Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Syngonium podophyllum Leaf Extract Mediated Synthesis and Characterization of Gold Nanoparticles for Biosensing Potential: A Sustainable Approach

Author(s): Saumya Srivastava and Anjana Pandey*

Volume 17, Issue 1, 2021

Published on: 07 May, 2020

Page: [81 - 89] Pages: 9

DOI: 10.2174/1573413716999200507125437

Abstract

Background: The existing methods of analyte detection by various biochemical processes have certain drawbacks including nonlinearity and detection limits. The nanotechnology has paved a way for the development of new devices i.e., nano-biosensors, by amalgamation of nanoparticles with recognition elements. These nano-biosensors have the capabilities to overcome the drawbacks of conventional methods.

Objectives: Present study was planned to analyze the biosensing potential of indium tin oxide (ITO) electrode modified with gold nanoparticles synthesized using aqueous extract of S. podophyllum.

Methods: In present study, first time rapid green synthesis of gold nanoparticles from leaf extract of Syngonium podophyllum is reported. The synthesized nanoparticles were then characterized physically by UV-Visible spectroscopy, particle size analysis, fluorescent spectroscopy, Fourier transform infrared spectroscopy and transmission electron microscopy (TEM), and HR (High resolution)-TEM.

Results: The particles were observed to be in average size range of 30-70 nm. Furthermore, the ITO electrode was modified with the prepared nanoparticles and analyzed by ellipsometry. The electrochemical characteristics of the modified electrodes were analyzed by cyclic voltammetry.

Conclusion: The results exhibited a higher current gain, thus signifying a higher signal amplification at the electrodes and paves the way for their use in electrochemical nanobiosensors.

Keywords: Gold nanoparticles, green synthesis, FTIR, TEM, ellipsometry, Cyclic voltammetry.

