-594.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.014] [PMID: 26197162]
[43]
Banuppriya, G.; Sribalan, R.; Padmini, V.; Shanmugaiah, V. Biological evaluation and molecular docking studies of new curcuminoid derivatives: Synthesis and characterization. Bioorg. Med. Chem. Lett., 2016, 26(7), 1655-1659.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.066] [PMID: 26944612]
[44]
Singh, H.; Kumar, M.; Nepali, K.; Gupta, M.K.; Saxena, A.K.; Sharma, S.; Bedi, P.M.S. Triazole tethered C5-curcuminoid-coumarin based molecular hybrids as novel antitubulin agents: Design, synthesis, biological investigation and docking studies. Eur. J. Med. Chem., 2016, 116, 102-115.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.050] [PMID: 27060762]
[45]
Laali, K.K.; Rathman, B.M.; Bunge, S.D.; Qi, X.; Borosky, G.L. Fluoro-curcuminoids and curcuminoid-BF2 adducts: Synthesis, X-ray structures, bioassay, and computational/docking study. J. Fluor. Chem., 2016, 191, 29-41.
[http://dx.doi.org/10.1016/j.jfluchem.2016.09.009]
[46]
Laali, K.K.; Greves, W.J.; Correa-Smits, S.J.; Zwarycz, A.T.; Bunge, S.D.; Borosky, G.L.; Manna, A.; Paulus, A.; Chanan-Khan, A. Novel fluorinated curcuminoids and their pyrazole and isoxazole derivatives: synthesis, structural studies, computational/docking and in vitro bioassay. J. Fluor. Chem., 2018, 206, 82-98.
[http://dx.doi.org/10.1016/j.jfluchem.2017.11.013]
[47]
Laali, K.K.; Greves, W.J.; Zwarycz, A.T.; Correa Smits, S.J.; Troendle, F.J.; Borosky, G.L.; Akhtar, S.; Manna, A.; Paulus, A.; Chanan-Khan, A.; Nukaya, M.; Kennedy, G.D. Synthesis, computational docking study, and biological evaluation of a library of heterocyclic curcuminoids with remarkable antitumor activity. ChemMedChem, 2018, 13(18), 1895-1908.
[http://dx.doi.org/10.1002/cmdc.201800320] [PMID: 30079563]
[48]
Theppawong, A.; Van de Walle, T.; Grootaert, C.; Bultinck, M.; Desmet, T.; Van Camp, J.; D’hooghe, M. Synthesis of novel aza-aromatic curcuminoids with improved biological activities towards various cancer cell lines. Chem Open, 2018, 7(5), 381-392.
[http://dx.doi.org/10.1002/open.201800029] [PMID: 29872613]
[49]
Nieto, C.I.; Cornago, M.P.; Cabildo, M.P.; Sanz, D.; Claramunt, R.M.; Torralba, M.C.; Elguero, J. Synthesis, structure and NMR study of fluorinated isoxazoles derived from hemi-curcuminoids. J. Fluor. Chem., 2019, 219, 39-49.
[http://dx.doi.org/10.1016/j.jfluchem.2018.12.012]
[50]
Kim, H.; Im, Y.H.; Ahn, J.; Yang, J.; Choi, J.Y.; Lee, K.H.; Kim, B.T.; Choe, Y.S. Synthesis and in vivo characterization of 18F-labeled difluoroboron-curcumin derivative for β-amyloid plaque imaging. Sci. Rep., 2019, 9(1), 6747-6759.
[http://dx.doi.org/10.1038/s41598-019-43257-9] [PMID: 31043696]
[51]
Laali, K.K.; Zwarycz, A.T.; Bunge, S.D.; Borosky, G.L.; Nukaya, M.; Kennedy, G.D. Deuterated curcuminoids: Synthesis, structures, computational/docking and comparative cell viability assays against colorectal cancer. ChemMedChem, 2019, 14(12), 1173-1184.
[http://dx.doi.org/10.1002/cmdc.201900179] [PMID: 30995360]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy