Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Synthesis and Stability of Metal-organic Frameworks (MOFs) Photocatalysts for the Removal of Persistent Organic Pollutants (POPs) from Wastewater

Author(s): Ahmad Mukhtar, Sami Ullah*, Abdullah G. Al‐Sehemi, Mohammed A. Assiri, Sidra Saqib, Rabia Amen, Muhammad Babar, Mohamad A. Bustam and Tausif Ahmad

Volume 17, Issue 1, 2021

Published on: 07 May, 2020

Page: [61 - 81] Pages: 21

DOI: 10.2174/1573411016999200507121320

Price: $65

Abstract

Background: The removal of persistent organic pollutants (POPs) from the contaminated water by employing photocatalytic adsorption is considered as one of the most emerging technologies due to its’ cost- and energy-effectiveness. It has attracted significant attention of global researchers to process the world’s wastewater.

Methods: Among different adsorbents, the metal-organic frameworks (MOFs) have demonstrated remarkable potential and a bright future perspective in the photocatalytic-based adsorptive removal of POPs from wastewater. This review deals with the introduction of MOFs and contaminations in wastewater, followed by the synthesis method for MOFs and their properties. The review is extended to the review of mechanisms for the photocatalytic adsorption along with the recent progress in removal of persistent toxic substances, pesticides, herbicides, phenols, and antibiotics. Furthermore, the future challenges in this promising area are also discussed.

Results: Much research work has been done in the area of photocatalytic adsorptive removal of the POPs using the MOFs due to their significant structural and texture properties. Substantial research efforts have been carried out to functionalize the MOFs in order to improve their adsorption potential. Overall, this review demonstrated that the MOFs could be applied successfully for the photocatalytic adsorptive removal of the POPs from contaminated water.

Conclusion: Despite the bright future perspective of the MOFs, there are some issues that need to be accounted for: The development of MOFs with redox-active metals and/or organic functionalized ligands, MOFs application for the photocatalytic adsorptive removal of the gaseous contaminants, indepth understanding of the mechanism of the photocatalytic adsorptive removal of the POPs, and the application of the MOFs for photocatalytic adsorptive removal of the POPs in real environmental conditions. The fast development of the MOFs in the recent era indicates a bright future perspective in spite of the challenges in this area.

Keywords: Contaminations, metal organic frameworks, persistent organic pollutants, photocatalysts, photocatalytic adsorption, wastewater.

Graphical Abstract
[1]
Pi, Y.; Li, X.; Xia, Q.; Wu, J.; Li, Y.; Xiao, J.; Li, Z. Adsorptive and photocatalytic removal of Persistent Organic Pollutants (POPs) in water by metal-organic frameworks (MOFs). Chem. Eng. J., 2018, 337, 351-371.
[http://dx.doi.org/10.1016/j.cej.2017.12.092]
[2]
Zhu, L.; Meng, L.; Shi, J.; Li, J.; Zhang, X.; Feng, M. Metal-organic frameworks/carbon-based materials for environmental remediation: A state-of-the-art mini-review. J. Environ. Manage., 2019, 232, 964-977.
[http://dx.doi.org/10.1016/j.jenvman.2018.12.004]
[3]
Alsbaiee, A.; Smith, B.J.; Xiao, L.; Ling, Y.; Helbling, D.E.; Dichtel, W.R. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature, 2016, 529(7585), 190-194.
[http://dx.doi.org/10.1038/nature16185] [PMID: 26689365]
[4]
aus der Beek, T.; Weber, F.A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A. Pharmaceuticals in the environment--Global occurrences and perspectives. Environ. Toxicol. Chem., 2016, 35(4), 823-835.
[http://dx.doi.org/10.1002/etc.3339] [PMID: 26666847]
[5]
Schwarzenbach, R.P.; Escher, B.I.; Fenner, K.; Hofstetter, T.B.; Johnson, C.A.; von Gunten, U.; Wehrli, B. The challenge of micropollutants in aquatic systems. Science, 2006, 313(5790), 1072-1077.
[http://dx.doi.org/10.1126/science.1127291] [PMID: 16931750]
[6]
Schwarzenbach, R.P.; Egli, T.; Hofstetter, T.B.; Von Gunten, U.; Wehrli, B. Global water pollution and human health. Annu. Rev. Environ. Resour., 2010, 35, 109-136.
[http://dx.doi.org/10.1146/annurev-environ-100809-125342]
[7]
Villanueva, C.M.; Kogevinas, M.; Cordier, S.; Templeton, M.R.; Vermeulen, R.; Nuckols, J.R.; Nieuwenhuijsen, M.J.; Levallois, P. Assessing exposure and health consequences of chemicals in drinking water: Current state of knowledge and research needs. Environ. Health Perspect., 2014, 122(3), 213-221.
[http://dx.doi.org/10.1289/ehp.1206229] [PMID: 24380896]
[8]
Ullah, S.; Assiri, M.A.; Al-Sehemi, A.G.; Bustam, M.A.; Abdul Mannan, H.; Abdulkareem, F.A.; Irfan, A.; Saqib, S. High-temperature CO2 removal from CH4 using silica membrane: Experimental and neural network modeling. Greenhouse Gas. Sci. Technol., 2019, 9(5), 1010-1026.
[http://dx.doi.org/10.1002/ghg.1916]
[9]
Abdul Kareem, F.A.; Shariff, A.M.; Ullah, S.; Keong, L.K.; Mellon, N. Total and partial uptakes of multicomponent vapor-gas mixtures on 13X zeolite at 343K: Experimental and modeling study. Microporous Mesoporous Mater., 2018, 258, 95-113.
[10]
Gleick, P.H. A look at twenty-first century water resources development. Water Int., 2000, 25(1), 127-138.
[http://dx.doi.org/10.1080/02508060008686804]
[11]
Zhang, X.; Wang, J.; Dong, X-X.; Lv, Y-K. Functionalized metal-organic frameworks for photocatalytic degradation of organic pollutants in environment. Chemosphere, 2020.242125144
[http://dx.doi.org/10.1016/j.chemosphere.2019.125144] [PMID: 31669994]
[12]
Ullah, S.; Suleman, H.; Tahir, M.S.; Sagir, M.; Muhammad, S. Al-Sehemi, A.G. M.-u.-R. Zafar, F. A. A. Kareem, A. S. Maulud, and M. A. Bustam. Reactive kinetics of carbon dioxide loaded aqueous blend of 2-amino-2-ethyl-1,3-propanediol and piperazine using a pressure drop method. Int. J. Chem. Kinet., 2019, 51(4), 291-298.
[http://dx.doi.org/10.1002/kin.21252]
[13]
Adeyemo, A.A.; Adeoye, I.O.; Bello, O.S. Metal organic frameworks as adsorbents for dye adsorption: Overview, prospects and future challenges. Toxicol. Environ. Chem., 2012, 94(10), 1846-1863.
[http://dx.doi.org/10.1080/02772248.2012.744023]
[14]
Wang, C-C.; Li, J-R.; Lv, X-L.; Zhang, Y-Q.; Guo, G. Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy Environ. Sci., 2014, 7(9), 2831-2867.
[http://dx.doi.org/10.1039/C4EE01299B]
[15]
Baughman, G.L.; Weber, E.J. Transformation of dyes and related compounds in anoxic sediment: Kinetics and products. Environ. Sci. Technol., 1994, 28(2), 267-276.
[http://dx.doi.org/10.1021/es00051a013] [PMID: 22176172]
[16]
Levec, J.; Pintar, A. Catalytic wet-air oxidation processes: a review. Catal. Today, 2007, 124(3-4), 172-184.
[http://dx.doi.org/10.1016/j.cattod.2007.03.035]
[17]
Kim, B.; Lee, Y-R.; Kim, H-Y.; Ahn, W-S. Adsorption of volatile organic compounds over MIL-125-NH2. Polyhedron, 2018, 154, 343-349.
[http://dx.doi.org/10.1016/j.poly.2018.08.010]
[18]
Hakim, M.; Broza, Y.Y.; Barash, O.; Peled, N.; Phillips, M.; Amann, A.; Haick, H. Volatile organic compounds of lung cancer and possible biochemical pathways. Chem. Rev., 2012, 112(11), 5949-5966.
[http://dx.doi.org/10.1021/cr300174a] [PMID: 22991938]
[19]
Mellouki, A.; Wallington, T.J.; Chen, J. Atmospheric chemistry of oxygenated volatile organic compounds: Impacts on air quality and climate. Chem. Rev., 2015, 115(10), 3984-4014.
[http://dx.doi.org/10.1021/cr500549n] [PMID: 25828273]
[20]
Ben, W.; Zhu, B.; Yuan, X.; Zhang, Y.; Yang, M.; Qiang, Z. Occurrence, removal and risk of organic micropollutants in wastewater treatment plants across China: Comparison of wastewater treatment processes. Water Res., 2018, 130, 38-46.
[http://dx.doi.org/10.1016/j.watres.2017.11.057] [PMID: 29197755]
[21]
Wilkinson, J.; Hooda, P.S.; Barker, J.; Barton, S.; Swinden, J. Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field. Environ. Pollut., 2017, 231(Pt 1), 954-970.
[http://dx.doi.org/10.1016/j.envpol.2017.08.032] [PMID: 28888213]
[22]
Zhitkovich, A. Chromium in drinking water: Sources, metabolism, and cancer risks. Chem. Res. Toxicol., 2011, 24(10), 1617-1629.
[http://dx.doi.org/10.1021/tx200251t] [PMID: 21766833]
[23]
Zhou, Y.; Zhou, L.; Zhang, X.; Chen, Y. Preparation of zeolitic imidazolate framework-8/graphene oxide composites with enhanced VOCs adsorption capacity. Microporous Mesoporous Mater., 2016, 225, 488-493.
[http://dx.doi.org/10.1016/j.micromeso.2016.01.047]
[24]
Fu, Z.; Guo, W.; Dang, Z.; Hu, Q.; Wu, F.; Feng, C.; Zhao, X.; Meng, W.; Xing, B.; Giesy, J.P. Refocusing on nonpriority toxic metals in the aquatic environment in China; Publications, A.C.S., Ed.; , 2017.
[http://dx.doi.org/10.1021/acs.est.7b00223]
[25]
Kim, J.; Tsouris, C.; Mayes, R.T.; Oyola, Y.; Saito, T.; Janke, C.J.; Dai, S.; Schneider, E.; Sachde, D. Recovery of uranium from seawater: a review of current status and future research needs. Sep. Sci. Technol., 2013, 48(3), 367-387.
[http://dx.doi.org/10.1080/01496395.2012.712599]
[26]
Liu, W.; Dai, X.; Bai, Z.; Wang, Y.; Yang, Z.; Zhang, L.; Xu, L.; Chen, L.; Li, Y.; Gui, D.; Diwu, J.; Wang, J.; Zhou, R.; Chai, Z.; Wang, S. Highly sensitive and selective uranium detection in natural water systems using a luminescent mesoporous metal-organic framework equipped with abundant Lewis basic sites: a combined batch, X-ray absorption spectroscopy, and first principles simulation investigation. Environ. Sci. Technol., 2017, 51(7), 3911-3921.
