Anticoagulant Activity of Sulfated Polysaccharides and Polyphenols Extracted from Marine Algae

Author(s): Karima Saidani*, Nadia Ziani, Naima Touati, Hafida Merzouk, Fatiha Bedjou

Journal Name: Current Bioactive Compounds

Volume 17 , Issue 3 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Recent studies have provided evidence that marine algae sulfated polysaccharides and phlorotannins play an important role in human health. The aim of this study was to evaluate the anticoagulant activity of five marine algae extracts from Bejaia’s coast (Algeria).

Methods: Phenolic and sugar contents of the five marine algae were assessed using folin ciocalteu and anthrone reagents, respectively. The anticoagulant activity was evaluated by the Activated Partial Thromboplastin Time (APTT) and Prothrombin Time (PT).

Results: Higher contents of phenolic compounds were obtained with ethanol for Cystoseira humilis, Halopteris scoparia, Padina pavonica, and Rhodomela confervoides (8.55±0.29, 7.84±0.47, 6.41±0.14 and 4.16±0.04 mg CE/g of dw, respectively). Whereas, for Sargassum vulgare, the extraction with acetone showed higher content (3.04±0.071 mg CE/g of dw). The determination of sugar content showed that acetone extract of the five seaweeds was the richest in sugar, this rate increasingly dropped in ethanol extract and the fractions A and B. The red algae Rhodomela confervoides showed a significant anticoagulant activity in ethanol extract and the fractions A, B, and C, with elongation up to 407.97±58.12 s in the fraction C, at a concentration of 10 mg/mL. Anticoagulant activity was observed in the fractions A, B, and C of all the brown seaweeds. Procoagulant activity was observed in the fractions A and B of Cystoseira humilis and Sargassum vulgare, as well as the fraction B of Padina pavonica for an indeterminate period, at 10 mg/mL.

Conclusion: The sulfated polysaccharides present in the fractions A, B and C of the studied marine algae may be responsible for the anticoagulant activity. So, they can be developed as a novel anticoagulant in the pharmaceutical industry.

Keywords: Anticoagulant activity, marine algae, phenolic compounds, sufated polysaccharides, thrombin, clotting apparatus.

[1]
Radmer, R.J.; Parker, B.C. Commercial applications of algae: Opportunities and constraints. J. Appl. Phycol., 1994, 6, 93-98.
[http://dx.doi.org/10.1007/BF02186062]
[2]
Rahelivao, M.P.; Gruner, M.; Andriamanantoanina, H.; Andriamihaja, B.; Bauer, I.; Knölker, H.J. Red Algae (Rhodophyta) from the coast of madagascar: Preliminary bioactivity studies and isolation of natural products. Mar. Drugs, 2015, 13(7), 4197-4216.
[http://dx.doi.org/10.3390/md13074197] [PMID: 26198236]
[3]
Kosanić, M.; Ranković, B.; Stanojković, T. Biological activities of two macroalgae from Adriatic coast of Montenegro. Saudi J. Biol. Sci., 2015, 22(4), 390-397.
[http://dx.doi.org/10.1016/j.sjbs.2014.11.004] [PMID: 26150743]
[4]
Chouikhi, A. The potential applications of marine macroalgae and the pharmacological activities of their metabolites: Revue. USTHB‐FBS‐4th International Congress of the Populations & Animal Communities “Dynamics & Biodiversity of the terrestrial & aquatic Ecosystems" "CIPCA4" TAGHIT (Bechar) – Algeria, 19‐21 November, 2013, 1-40.
[5]
Chen, X.; Yang, S.; Wang, J.; Song, L.; Xing, R.; Liu, S.; Yu, H.; Li, P. Sulfated polysaccharides isolated from cloned Grateloupia filicina and their anticoagulant activity. Biomed Res. Int., 2015, 2015(3), 1-5.
[6]
Kim, S.K.; Wijesekara, I. Anticoagulant effect of marine algae. Adv. Food Nutr. Res., 2011, 64, 235-244.
[7]
Shanmugam, M.; Mody, K.H.; Ramavat, B.K.; Murthy, A.S.K.; Siddhanta, A.K. Screening of Codiacean algae (Chlorophyta) of the Indian coasts for blood anticoagulant activity. Indian J. Geo-Mar. Sci., 2002, 31, 33-38.
[8]
Suwan, J.; Zhang, Z.; Li, B.; Vongchan, P.; Meepowpan, P.; Zhang, F.; Mousa, S.A.; Mousa, S.; Premanode, B.; Kongtawelert, P.; Linhardt, R.J. Sulfonation of papain-treated chitosan and its mechanism for anticoagulant activity. Carbohydr. Res., 2009, 344(10), 1190-1196.
[http://dx.doi.org/10.1016/j.carres.2009.04.016] [PMID: 19476923]
[9]
Jurd, K.M.; Rogers, D.J.; Blunden, G.; McLellan, D.S. Anticoagulant properties of sulphated polysaccharides and a proteoglycan from Codium fragile Ssp. Atlanticum. J. Appl. Phycol., 1995, 7, 339-345.
[http://dx.doi.org/10.1007/BF00003790]
[10]
Prajapati, V.D.; Maheriya, P.M.; Jani, G.K.; Solanki, H.K. Carrageenan: A natural seaweed polysaccharide and its applications. Carbohydr. Polym., 2014, 105, 97-112.
[http://dx.doi.org/10.1016/j.carbpol.2014.01.067] [PMID: 24708958]
[11]
Shanmugam, M.; Mody, K.H. Heparinoid-active sulphated polysaccharides from marine algae as potential blood anticoagulant agents. Curr. Sci., 2000, 79, 1672-1683.
[12]
Athukorala, Y.; Lee, K.W.; Kim, S.K.; Jeon, Y.J. Anticoagulant activity of marine green and brown algae collected from Jeju Island in Korea. Bioresour. Technol., 2007, 98(9), 1711-1716.
[http://dx.doi.org/10.1016/j.biortech.2006.07.034] [PMID: 16973353]
[13]
Cho, S.H.; Kang, S.E.; Cho, J.Y.; Kim, A.R.; Park, S.M.; Hong, Y-K.; Ahn, D-H. The antioxidant properties of brown seaweed (Sargassum siliquastrum) extracts. J. Med. Food, 2007, 10(3), 479-485.
[http://dx.doi.org/10.1089/jmf.2006.099] [PMID: 17887942]
[14]
Rioux, L.E.; Turgeon, S.L.; Beaulieu, M. Characterization of polysaccharides extracted from brown seaweeds. Carbohydr. Polym., 2007, 69, 530-537.
[http://dx.doi.org/10.1016/j.carbpol.2007.01.009]
[15]
Škerget, M.; Kotnik, P.; Hadolin, M.; Hraš, A.R.; Simonič, M.; Knez, Ž. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem., 2005, 89, 191-198.
[http://dx.doi.org/10.1016/j.foodchem.2004.02.025]
[16]
Kubrak, O.I.; Rovenko, B.M.; Husak, V.V.; Storey, J.M.; Storey, K.B.; Lushchak, V.I. Nickel induces hyperglycemia and glycogenolysis and affects the antioxidant system in liver and white muscle of goldfish Carassius auratus L. Ecotoxicol. Environ. Saf., 2012, 80, 231-237.
[http://dx.doi.org/10.1016/j.ecoenv.2012.03.006] [PMID: 22444726]
[17]
Mourão, P.A.S.; Pereira, M.S.; Pavão, M.S.; Mulloy, B.; Tollefsen, D.M.; Mowinckel, M.C.; Abildgaard, U. Structure and anticoagulant activity of a fucosylated chondroitin sulfate from echinoderm. Sulfated fucose branches on the polysaccharide account for its high anticoagulant action. J. Biol. Chem., 1996, 271(39), 23973-23984.
[http://dx.doi.org/10.1074/jbc.271.39.23973] [PMID: 8798631]
[18]
Qi, X.; Mao, W.; Gao, Y.; Chen, Y.; Chen, Y.; Zhao, C.; Li, N.; Wang, C.; Yan, M.; Lin, C.; Shan, J. Chemical characteristic of an anticoagulant-active sulfated polysaccharide from Enteromorpha clathrata. Carbohydr. Polym., 2012, 90(4), 1804-1810.
[http://dx.doi.org/10.1016/j.carbpol.2012.07.077] [PMID: 22944450]
[19]
Bourgou, S.; Serairi Beji, R.; Medini, F.; Ksouri, R. Effect of solvent and extraction method on phenolic content and antioxidant potentialities of Euphorbia helioscopia. J. Nat. Sci., 2016, 28, 1649-1655.
[20]
Farah Diyana, A.; Abdullah, A.; Shahrul Hisham, Z.A.; Chan, K.M. Antioxidant activity of red algae Kappaphycus alvarezii and Kappaphycus striatum. Int. Food Res. J., 2015, 22, 1977-1984.
[21]
Tomsone, L.; Kruma, Z. Comparison of different solvents for isolation of phenolic compounds from horseradish (Armoracia rusticana L.) leaves. Res. Rural Dev., 2013, 1, 104-110.
[22]
Freile-Pelegrın, Y.; Robledo, D. Bioactive Phenolic Compounds from Algae. In: Bioactive Compounds from Marine Foods: Plant and Animal Sources, 1st ed; Hernandez-Ledesma, B.; Herrero, M., Eds.; John Wiley & Sons, Ltd, 2014; p. 120.
[23]
Koivikko, R.; Loponen, J.; Honkanen, T.; Jormalainen, V. Contents of soluble, cell-wall-bound and exuded phlorotannins in the brown alga Fucus vesiculosus, with implications on their ecological functions. J. Chem. Ecol., 2005, 31(1), 195-212.
[http://dx.doi.org/10.1007/s10886-005-0984-2] [PMID: 15839490]
[24]
Murti, Y.; Agrawal, T. Marine derived pharmaceuticals- Development of natural health products from marine biodiversity. Int. J. Chemtech Res., 2010, 2, 2198-2217.
[25]
Liu, X.; Liu, B.; Wei, X.L.; Sun, Z.L.; Wang, C.Y. Extraction, fractionation, and chemical characterization of fucoidans from the brown seaweed Sargassum pallidum. Czech J. Food Sci., 2016, 34, 406-413.
[http://dx.doi.org/10.17221/322/2015-CJFS]
[26]
Mihoub, H.; Abbad, A.; Aradj, H. The seasonal variations affective on the biochemical composition of some marine brown macroalgae (Phaeophyceae) in Syrian waters. Biological science, 2006, 51-68.
[27]
Imjongjairak, S.; Ratanakhanokchai, K.; Laohakunjit, N.; Tachaapaikoon, C.; Pason, P.; Waeonukul, R. Biochemical characteristics and antioxidant activity of crude and purified sulfated polysaccharides from Gracilaria fisheri. Biosci. Biotechnol. Biochem., 2016, 80(3), 524-532.
[http://dx.doi.org/10.1080/09168451.2015.1101334] [PMID: 26507584]
[28]
Sebaaly, C.; Kassem, S.; Grishina, E.; Kanaan, H.; Sweidan, A.; Chmit, M.S.; Kanaan, H.M. Anticoagulant and antibacterial activities of polysaccharides of red algae corallina collected from Lebanese Coast. J. Appl. Pharm. Sci., 2014, 4, 30-37.
[29]
Bae, J.S. Antithrombotic and profibrinolytic activities of phloroglucinol. Food Chem. Toxicol., 2011, 49(7), 1572-1577.
[http://dx.doi.org/10.1016/j.fct.2011.04.003] [PMID: 21501649]
[30]
Karaki, N.; Sebaaly, C.; Chahine, N.; Faour, T.; Zinchenko, A.; Rachid, S.; Kanaan, H. The antioxidant and anticoagulant activities of polysaccharides isolated from the brown algae dictyopteris polypodioides growing on the Lebanese Coast. J. Appl. Pharm. Sci., 2013, 3, 43-51.
[31]
Kraan, S. Algal polysaccharides, novel applications and outlook. In: Carbohydrates – Comprehensive Studies on Glycobiology and Glycotechnology; Intech, O.S.M., Ed.; , 2012; Vol. 14, pp. 489-532.
[http://dx.doi.org/10.5772/51572]
[32]
Magdel-Din Hussein, M.; Abdel-Aziz, A.; Mohamed Salem, H. Some structural features of a new sulphated heteropolysaccharide from Padina pavonia. Phytochemistry, 1980, 19, 2133-2135.
[http://dx.doi.org/10.1016/S0031-9422(00)82209-8]
[33]
Fitton, J.H.; Stringer, D.N.; Karpiniec, S.S. Therapies from fucoidan: An update. Mar. Drugs, 2015, 13(9), 5920-5946.
