In Silico Model for Predicting CYP2D6-Mediated Drug-Drug Interactions

Author(s): Roberto Lozano*, Alberto Frutos, Alejandro Martinez

Journal Name: Current Reviews in Clinical and Experimental Pharmacology
(Formerly Current Clinical Pharmacology)

Volume 16 , Issue 2 , 2021

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Successful integration of in vitro into in vivo data on Drug-Drug Interaction (DDI) is dependent on the inhibitory concentration used. Obtaining plasma concentration of a drug is only readily available for a small number of drugs in clinical practice. We propose the use of a therapeutic range as a substitute for inhibitory concentration.

Objective: Because of this, we aimed to construct a linear-regression model based on the areaunder- curve of the victim drugs and the therapeutic range for a set of known inhibitors of the CYP2D6 of interest.

Methods: Correlation analysis of linear log-log regression of two main variables: The Area-Under- Curve ratio (AUCr) of the victim drugs and the therapeutic range-to-inhibition constant ratio, with data obtained from literature.

Results: Data were fitted to linear log-log regression, between the average of AUCr values and mean value of therapeutic range-to-inhibition constant ratio (TRm-to-Ki), of the inhibitory drugs.

Conclusion: According to our results, knowledge of the inhibition constant and therapeutic range (or its plasma levels if disponible) of the inhibitor would be sufficient to determine the intensity and clinical relevance of a CYP2D6-mediated DDI.

Keywords: Drug-drug interactions, cytochrome p-450, pharmacokinetics, clinical pharmacology, area-under-curve, inhibition constant, therapeutic range.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2021
Published on: 07 May, 2020
Page: [124 - 127]
Pages: 4
DOI: 10.2174/1574884715666200507130824
Price: $65

Article Metrics

PDF: 12