[http://dx.doi.org/10.1021/acs.est.6b06305] [PMID: 28271891]
[27]
Singh, R.; Singh, S.; Parihar, P.; Singh, V.P.; Prasad, S.M. Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicol. Environ. Saf., 2015, 112, 247-270.
[http://dx.doi.org/10.1016/j.ecoenv.2014.10.009] [PMID: 25463877]
[28]
Smith, A.H.; Steinmaus, C.M. Health effects of arsenic and chromium in drinking water: recent human findings. Annu. Rev. Public Health, 2009, 30, 107-122.
[http://dx.doi.org/10.1146/annurev.publhealth.031308.100143] [PMID: 19012537]
[29]
Ullah, S.; Assiri, M.A.; Al-Sehemi, A.G.; Bustam, M.A.; Sagir, M.; Abdulkareem, F.A.; Raza, M.R.; Ayoub, M.; Irfan, A. Characteristically Insights, Artificial Neural Network (ANN), Equilibrium, and kinetic studies of Pb(II) ion adsorption on rice husks treated with nitric acid. Int. J. Environ. Res. J., 2020, 14(1), 43-60.
[http://dx.doi.org/10.1007/s41742-019-00235-3]
[30]
Gonfa, G.; Bustam, M.A.; Shariff, A.M.; Muhammad, N.; Ullah, S. Quantitative structure-activity relationships (QSARs) for estimation of activity coefficient at infinite dilution of water in ionic liquids for natural gas dehydration. J. Taiwan Inst. Chem. Eng., 2016, 66, 222-229.
[http://dx.doi.org/10.1016/j.jtice.2016.06.027]
[31]
Overturf, M.D.; Anderson, J.C.; Pandelides, Z.; Beyger, L.; Holdway, D.A. Pharmaceuticals and personal care products: A critical review of the impacts on fish reproduction. Crit. Rev. Toxicol., 2015, 45(6), 469-491.
[http://dx.doi.org/10.3109/10408444.2015.1038499] [PMID: 25945515]
[32]
Wu, X.; Cobbina, S.J.; Mao, G.; Xu, H.; Zhang, Z.; Yang, L. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ. Sci. Pollut. Res. Int., 2016, 23(9), 8244-8259.
[http://dx.doi.org/10.1007/s11356-016-6333-x] [PMID: 26965280]
[33]
Barbosa, M.O.; Moreira, N.F.F.; Ribeiro, A.R.; Pereira, M.F.R.; Silva, A.M.T. Occurrence and removal of organic micropollutants: An overview of the watch list of EU Decision 2015/495. Water Res., 2016, 94, 257-279.
[http://dx.doi.org/10.1016/j.watres.2016.02.047] [PMID: 26967909]
[34]
Feng, X.; Liu, H.; He, C.; Shen, Z.; Wang, T. Synergistic effects and mechanism of a non-thermal plasma catalysis system in volatile organic compound removal: a review. Catal. Sci. Technol., 2018, 8(4), 936-954.
[http://dx.doi.org/10.1039/C7CY01934C]
[35]
Hua, M.; Zhang, S.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater., 2012, 211-212, 317-331.
[http://dx.doi.org/10.1016/j.jhazmat.2011.10.016] [PMID: 22018872]
[36]
Huang, D.; Liu, L.; Zeng, G.; Xu, P.; Huang, C.; Deng, L.; Wang, R.; Wan, J. The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment. Chemosphere, 2017, 174, 545-553.
[http://dx.doi.org/10.1016/j.chemosphere.2017.01.130] [PMID: 28193587]
[37]
Huang, D.; Xue, W.; Zeng, G.; Wan, J.; Chen, G.; Huang, C.; Zhang, C.; Cheng, M.; Xu, P. Immobilization of Cd in river sediments by sodium alginate modified nanoscale zero-valent iron: Impact on enzyme activities and microbial community diversity. Water Res., 2016, 106, 15-25.
[http://dx.doi.org/10.1016/j.watres.2016.09.050] [PMID: 27693995]
[38]
Kamal, M.S.; Razzak, S.A.; Hossain, M.M. Catalytic oxidation of volatile organic compounds (VOCs)-A review. Atmos. Environ., 2016, 140, 117-134.
[http://dx.doi.org/10.1016/j.atmosenv.2016.05.031]
[39]
Wang, R-Z.; Huang, D-L.; Liu, Y-G.; Zhang, C.; Lai, C.; Zeng, G-M.; Cheng, M.; Gong, X-M.; Wan, J.; Luo, H. Investigating the adsorption behavior and the relative distribution of Cd2+ sorption mechanisms on biochars by different feedstock. Bioresour. Technol., 2018, 261, 265-271.
[http://dx.doi.org/10.1016/j.biortech.2018.04.032] [PMID: 29673995]
[40]
Xue, W.; Huang, D.; Zeng, G.; Wan, J.; Zhang, C.; Xu, R.; Cheng, M.; Deng, R. Nanoscale zero-valent iron coated with rhamnolipid as an effective stabilizer for immobilization of Cd and Pb in river sediments. J. Hazard. Mater., 2018, 341, 381-389.
[http://dx.doi.org/10.1016/j.jhazmat.2017.06.028] [PMID: 28806558]
[41]
Xue, W.; Peng, Z.; Huang, D.; Zeng, G.; Wan, J.; Xu, R.; Cheng, M.; Zhang, C.; Jiang, D.; Hu, Z. Nanoremediation of cadmium contaminated river sediments: Microbial response and organic carbon changes. J. Hazard. Mater., 2018, 359, 290-299.