Graphical Abstract
[1]
Barabadi, H.; Mahjoub, M.A.; Tajani, B.; Ahmadi, A.; Junejo, Y.; Saravanan, M. Emerging theranostic biogenic silver nanomaterials for breast cancer: A systematic review. J. Cluster Sci., 2019, 30(2), 259-279.
[http://dx.doi.org/10.1007/s10876-018-01491-7]
[2]
Jalilian, F.; Chahardoli, A.; Sadrjavadi, K.; Fattahi, A.; Shokoohinia, Y. Green synthesized silver nanoparticle from Allium ampeloprasum aqueous extract: Characterization, antioxidant activities, antibacterial and cytotoxicity effects. Adv. Powder Technol., 2020.
[http://dx.doi.org/10.1016/j.apt.2020.01.011]
[3]
Barabadi, H.; Alizadeh, A.; Ovais, M.; Ahmadi, A.; Shinwari, Z.K.; Saravanan, M. Efficacy of green nanoparticles against cancerous and normal cell lines: a systematic review and meta-analysis. IET Nanobiotechnol., 2018, 12(4), 377-391.
[http://dx.doi.org/10.1049/iet-nbt.2017.0120] [PMID: 29768219]
[4]
Barabadi, H.; Najafi, M.; Samadian, H.; Azarnezhad, A.; Vahidi, H.; Mahjoub, M.A.; Koohiyan, M.; Ahmadi, A. A systematic review of the genotoxicity and antigenotoxicity of biologically synthesized metallic nanomaterials: Are green nanoparticles safe enough for clinical marketing? Medicina (Kaunas), 2019, 55(8)E439
[http://dx.doi.org/10.3390/medicina55080439] [PMID: 31387257]
[5]
Salehi, B.; Mehrabian, S.; Ahmadi, M. Investigation of antibacterial effect of Cadmium Oxide nanoparticles on Staphylococcus aureus bacteria. J. Nanobiotechnology, 2014, 12(1), 26.
[http://dx.doi.org/10.1186/s12951-014-0026-8] [PMID: 25056250]
[6]
Xie, J.; Lee, S.; Chen, X. Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev., 2010, 62(11), 1064-1079.
[http://dx.doi.org/10.1016/j.addr.2010.07.009] [PMID: 20691229]
[7]
Lim, E.K.; Kim, T.; Paik, S.; Haam, S.; Huh, Y.M.; Lee, K. Nanomaterials for theranostics: recent advances and future challenges. Chem. Rev., 2015, 115(1), 327-394.
[http://dx.doi.org/10.1021/cr300213b] [PMID: 25423180]
[8]
Vinhas, R.; Cordeiro, M.; Carlos, F.F.; Mendo, S.; Fernandes, A.R.; Figueiredo, S.; Baptista, P.V. Gold nanoparticle-based theranostics: Disease diagnostics and treatment using a single nanomaterial. Nanobiosens. Dis. Diag., 2015, 4, 11-13.
[9]
Vats, S.; Singh, M.; Siraj, S.; Singh, H.; Tandon, S. Role of nanotechnology in theranostics and personalized medicines. J. Health Res., 2017, 4(1), 1-7.
[http://dx.doi.org/10.4103/2394-2010.199328]
[10]
Onaciu, A.; Jurj, A.; Moldovan, C.; Berindan-Neagoe, I. Theranostic Nanoparticles and Their Spectrum in Cancer, 2019. Available from: https://www.intechopen.com/online-first/theranostic-nanoparticles-and-their-spectrum-in-cancer
[http://dx.doi.org/10.5772/intechopen.88097.]
[11]
Vedelago, J.; Gomez, C.G.; Valente, M.; Mattea, F. Green synthesis of silver nanoparticles aimed at improving theranostics. Radiat. Phys. Chem., 2018, 146, 55-67.
[http://dx.doi.org/10.1016/j.radphyschem.2018.01.001]
[12]
De Matteis, V.; Cascione, M.; Toma, C.C.; Leporatti, S. Silver nanoparticles: Synthetic routes, in vitro toxicity and theranostic applications for cancer disease. Nanomaterials (Basel), 2018, 8(5)E319
[http://dx.doi.org/10.3390/nano8050319] [PMID: 29748469]
[13]
Barabadi, H.; Ovais, M.; Shinwari, Z.K.; Saravanan, M. Anti-cancer green bionanomaterials: Present status and future prospects. Green Chem. Lett. Rev., 2017, 10(4), 285-314.