[http://dx.doi.org/10.3390/md13095920] [PMID: 26389927]
[34]
Nishino, T.; Aizu, Y.; Nagumo, T. Antithrombin activity of a fucan sulfate from the brown seaweed Ecklonia kurome. Thromb. Res., 1991, 62(6), 765-773.
[http://dx.doi.org/10.1016/0049-3848(91)90380-F] [PMID: 1926066]
[35]
Church, F.C.; Meade, J.B.; Treanor, R.E.; Whinna, H.C.; Soc, M.F.P. Antithrombin activity of fucoidan. The interaction of fucoidan with heparin cofactor II, antithrombin III, and thrombin. J. Biol. Chem., 1989, 264(6), 3618-3623.
[PMID: 2914965]
[36]
Mourão, P.A.S. Use of sulfated fucans as anticoagulant and antithrombotic agents : Future perspectives. Curr. Pharm. Des., 2004, 10(9), 967-981.
[37]
Li, B.; Lu, F.; Wei, X.; Zhao, R. Fucoidan: Structure and bioactivity. Mol., 2008, 1671-1695.
[38]
Ponce, N.M.A.; Pujol, C.A.; Damonte, E.B.; Flores, M.L.; Stortz, C.A. Fucoidans from the brown seaweed Adenocystis utricularis: Extraction methods, antiviral activity and structural studies. Carbohydr. Res., 2003, 338(2), 153-165.
[http://dx.doi.org/10.1016/S0008-6215(02)00403-2] [PMID: 12526839]
[39]
Zhang, Z.; Till, S.; Jiang, C.; Knappe, S.; Reutterer, S.; Scheiflinger, F.; Szabo, C.M.; Dockal, M. Structure-activity relationship of the pro-and anticoagulant effects of Fucus vesiculosus fucoidan. Thromb. Haemost., 2014, 111(3), 429-437.
[http://dx.doi.org/10.1160/TH13-08-0635] [PMID: 24285223]
[40]
Zhang, Z.; Till, S.; Knappe, S.; Quinn, C.; Catarello, J.; Ray, G.J.; Scheiflinger, F.; Szabo, C.M.; Dockal, M. Screening of complex fucoidans from four brown algae species as procoagulant agents. Carbohydr. Polym., 2015, 115, 677-685.
[http://dx.doi.org/10.1016/j.carbpol.2014.09.001] [PMID: 25439948]
[41]
Menshova, R.V.; Shevchenko, N.M.; Imbs, T.I.; Zvyagintseva, T.N.; Malyarenko, O.S.; Zaporoshets, T.S.; Besednova, N.N.; Ermakova, S.P. Fucoidans from Brown Alga Fucus evanescens: Structure and biological activity. Front. Mar. Sci., 2016, 3, 1-9.
[http://dx.doi.org/10.3389/fmars.2016.00129]
[42]
Liu, T.; Scallan, C.D.; Jr, G.J.B.; Patarroyo-white, S.; Pierce, G.F.; Johnson, K.W. Improved coagulation in bleeding disorders by Non-Anticoagulant Sulfated Polysaccharides (NASP). Thromb. Haemost., 2006, 95(1), 68-76.
[http://dx.doi.org/10.1160/TH05-05-0361]
[43]
Farias, W.R.L.; Valente, A.P.; Pereira, M.S.; Mourão, P.A.S. Structure and anticoagulant activity of sulfated galactans. Isolation of a unique sulfated galactan from the red algae Botryocladia occidentalis and comparison of its anticoagulant action with that of sulfated galactans from invertebrates. J. Biol. Chem., 2000, 275(38), 29299-29307.
[http://dx.doi.org/10.1074/jbc.M002422200] [PMID: 10882718]
[44]
Pushpamali, W.A.; Nikapitiya, C.; Zoysa, M.D.; Whang, I.; Kim, S.J.; Lee, J. Isolation and purification of an anticoagulant from fermented red seaweed Lomentaria catenata. Carbohydr. Polym., 2008, 73, 274-279.
[http://dx.doi.org/10.1016/j.carbpol.2007.11.029]
[45]
Giiven, K.C.; Ozsoy, Y.; Ulutin, O.N. Anticoagulant, fibrinolytic and antiaggregant activity of carrageenans and alginic acid. Bot. Mar., 1991, 34, 429-432.
[http://dx.doi.org/10.1515/botm.1991.34.5.429]
[46]
Pulsawat, W.; Tongmalee, S. Synthesis and anticoagulant activity of sulfated alginate. Asia-Pacific J. Sci. Tech., 2014, 19, 60-66.
[47]
Huang, R.; Du, Y.; Yang, J.; Fan, L. Influence of functional groups on the in vitro anticoagulant activity of chitosan sulfate. Carbohydr. Res., 2003, 338(6), 483-489.
[http://dx.doi.org/10.1016/S0008-6215(02)00505-0] [PMID: 12668103]
[48]
Fan, L.; Jiang, L.; Xu, Y.; Zhou, Y.; Shen, Y.; Xie, W.; Long, Z.; Zhou, J. Synthesis and anticoagulant activity of sodium alginate sulfates. Carbohydr. Polym., 2011, 83, 1797-1803.
[http://dx.doi.org/10.1016/j.carbpol.2010.10.038]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 3
Year: 2021
Published on: 07 May, 2020
Page: [246 - 255]
Pages: 10
DOI: 10.2174/1573407216999200507123017
Price: $65

Article Metrics

PDF: 46