[http://dx.doi.org/10.1016/j.jhazmat.2018.07.062] [PMID: 30041122]
[42]
Zhang, S.; You, J.; Kennes, C.; Cheng, Z.; Ye, J.; Chen, D.; Chen, J.; Wang, L. Current advances of VOCs degradation by bioelectrochemical systems: A review. Chem. Eng. J., 2018, 334, 2625-2637.
[http://dx.doi.org/10.1016/j.cej.2017.11.014]
[43]
Zhang, X.; Gao, B.; Creamer, A.E.; Cao, C.; Li, Y. Adsorption of VOCs onto engineered carbon materials: A review. J. Hazard. Mater., 2017, 338, 102-123.
[http://dx.doi.org/10.1016/j.jhazmat.2017.05.013] [PMID: 28535479]
[44]
Zou, Y.; Wang, X.; Khan, A.; Wang, P.; Liu, Y.; Alsaedi, A.; Hayat, T.; Wang, X. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environ. Sci. Technol., 2016, 50(14), 7290-7304.
[http://dx.doi.org/10.1021/acs.est.6b01897] [PMID: 27331413]
[45]
Li, J-R.; Kuppler, R.J.; Zhou, H-C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev., 2009, 38(5), 1477-1504.
[http://dx.doi.org/10.1039/b802426j] [PMID: 19384449]
[46]
Ullah, S.; Bustam, M.A.; Shariff, A.M.; Elkhalifah, A.E.I.; Murshid, G.; Riaz, N. Synthesis and CO2 adsorption study of modified MOF-5 with multi-wall carbon nanotubes and expandable graphite. In: AIP Conf. Proc; , 2014; 1621, pp. 34-39.
[http://dx.doi.org/10.1063/1.4898442]
[47]
Ullah, S.; Shariff, A.M.; Bustam, M.A.; Elkhalifah, A.E.; Murshid, G.; Riaz, N.; Shimekit, B. Effect of Modified MIL-53 with Multi-Wall Carbon Nanotubes and Nanofibers on CO2 Adsorption. Appl. Mech. Mater., 2014, 625, 870-873.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.625.870]
[48]
Millward, A.R.; Yaghi, O.M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc., 2005, 127(51), 17998-17999.
[http://dx.doi.org/10.1021/ja0570032] [PMID: 16366539]
[49]
Culp, J.T.; Matranga, C.; Smith, M.; Bittner, E.W.; Bockrath, B. Hydrogen storage properties of metal nitroprussides M[Fe(CN)5NO], (M = Co, Ni). J. Phys. Chem. B, 2006, 110(16), 8325-8328.
[http://dx.doi.org/10.1021/jp056955r] [PMID: 16623516]
[50]
Ullah, S.; Bustam, M.A.; Assiri, M.A.; Al-Sehemi, A.G.; Sagir, M.; Kareem, F.A.A.; Elkhalifah, A.E.; Mukhtar, A.; Gonfa, G. Synthesis, and characterization of metal-organic frameworks-177 for static and dynamic adsorption behavior of CO2 and CH4. Microporous Mesoporous Mater., 2019, 288109569
[http://dx.doi.org/10.1016/j.micromeso.2019.109569]
[51]
Ullah, S.; Bustam, M.A.; Al-Sehemi, A.G.; Assiri, M.A.; Kareem, F.A.A.; Mukhtar, A.; Ayoub, M.; Gonfa, G. Influence of post-synthetic graphene oxide (GO) functionalization on the selective CO2/CH4 adsorption behavior of MOF-200 at different temperatures; an experimental and adsorption isotherms study. Microporous Mesoporous Mater., 2020, 1, 10002.
[http://dx.doi.org/10.1016/j.micromeso.2020.110002]
[52]
Kreno, L.E.; Leong, K.; Farha, O.K.; Allendorf, M.; Van Duyne, R.P.; Hupp, J.T. Metal-organic framework materials as chemical sensors. Chem. Rev., 2012, 112(2), 1105-1125.
[http://dx.doi.org/10.1021/cr200324t] [PMID: 22070233]
[53]
Liu, W.; Liu, L.; Yang, Z.; Xu, J.; Hou, Y.; Ji, G. A versatile route toward the electromagnetic functionalization of metal-organic framework-derived three-dimensional nanoporous carbon composites. ACS Appl. Mater. Interfaces, 2018, 10(10), 8965-8975.
[http://dx.doi.org/10.1021/acsami.8b00320] [PMID: 29470049]
[54]
Liu, W.; Shao, Q.; Ji, G.; Liang, X.; Cheng, Y.; Quan, B.; Du, Y. Metal-organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber. Chem. Eng. J., 2017, 313, 734-744.
[http://dx.doi.org/10.1016/j.cej.2016.12.117]
[55]
Liu, W.; Tan, S.; Yang, Z.; Ji, G. Enhanced low-frequency electromagnetic properties of MOF-derived cobalt through interface design. ACS Appl. Mater. Interfaces, 2018, 10(37), 31610-31622.
[http://dx.doi.org/10.1021/acsami.8b10685] [PMID: 30156105]
[56]
Yao, J.; Wang, H. Zeolitic imidazolate framework composite membranes and thin films: Synthesis and applications. Chem. Soc. Rev., 2014, 43(13), 4470-4493.
[http://dx.doi.org/10.1039/C3CS60480B] [PMID: 24668302]
[57]
Yao, P.; Liu, H.; Wang, D.; Chen, J.; Li, G.; An, T. Enhanced visible-light photocatalytic activity to volatile organic compounds degradation and deactivation resistance mechanism of titania confined inside a metal-organic framework. J. Colloid Interface Sci., 2018, 522, 174-182.
[http://dx.doi.org/10.1016/j.jcis.2018.03.075] [PMID: 29601959]
[58]
Jia, M.; Feng, Y.; Liu, S.; Qiu, J.; Yao, J. Graphene oxide gas separation membranes intercalated by UiO-66-NH2 with enhanced hydrogen separation performance. J. Membr. Sci., 2017, 539, 172-177.