[http://dx.doi.org/10.1080/17518253.2017.1385856]
[14]
Al-Sheddi, E.S.; Farshori, N.N.; Al-Oqail, M.M.; Al-Massarani, S.M.; Saquib, Q.; Wahab, R.; Musarrat, J.; Al-Khedhairy, A.A.; Siddiqui, M.A. Anticancer potential of green synthesized silver nanoparticles using extract of Nepeta deflersiana against human cervical cancer cells (HeLA). Bioinorg. Chem. Appl., 2018, 20189390784
[http://dx.doi.org/10.1155/2018/9390784] [PMID: 30515193]
[15]
Geetha, R.; Ashokkumar, T.; Tamilselvan, S.; Govindaraju, K.; Sadiq, M.; Singaravelu, G. Green synthesis of gold nanoparticles and their anticancer activity. Cancer Nanotechnol., 2013, 4(4-5), 91-98.
[http://dx.doi.org/10.1007/s12645-013-0040-9] [PMID: 26069504]
[16]
Saravanan, M.; Barabadi, H.; Ramachandran, B.; Venkatraman, G.; Ponmurugan, K. Emerging plant-based anti-cancer green nanomaterials in present scenario.Engineered Nanomaterials and Phytonanotechnology: Challenges for Plant Sustainability, 1st ed; Verma, S.K.; Das, A.K., Eds.; Elsevier, , 2019; Vol 87, . (291)
[http://dx.doi.org/10.1016/bs.coac.2019.09.001]
[17]
Kanagamani, K.; Muthukrishnan, P.; Shankar, K.; Kathiresan, A.; Barabadi, H.; Saravanan, M. Antimicrobial, cytotoxicity and photocatalytic degradation of norfloxacin using Kleinia grandiflora mediated silver nanoparticles. J. Cluster Sci., 2019, 30, 1415-1424.
[http://dx.doi.org/10.1007/s10876-019-01583-y]
[18]
Balachandar, R.; Gurumoorthy, P.; Karmegam, N.; Barabadi, H.; Subbaiya, R.; Anand, K.; Boomi, P.; Saravanan, M. Plant-mediated synthesis, characterization and bactericidal potential of emerging silver nanoparticles using stem extract of Phyllanthus pinnatus: A recent advance in phytonanotechnology. J. Cluster Sci., 2019, 30, 1481-1488.
[http://dx.doi.org/10.1007/s10876-019-01591-y]
[19]
Safdar, M.; Qumar, G.M.; Saravanan, M.; Khailany, R.A.; Ozaslan, M.; Gondal, M.A.; Deekonda, K.; Shahzad, Q.; Junejo, Y. Synthesis and characterization of Cefditoren capped silver nanoparticles and their antimicrobial and catalytic degradation of Ibuprofen. J. Cluster Sci., 2019, 30, 1663-1671.
[http://dx.doi.org/10.1007/s10876-019-01612-w]
[20]
Li, Y.; Schluesener, H.J.; Xu, S. Gold nanoparticle-based biosensors. Gold Bull., 2010, 43(1), 29-41.
[http://dx.doi.org/10.1007/BF03214964]
[21]
Jiang, P.; Wang, Y.; Zhao, L.; Ji, C.; Chen, D.; Nie, L. Applications of gold nanoparticles in non-optical biosensors. Nanomaterials (Basel), 2018, 8(12), 977.
[http://dx.doi.org/10.3390/nano8120977] [PMID: 30486293]
[22]
Liu, J.X.; Bao, N.; Luo, X.; Ding, S.N. Nonenzymatic amperometric aptamer cytosensor for ultrasensitive detection of circulating tumor cells and dynamic evaluation of cell surface N-Glycan expression. ACS Omega, 2018, 3(8), 8595-8604.
[http://dx.doi.org/10.1021/acsomega.8b01072] [PMID: 31458989]
[23]
Nguyen, N.V.; Yang, C.H.; Liu, C.J.; Kuo, C.H.; Wu, D.C.; Jen, C.P. An aptamer-based capacitive sensing platform for specific detection of lung carcinoma cells in the microfluidic chip. Biosensors (Basel), 2018, 8(4)E98
[http://dx.doi.org/10.3390/bios8040098] [PMID: 30347814]
[24]
Yeh, Y.C.; Creran, B.; Rotello, V.M. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale, 2012, 4(6), 1871-1880.