[http://dx.doi.org/10.1016/j.memsci.2017.06.005]
[59]
Babar, M.; Bustam, M.A.; Maulud, A.S.; Ali, A.; Mukhtar, A.; Ullah, S. Enhanced cryogenic packed bed with optimal CO2 removal from natural gas; A joint computational and experimental approach. Cryogenics, 2020, 105103010
[http://dx.doi.org/10.1016/j.cryogenics.2019.103010]
[60]
Abney, C.W.; Gilhula, J.C.; Lu, K.; Lin, W. Metal-organic framework templated inorganic sorbents for rapid and efficient extraction of heavy metals. Adv. Mater., 2014, 26(47), 7993-7997.
[http://dx.doi.org/10.1002/adma.201403428] [PMID: 25348588]
[61]
Ahmed, I.; Jhung, S.H. Applications of metal-organic frameworks in adsorption/separation processes via hydrogen bonding interactions. Chem. Eng. J., 2017, 310, 197-215.
[http://dx.doi.org/10.1016/j.cej.2016.10.115]
[62]
Arstad, B.; Fjellvåg, H.; Kongshaug, K.O.; Swang, O.; Blom, R. Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide. Adsorption, 2008, 14(6), 755-762.
[http://dx.doi.org/10.1007/s10450-008-9137-6]
[63]
Chang, Z.; Yang, D.H.; Xu, J.; Hu, T.L.; Bu, X.H. Flexible metal-organic frameworks: Recent advances and potential applications. Adv. Mater., 2015, 27(36), 5432-5441.
[http://dx.doi.org/10.1002/adma.201501523] [PMID: 26270630]
[64]
DeCoste, J.B.; Peterson, G.W. Metal-organic frameworks for air purification of toxic chemicals. Chem. Rev., 2014, 114(11), 5695-5727.
[http://dx.doi.org/10.1021/cr4006473] [PMID: 24750116]
[65]
Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science, 2013, 341(6149)1230444
[http://dx.doi.org/10.1126/science.1230444] [PMID: 23990564]
[66]
Khan, N.A.; Hasan, Z.; Jhung, S.H. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review. J. Hazard. Mater., 2013, 244-245, 444-456.
[http://dx.doi.org/10.1016/j.jhazmat.2012.11.011] [PMID: 23195596]
[67]
Li, L.; Wu, Y.Q.; Sun, K.K.; Zhang, R.; Fan, L.; Liang, K.K.; Mao, L.B. Controllable preparation and drug loading properties of core-shell microspheres Fe3O4@ MOFs/GO. Mater. Lett., 2016, 162, 207-210.
[http://dx.doi.org/10.1016/j.matlet.2015.09.096]
[68]
Liu, X.; Zhou, Y.; Zhang, J.; Tang, L.; Luo, L.; Zeng, G. Iron containing metal-organic frameworks: structure, synthesis, and applications in environmental remediation. ACS Appl. Mater. Interfaces, 2017, 9(24), 20255-20275.
[http://dx.doi.org/10.1021/acsami.7b02563] [PMID: 28548822]
[69]
Peng, Y.; Huang, H.; Zhang, Y.; Kang, C.; Chen, S.; Song, L.; Liu, D.; Zhong, C. A versatile MOF-based trap for heavy metal ion capture and dispersion. Nat. Commun., 2018, 9(1), 187.
[http://dx.doi.org/10.1038/s41467-017-02600-2] [PMID: 29335517]
[70]
Peng, Y.; Zhang, Y.; Huang, H.; Zhong, C. Flexibility induced high-performance MOF-based adsorbent for nitroimidazole antibiotics capture. Chem. Eng. J., 2018, 333, 678-685.
[http://dx.doi.org/10.1016/j.cej.2017.09.138]
[71]
Riccò, R.; Liang, W.; Li, S.; Gassensmith, J.J.; Caruso, F.; Doonan, C.; Falcaro, P. Metal-organic frameworks for cell and virus biology: a perspective. ACS Nano, 2018, 12(1), 13-23.
[http://dx.doi.org/10.1021/acsnano.7b08056] [PMID: 29309146]
[72]
Shi, Z.; Xu, C.; Chen, F.; Wang, Y.; Li, L.; Meng, Q.; Zhang, R. Renewable metal-organic-frameworks-coated 3D printing film for removal of malachite green. RSC Advances, 2017, 7(79), 49947-49952.
[http://dx.doi.org/10.1039/C7RA10912A]
[73]
Shi, Z.; Xu, C.; Guan, H.; Li, L.; Fan, L.; Wang, Y.; Liu, L.; Meng, Q.; Zhang, R. Magnetic metal organic frameworks (MOFs) composite for removal of lead and malachite green in wastewater. Colloids Surf. A Physicochem. Eng. Asp., 2018, 539, 382-390.
[http://dx.doi.org/10.1016/j.colsurfa.2017.12.043]
[74]
Silva, P.; Vilela, S.M.; Tomé, J.P.; Almeida Paz, F.A. Multifunctional metal-organic frameworks: from academia to industrial applications. Chem. Soc. Rev., 2015, 44(19), 6774-6803.
[http://dx.doi.org/10.1039/C5CS00307E] [PMID: 26161830]
[75]
Van de Voorde, B.; Bueken, B.; Denayer, J.; De Vos, D. Adsorptive separation on metal-organic frameworks in the liquid phase. Chem. Soc. Rev., 2014, 43(16), 5766-5788.
[http://dx.doi.org/10.1039/C4CS00006D] [PMID: 24647892]
[76]
Wang, B.; Lv, X-L.; Feng, D.; Xie, L-H.; Zhang, J.; Li, M.; Xie, Y.; Li, J-R.; Zhou, H-C. Highly stable Zr (IV)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water. J. Am. Chem. Soc., 2016, 138(19), 6204-6216.
[http://dx.doi.org/10.1021/jacs.6b01663] [PMID: 27090616]
[77]
Zhang, T.; Lin, W. Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev., 2014, 43(16), 5982-5993.
[http://dx.doi.org/10.1039/C4CS00103F] [PMID: 24769551]
[78]
Zhao, X.; Wang, K.; Gao, Z.; Gao, H.; Xie, Z.; Du, X.; Huang, H. Reversing the dye adsorption and separation performance of metal-organic frameworks via introduction of− SO3H groups. Ind. Eng. Chem. Res., 2017, 56(15), 4496-4501.
[http://dx.doi.org/10.1021/acs.iecr.7b00128]
[79]
Guo, Y.; Han, Y.; Shuang, S.; Dong, C. Rational synthesis of graphene-metal coordination polymer composite nanosheet as enhanced materials for electrochemical biosensing. J. Mater. Chem., 2012, 22(26), 13166-13173.
[http://dx.doi.org/10.1039/c2jm31997g]
[80]
Zhang, Y.; Nsabimana, A.; Zhu, L.; Bo, X.; Han, C.; Li, M.; Guo, L. Metal organic frameworks/macroporous carbon composites with enhanced stability properties and good electrocatalytic ability for ascorbic acid and hemoglobin. Talanta, 2014, 129, 55-62.
[http://dx.doi.org/10.1016/j.talanta.2014.05.007] [PMID: 25127564]
[81]
Bao, W.; Zhang, Z.; Zhou, C.; Lai, Y.; Li, J. Multi-walled carbon nanotubes@ mesoporous carbon hybrid nanocomposites from carbonized multi-walled carbon nanotubes@ metal-organic framework for lithium sulfur battery. J. Power Sources, 2014, 248, 570-576.
[http://dx.doi.org/10.1016/j.jpowsour.2013.09.132]
[82]
Wen, P.; Gong, P.; Sun, J.; Wang, J.; Yang, S. Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(26), 13874-13883.
[http://dx.doi.org/10.1039/C5TA02461G]
[83]
Zhang, G.; Hou, S.; Zhang, H.; Zeng, W.; Yan, F.; Li, C.C.; Duan, H. High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode. Adv. Mater., 2015, 27(14), 2400-2405.
[http://dx.doi.org/10.1002/adma.201405222] [PMID: 25728828]
[84]
Huang, X.; Zheng, B.; Liu, Z.; Tan, C.; Liu, J.; Chen, B.; Li, H.; Chen, J.; Zhang, X.; Fan, Z.; Zhang, W.; Guo, Z.; Huo, F.; Yang, Y.; Xie, L.H.; Huang, W.; Zhang, H. Coating two-dimensional nanomaterials with metal-organic frameworks. ACS Nano, 2014, 8(8), 8695-8701.
[http://dx.doi.org/10.1021/nn503834u] [PMID: 25075635]
[85]
Jahan, M.; Liu, Z.; Loh, K.P. A Graphene oxide and copperí centered metal organic framework composite as a trií functional catalyst for HER, OER, and ORR. Adv. Funct. Mater., 2013, 23(43), 5363-5372.
[http://dx.doi.org/10.1002/adfm.201300510]
[86]
Jia, H.; Sun, Z.; Jiang, D.; Du, P. Covalent cobalt porphyrin framework on multiwalled carbon nanotubes for efficient water oxidation at low overpotential. Chem. Mater., 2015, 27(13), 4586-4593.
[http://dx.doi.org/10.1021/acs.chemmater.5b00882]
[87]
Qiu, X.; Wang, X.; Li, Y. Controlled growth of dense and ordered metal-organic framework nanoparticles on graphene oxide. Chem. Commun. (Camb.), 2015, 51(18), 3874-3877.
[http://dx.doi.org/10.1039/C4CC09933H] [PMID: 25656603]
[88]
Barea, E.; Montoro, C.; Navarro, J.A. Toxic gas removal--metal-organic frameworks for the capture and degradation of toxic gases and vapours. Chem. Soc. Rev., 2014, 43(16), 5419-5430.
[http://dx.doi.org/10.1039/C3CS60475F] [PMID: 24705539]
[89]
Dias, E.M.; Petit, C. Towards the use of metal-organic frameworks for water reuse: a review of the recent advances in the field of organic pollutants removal and degradation and the next steps in the field. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(45), 22484-22506.
[http://dx.doi.org/10.1039/C5TA05440K]
[90]
Feng, M.; Zhang, P.; Zhou, H-C.; Sharma, V.K. Water-stable metal-organic frameworks for aqueous removal of heavy metals and radionuclides: A review. Chemosphere, 2018, 209, 783-800.
[http://dx.doi.org/10.1016/j.chemosphere.2018.06.114] [PMID: 29960946]
[91]
Jiang, D.; Xu, P.; Wang, H.; Zeng, G.; Huang, D.; Chen, M.; Lai, C.; Zhang, C.; Wan, J.; Xue, W. Strategies to improve metal organic frameworks photocatalyst’s performance for degradation of organic pollutants. Coord. Chem. Rev., 2018, 376, 449-466.
[http://dx.doi.org/10.1016/j.ccr.2018.08.005]
[92]
Li, J.; Wang, X.; Zhao, G.; Chen, C.; Chai, Z.; Alsaedi, A.; Hayat, T.; Wang, X. Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem. Soc. Rev., 2018, 47(7), 2322-2356.