[http://dx.doi.org/10.1039/C1NR11188D] [PMID: 22076024]
[25]
Khan, A.K.; Rashid, R.; Murtaza, G.; Zahra, A. Gold nanoparticles: Synthesis and applications in drug delivery. Trop. J. Pharm. Res., 2014, 13(7), 1169-1177.
[http://dx.doi.org/10.4314/tjpr.v13i7.23]
[26]
Saha, K.; Agasti, S.S.; Kim, C.; Li, X.; Rotello, V.M. Gold nanoparticles in chemical and biological sensing. Chem. Rev., 2012, 112(5), 2739-2779.
[http://dx.doi.org/10.1021/cr2001178] [PMID: 22295941]
[27]
Holzinger, M.; Le Goff, A.; Cosnier, S. Nanomaterials for biosensing applications: a review. Front Chem., 2014, 2, 63.
[http://dx.doi.org/10.3389/fchem.2014.00063] [PMID: 25221775]
[28]
Aldewachi, H.; Chalati, T.; Woodroofe, M.N.; Bricklebank, N.; Sharrack, B.; Gardiner, P. Gold nanoparticle-based colorimetric biosensors. Nanoscale, 2017, 10(1), 18-33.
[http://dx.doi.org/10.1039/C7NR06367A] [PMID: 29211091]
[29]
Shawky, S.M.; Awad, A.M.; Abugable, A.A.; El-Khamisy, S.F. Gold nanoparticles - an optical biosensor for RNA quantification for cancer and neurologic disorders diagnosis. Int. J. Nanomedicine, 2018, 13, 8137-8151.
[http://dx.doi.org/10.2147/IJN.S181732] [PMID: 30555231]
[30]
Yu, X.; Jiao, Y.; Chai, Q. Applications of gold nanoparticles in biosensors. Nano Life, 2016, 6(02)1642001
[http://dx.doi.org/10.1142/S1793984416420010]
[31]
Ge, L.; Li, Q.; Wang, M.; Ouyang, J.; Li, X.; Xing, M.M. Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int. J. Nanomedicine, 2014, 9, 2399-2407.
[PMID: 24876773]
[32]
Burdușel, A.C.; Gherasim, O.; Grumezescu, A.M.; Mogoantă, L.; Ficai, A.; Andronescu, E. Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials (Basel), 2018, 8(9), 681.
[http://dx.doi.org/10.3390/nano8090681] [PMID: 30200373]
[33]
Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res., 2016, 7(1), 17-28.
[http://dx.doi.org/10.1016/j.jare.2015.02.007] [PMID: 26843966]
[34]
Prasad, R. Synthesis of silver nanoparticles in photosynthetic plants. J. Nanopart. Res., 2014, 2014963961
[35]
Sehnal, K.; Hosnedlova, B.; Docekalova, M.; Stankova, M.; Uhlirova, D.; Tothova, Z.; Kepinska, M.; Milnerowicz, H.; Fernandez, C.; Ruttkay-Nedecky, B.; Nguyen, H.V.; Ofomaja, A.; Sochor, J.; Kizek, R. An assessment of the effect of green synthesized silver nanoparticles using sage leaves (Salvia officinalis L.) on germinated plants of maize (Zea mays L.). Nanomaterials (Basel), 2019, 9(11), 1550.
[http://dx.doi.org/10.3390/nano9111550] [PMID: 31683686]
[36]
Burlacu, E.; Tanase, C.; Coman, N.A.; Berta, L. A review of bark-extract-mediated green synthesis of metallic nanoparticles and their applications. Molecules, 2019, 24(23), 4354.
[http://dx.doi.org/10.3390/molecules24234354] [PMID: 31795265]
[37]
Qais, F.A.; Shafiq, A.; Khan, H.M.; Husain, F.M.; Khan, R.A.; Alenazi, B.; Alsalme, A.; Ahmad, I. Antibacterial effect of silver nanoparticles synthesized using Murraya koenigii (L.) against multidrug-resistant pathogens. Bioinorg. Chem. Appl., 2019, 20194649506
[http://dx.doi.org/10.1155/2019/4649506] [PMID: 31354799]
[38]
Ahmed, S. Saifullah; Ahmad, M.; Swami, B.L.; Ikram, S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci., 2016, 9(1), 1-7.
[http://dx.doi.org/10.1016/j.jrras.2015.06.006]