[http://dx.doi.org/10.1039/C7CS00543A] [PMID: 29498381]
[93]
Sharma, V.K.; Feng, M. Water depollution using metal-organic frameworks-catalyzed advanced oxidation processes: A review. J. Hazard. Mater., 2017, 372, 3-16.
[PMID: 28993029]
[94]
Bian, Z.; Xu, J.; Zhang, S.; Zhu, X.; Liu, H.; Hu, J. Interfacial growth of metal organic framework/graphite oxide composites through pickering emulsion and their CO2 capture performance in the presence of humidity. Langmuir, 2015, 31(26), 7410-7417.
[http://dx.doi.org/10.1021/acs.langmuir.5b01171] [PMID: 26079179]
[95]
Huang, A.; Liu, Q.; Wang, N.; Zhu, Y.; Caro, J. Bicontinuous zeolitic imidazolate framework ZIF-8@GO membrane with enhanced hydrogen selectivity. J. Am. Chem. Soc., 2014, 136(42), 14686-14689.
[http://dx.doi.org/10.1021/ja5083602] [PMID: 25290574]
[96]
Kang, Z.; Xue, M.; Zhang, D.; Fan, L.; Pan, Y.; Qiu, S. Hybrid metal-organic framework nanomaterials with enhanced carbon dioxide and methane adsorption enthalpy by incorporation of carbon nanotubes. Inorg. Chem. Commun., 2015, 58, 79-83.
[http://dx.doi.org/10.1016/j.inoche.2015.06.007]
[97]
Lin, R.; Ge, L.; Liu, S.; Rudolph, V.; Zhu, Z. Mixed-matrix membranes with metal-organic framework-decorated CNT fillers for efficient CO2 separation. ACS Appl. Mater. Interfaces, 2015, 7(27), 14750-14757.
[http://dx.doi.org/10.1021/acsami.5b02680] [PMID: 26090690]
[98]
Yang, S.J.; Choi, J.Y.; Chae, H.K.; Cho, J.H.; Nahm, K.S.; Park, C.R. Preparation and enhanced hydrostability and hydrogen storage capacity of CNT@ MOF-5 hybrid composite. Chem. Mater., 2009, 21(9), 1893-1897.
[http://dx.doi.org/10.1021/cm803502y]
[99]
Zhou, X.; Huang, W.; Miao, J.; Xia, Q.; Zhang, Z.; Wang, H.; Li, Z. Enhanced separation performance of a novel composite material GrO@ MIL-101 for CO2/CH4 binary mixture. Chem. Eng. J., 2015, 266, 339-344.
[http://dx.doi.org/10.1016/j.cej.2014.12.021]
[100]
Ullah, S.; Bustam, M.A.; Assiri, M.A.; Al-Sehemi, A.G.; Kareem, F.A.A.; Mukhtar, A.; Ayoub, M.; Gonfa, G. Synthesis and characterization of iso-reticular metal-organic Framework-3 (IRMOF-3) for CO2/CH4 adsorption: Impact of post-synthetic aminomethyl propanol (AMP) functionalization. J. Nat. Gas Sci. Eng., 2019, 72103014
[http://dx.doi.org/10.1016/j.jngse.2019.103014]
[101]
Ullah, S.; Bustam, M.A.; Assiri, M.A.; Al-Sehemi, A.G.; Gonfa, G.; Mukhtar, A.; Kareem, F.A.A.; Ayoub, M.; Saqib, S.; Mellon, N.B. Synthesis and characterization of mesoporous MOF UMCM-1 for CO2/CH4 adsorption; an experimental, isotherm modeling and thermodynamic study. Microporous Mesoporous Mater., 2019, 10, 9844.
[102]
Mukhtar, A.; Mellon, N.; Saqib, S.; Khawar, A.; Rafiq, S.; Ullah, S.; Al-Sehemi, A.G.; Babar, M.; Bustam, M.A.; Khan, W.A.; Tahir, M.S. CO2/CH4 adsorption over functionalized multi-walled carbon nanotubes; an experimental study, isotherms analysis, mechanism, and thermodynamics. Microporous Mesoporous Mater., 2020, 294109883
[http://dx.doi.org/10.1016/j.micromeso.2019.109883]
[103]
Aguilera-Sigalat, J.; Bradshaw, D. Synthesis and applications of metal-organic framework-quantum dot (QD@ MOF) composites. Coord. Chem. Rev., 2016, 307, 267-291.
[http://dx.doi.org/10.1016/j.ccr.2015.08.004]
[104]
Falcaro, P.; Ricco, R.; Yazdi, A.; Imaz, I.; Furukawa, S.; Maspoch, D.; Ameloot, R.; Evans, J.D.; Doonan, C.J. Application of metal and metal oxide nanoparticles@ MOFs. Coord. Chem. Rev., 2016, 307, 237-254.
[http://dx.doi.org/10.1016/j.ccr.2015.08.002]
[105]
Kumar, P.; Vellingiri, K.; Kim, K-H.; Brown, R.J.; Manos, M.J. Modern progress in metal-organic frameworks and their composites for diverse applications. Microporous Mesoporous Mater., 2017, 253, 251-265.
[http://dx.doi.org/10.1016/j.micromeso.2017.07.003]
[106]
Mahmood, A.; Guo, W.; Tabassum, H.; Zou, R. Metalí organic frameworkí based nanomaterials for electrocatalysis. Adv. Energy Mater., 2016, 6(17)1600423
[http://dx.doi.org/10.1002/aenm.201600423]
[107]
Zhu, L.; Liu, X-Q.; Jiang, H-L.; Sun, L-B. Metal-organic frameworks for heterogeneous basic catalysis. Chem. Rev., 2017, 117(12), 8129-8176.