[39]
Barabadi, H.; Honary, S.; Ali Mohammadi, M.; Ahmadpour, E.; Rahimi, M.T.; Alizadeh, A.; Naghibi, F.; Saravanan, M. Green chemical synthesis of gold nanoparticles by using Penicillium aculeatum and their scolicidal activity against hydatid cyst protoscolices of Echinococcus granulosus. Environ. Sci. Pollut. Res. Int., 2017, 24(6), 5800-5810.
[http://dx.doi.org/10.1007/s11356-016-8291-8] [PMID: 28054267]
[40]
Junejo, Y.; Safdar, M.; Akhtar, M.A.; Saravanan, M.; Anwar, H.; Babar, M.; Bibi, R.; Pervez, M.T.; Hussain, T.; Babar, M.E. Synthesis of tobramycin stabilized silver nanoparticles and its catalytic and antibacterial activity against pathogenic bacteria. J. Inorg. Organomet. Polym., 2019, 29(1), 111-120.
[http://dx.doi.org/10.1007/s10904-018-0971-z]
[41]
Barabadi, H.; Kobarfard, F.; Vahidi, H. Biosynthesis and characterization of biogenic tellurium nanoparticles by using Penicillium chrysogenum PTCC 5031: A novel approach in gold biotechnology. Iran. J. Pharm. Res., 2018, 17(Suppl. 2), 87-97.
[PMID: 31011345]
[42]
Barabadi, H.; Damavandi Kamali, K.; Jazayeri Shoushtari, F.; Tajani, B.; Ali Mahjoub, M.; Alizadeh, A.; Saravanan, M. Emerging theranostic silver and gold nanomaterials to combat prostate cancer: A systematic review. J. Cluster Sci., 2019, 30, 1375-1382.
[http://dx.doi.org/10.1007/s10876-019-01588-7]
[43]
Madamsetty, V.S.; Mukherjee, A.; Mukherjee, S. Recent trends of the bio-inspired nanoparticles in cancer theranostics. Front. Pharmacol., 2019, 10, 1264.
[http://dx.doi.org/10.3389/fphar.2019.01264] [PMID: 31708785]
[44]
Salunke, B.K.; Sawant, S.S.; Lee, S.I.; Kim, B.S. Microorganisms as efficient biosystem for the synthesis of metal nanoparticles: current scenario and future possibilities. World J. Microbiol. Biotechnol., 2016, 32(5), 88.
[http://dx.doi.org/10.1007/s11274-016-2044-1] [PMID: 27038958]
[45]
Li, X.; Xu, H.; Chen, Z.S.; Chen, G. Biosynthesis of nanoparticles by microorganisms and their applications. J. Nanomater., 2011, 2011270974
[http://dx.doi.org/10.1155/2011/270974]
[46]
Kumar, S.; Kumar, R.; Dwivedi, A.; Pandey, A.K. In vitro antioxidant, antibacterial, and cytotoxic activity and in vivo effect of Syngonium podophyllum and Eichhornia crassipes leaf extracts on isoniazid induced oxidative stress and hepatic markers. BioMed Res. Int., 2014, 2014459452
[http://dx.doi.org/10.1155/2014/459452] [PMID: 25162013]
[47]
Hossain, M.S.; Uddin, M.S.; Kabir, M.T.; Begum, M.M.; Koushal, P.; Herrera-Calderon, O. In vitro screening for phytochemicals and antioxidant activities of Syngonium podophyllum L.: An incredible therapeutic plant. Biomed. Pharmacol. J., 2017, 10(3), 1267-1277.
[http://dx.doi.org/10.13005/bpj/1229]
[48]
Ponnaiah, S.K.; Prakash, P.; Muthupandian, S. Ultrasonic energy-assisted in-situ synthesis of Ru0/PANI/g-C3N4 nanocomposite: Application for picomolar-level electrochemical detection of endocrine disruptor (Bisphenol-A) in humans and animals. Ultrason. Sonochem., 2019, 58104629
[http://dx.doi.org/10.1016/j.ultsonch.2019.104629] [PMID: 31450371]
[49]
Pennazza, G.; Santonico, M.; Vollero, L.; Zompanti, A.; Sabatini, A.; Kumar, N.; Pini, I.; Quiros Solano, W.F.; Sarro, L.; D’Amico, A. Advances in the electronics for cyclic voltammetry: The case of gas detection by using microfabricated electrodes. Front Chem., 2018, 6, 327.
[http://dx.doi.org/10.3389/fchem.2018.00327] [PMID: 30148129]
[50]
Yasir, M.; Singh, J.; Tripathi, M.K.; Singh, P.; Shrivastava, R. Green synthesis of silver nanoparticles using leaf extract of common arrowhead houseplant and its anticandidal activity. Pharmacogn. Mag., 2018, 13(Suppl. 4), S840-S844.
[PMID: 29491642]
[51]
Woehrle, G.H.; Hutchison, J.E.; Özkar, S.; Finke, R.G. Analysis of nanoparticle transmission electron microscopy data using a public-domain image-processing program, image. Turk. J. Chem., 2006, 30(1), 1-13.
[52]
Mulligan, S.K.; Speir, J.A.; Razinkov, I.; Cheng, A.; Crum, J.; Jain, T.; Duggan, E.; Liu, E.; Nolan, J.P.; Carragher, B.; Potter, C.S. Multiplexed TEM specimen preparation and analysis of plasmonic nanoparticles. Microsc. Microanal., 2015, 21(4), 1017-1025.
[http://dx.doi.org/10.1017/S1431927615014324] [PMID: 26223550]
[53]
Yaman, Y.T.; Abaci, S. Sensitive adsorptive voltammetric method for determination of bisphenol A by gold nanoparticle/polyvinylpyrrolidone-modified pencil graphite electrode. Sensors (Basel), 2016, 16(6)E756
[http://dx.doi.org/10.3390/s16060756] [PMID: 27231912]
[54]
Mirkin, C.A.; Letsinger, R.L.; Mucic, R.C.; Storhoff, J.J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996, 382(6592), 607-609.
[http://dx.doi.org/10.1038/382607a0] [PMID: 8757129]
[55]
Hao, E.; Kelly, K.L.; Hupp, J.T.; Schatz, G.C. Synthesis of silver nanodisks using polystyrene mesospheres as templates. J. Am. Chem. Soc., 2002, 124(51), 15182-15183.
[http://dx.doi.org/10.1021/ja028336r] [PMID: 12487587]
[56]
Goh, E.G.; Xu, X.; McCormick, P.G. Effect of particle size on the UV absorbance of zinc oxide nanoparticles. Scr. Mater., 2014, 78, 49-52.
[http://dx.doi.org/10.1016/j.scriptamat.2014.01.033]
[57]
Sundarrajan, M.; Jeelani, A.; Santhanam, V.; Durgadevi, S.; Abirami, S. Effect of concentration, pH and Time on the morphology of silver nanoparticles synthesized by green method using Phyllanthus niruri and Solanum nigrum leaf extracts. Int. J. Curr. Res. Rev., 2018, 10(21), 25-29.
[http://dx.doi.org/10.31782/IJCRR.2018.2529]
[58]
Dada, A.O.; Inyinbor, A.A.; Idu, E.I.; Bello, O.M.; Oluyori, A.P.; Adelani-Akande, T.A.; Okunola, A.A.; Dada, O. Effect of operational parameters, characterization and antibacterial studies of green synthesis of silver nanoparticles using Tithonia diversifolia. PeerJ, 2018, 6e5865
[http://dx.doi.org/10.7717/peerj.5865] [PMID: 30397553]
[59]
Wilcoxon, J.P.; Martin, J.E.; Parsapour, F.; Wiedenman, B.; Kelley, D.F. Photoluminescence from nanosize gold clusters. J. Chem. Phys., 1998, 108(21), 9137-9143.
[http://dx.doi.org/10.1063/1.476360]
[60]
Yang, T.Q.; Peng, B.; Shan, B.Q.; Zong, Y.X.; Jiang, J.G.; Wu, P.; Zhang, K. Origin of the photoluminescence of metal nanoclusters: From metal-centered emission to ligand-centered emission. Nanomaterials (Basel), 2020, 10(2)E261
[http://dx.doi.org/10.3390/nano10020261] [PMID: 32033058]
[61]
Mooradian, A. Photoluminescence of metals. Phys. Rev. Lett., 1969, 22(5), 185.
[http://dx.doi.org/10.1103/PhysRevLett.22.185]
[62]
Shahbazyan, T.V. Theory of plasmon-enhanced metal photoluminescence. Nano Lett., 2013, 13(1), 194-198.
[http://dx.doi.org/10.1021/nl303851z] [PMID: 23234309]
[63]
Lin, A.; Son, D.H.; Ahn, I.H.; Song, G.H.; Han, W.T. Visible to infrared photoluminescence from gold nanoparticles embedded in germano-silicate glass fiber. Opt. Express, 2007, 15(10), 6374-6379.
[http://dx.doi.org/10.1364/OE.15.006374] [PMID: 19546942]
[64]
Wang, H.; Huff, T.B.; Zweifel, D.A.; He, W.; Low, P.S.; Wei, A.; Cheng, J.X. In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc. Natl. Acad. Sci. USA, 2005, 102(44), 15752-15756.
[http://dx.doi.org/10.1073/pnas.0504892102] [PMID: 16239346]
[65]
Chang, C.H.; Lin, R.J.; Tien, C.L.; Yeh, S.M. Enhanced photoluminescence in gold nanoparticles doped homogeneous planar nematic liquid crystals. Adv. Cond. Matter Phys., 2018, 20188720169
[http://dx.doi.org/10.1155/2018/8720169]
[66]
Longo, A.; Pepe, G.P.; Carotenuto, G.; Ruotolo, A.; De Nicola, S.; Belotelov, V.I.; Zvezdin, A.K. Optical emission studies in Au/Ag nanoparticles. Nanotechnology, 2007, 18(36)365701
[http://dx.doi.org/10.1088/0957-4484/18/36/365701]
[67]
Paul, N.S.; Yadav, R.P. A simple biogenic method for the synthesis of silver nanoparticles using Syngonium podophyllum, an ornamental plant. MGM J. Med. Sci., 2016, 3(3), 111-115.
[http://dx.doi.org/10.5005/jp-journals-10036-1103]
[68]
Sithara, R.; Selvakumar, P.; Arun, C.; Anandan, S.; Sivashanmugam, P. Economical synthesis of silver nanoparticles using leaf extract of Acalypha hispida and its application in the detection of Mn(II) ions. J. Adv. Res., 2017, 8(6), 561-568.
[http://dx.doi.org/10.1016/j.jare.2017.07.001] [PMID: 28765792]
[69]
Sathyavathi, R.; Krishna, M.B.; Rao, S.V.; Saritha, R.; Rao, D.N. Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv. Sci. Lett., 2010, 3(2), 138-143.
[http://dx.doi.org/10.1166/asl.2010.1099]
[70]
Faghihzadeh, F.; Anaya, N.M.; Schifman, L.A.; Oyanedel-Craver, V. Fourier transform infrared spectroscopy to assess molecular-level changes in microorganisms exposed to nanoparticles. Nanotechnol. Environ. Eng., 2016, 1(1), 1.
[http://dx.doi.org/10.1007/s41204-016-0001-8]
[71]
Benzitouni, S.; Mahdjoub, A.; Zaabat, M. Spectroscopic ellipsometry characterization of thin films deposited on silicon substrate. J. New Technol. Mater., 1747, 2014(277), 1-5.
[72]
Yola, M.L.; Gupta, V.K.; Eren, T.; Şen, A.E.; Atar, N. A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim. Acta, 2014, 120, 204-211.
[http://dx.doi.org/10.1016/j.electacta.2013.12.086]
[73]
Kızılkaya, M.; Eren, Ü. Development of a gold nanoparticle based electrochemical biosensor for detection of phenolic compounds. J. Turk. Chem. Soc. Sect. B: Chem. Eng., 2016, 1(1), 115-126.
[74]
Norouzi, P.; Eshraghi, M.A.; Ebrahimi, M. DNA biosensor for determination of 5-fluorouracil based on gold electrode modified with Au and polyaniline nanoparticles and FFT square wave voltammetry. J. Appl. Commun. Res., 2019, 13(1), 24-35.
[75]
Akter, H.; Shaikh, A.A.; Chowdhury, T.R.; Rahman, M.S.; Bakshi, P.K.; Ahammad, A.S. Gold nanoparticle-modified indium tin oxide electrode for highly sensitive electrochemical detection of melamine. ECS Electrochem. Lett., 2013, 2(8), B13-B15.
[http://dx.doi.org/10.1149/2.001309eel]

© 2024 Bentham Science Publishers | Privacy Policy