[http://dx.doi.org/10.1021/acs.chemrev.7b00091] [PMID: 28541694]
[108]
Zhu, Q-L.; Xu, Q. Metal-organic framework composites. Chem. Soc. Rev., 2014, 43(16), 5468-5512.
[http://dx.doi.org/10.1039/C3CS60472A] [PMID: 24638055]
[109]
Silva, C.G.; Corma, A.; García, H. Metal-organic frameworks as semiconductors. J. Mater. Chem., 2010, 20(16), 3141-3156.
[http://dx.doi.org/10.1039/b924937k]
[110]
Fu, Y.; Sun, D.; Chen, Y.; Huang, R.; Ding, Z.; Fu, X.; Li, Z. An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem. Int. Ed. Engl., 2012, 51(14), 3364-3367.
[http://dx.doi.org/10.1002/anie.201108357] [PMID: 22359408]
[111]
Horiuchi, Y.; Toyao, T.; Saito, M.; Mochizuki, K.; Iwata, M.; Higashimura, H.; Anpo, M.; Matsuoka, M. Visible-light-promoted photocatalytic hydrogen production by using an amino-functionalized Ti (IV) metal-organic framework. J. Phys. Chem. C, 2012, 116(39), 20848-20853.
[http://dx.doi.org/10.1021/jp3046005]
[112]
Laurier, K.G.; Vermoortele, F.; Ameloot, R.; De Vos, D.E.; Hofkens, J.; Roeffaers, M.B. Iron(III)-based metal-organic frameworks as visible light photocatalysts. J. Am. Chem. Soc., 2013, 135(39), 14488-14491.
[http://dx.doi.org/10.1021/ja405086e] [PMID: 24015906]
[113]
Zhou, T.; Du, Y.; Borgna, A.; Hong, J.; Wang, Y.; Han, J.; Zhang, W.; Xu, R. Post-synthesis modification of a metal-organic framework to construct a bifunctional photocatalyst for hydrogen production. Energy Environ. Sci., 2013, 6(11), 3229-3234.
[http://dx.doi.org/10.1039/c3ee41548a]
[114]
Abazari, R.; Mahjoub, A.R.; Shariati, J. Synthesis of a nanostructured pillar MOF with high adsorption capacity towards antibiotics pollutants from aqueous solution. J. Hazard. Mater., 2019, 366, 439-451.
[http://dx.doi.org/10.1016/j.jhazmat.2018.12.030] [PMID: 30562656]
[115]
Bakhtiari, N.; Azizian, S. Nanoporous Carbon Derived from MOF-5: A Superadsorbent for Copper Ions. ACS Omega, 2018, 3(12), 16954-16959.
[http://dx.doi.org/10.1021/acsomega.8b02278] [PMID: 31458319]
[116]
Oveisi, M.; Asli, M.A.; Mahmoodi, N.M. Carbon nanotube based metal-organic framework nanocomposites: Synthesis and their photocatalytic activity for decolorization of colored wastewater. Inorg. Chim. Acta, 2019, 487, 169-176.
[http://dx.doi.org/10.1016/j.ica.2018.12.021]
[117]
Yoo, J.; Ryu, U.; Kwon, W.; Choi, K.M. A multi-dye containing MOF for the ratiometric detection and simultaneous removal of Cr2O72− in the presence of interfering ions. Sens. Actuators B Chem., 2019, 283, 426-433.
[http://dx.doi.org/10.1016/j.snb.2018.12.031]
[118]
Moradi, E.; Rahimi, R.; Safarifard, V. Sonochemically synthesized microporous metal-organic framework representing unique selectivity for detection of Fe3+ ions. Polyhedron, 2019, 159, 251-258.
[http://dx.doi.org/10.1016/j.poly.2018.11.062]
[119]
Gao, T.; Dong, B-X.; Pan, Y-M.; Liu, W-L.; Teng, Y-L. Highly sensitive and recyclable sensing of Fe3+ ions based on a luminescent anionic [Cd (DMIPA)] 2-framework with exposed thioether group in the snowflake-like channels. J. Solid State Chem., 2019, 270, 493-499.
[http://dx.doi.org/10.1016/j.jssc.2018.12.008]
[120]
Shi, X.; Zhu, G.; Qiu, S.; Huang, K.; Yu, J.; Xu, R. Zn2[(S)-O3PCH2NHC4H7CO2]2: a homochiral 3D zinc phosphonate with helical channels. Angew. Chem. Int. Ed. Engl., 2004, 43(47), 6482-6485.
[http://dx.doi.org/10.1002/anie.200460724] [PMID: 15578789]
[121]
Ullah, S.; Shariff, A.M.; Bustam, M.A.; Elkhalifah, A.E.I.; Gonfa, G.; Kareem, F.A.A. The role of multiwall carbon nanotubes in Cu-BTC metal-organic frameworks for CO2 adsorption. J. Chin. Chem. Soc. (Taipei), 2016, 63(12), 1022-1032.
[http://dx.doi.org/10.1002/jccs.201600277]
[122]
Ullah, S.; Bustam, M.A.; Elkhalifah, A.E.I.; Riaz, N.; Gonfa, G.; Shariff, A.M. Synthesis, CO2 Adsorption Performance of Modified MIL-101 with Multi-Wall Carbon Nanotubes. Adv. Mat. Res., 2016, 1133, 486-490.
[123]
Ni, Z.; Masel, R.I. Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc., 2006, 128(38), 12394-12395.
[http://dx.doi.org/10.1021/ja0635231] [PMID: 16984171]
[124]
Tompsett, G.A.; Conner, W.C.; Yngvesson, K.S. Microwave synthesis of nanoporous materials. Chemphyschem: Eur. J. Chem. Phys. Physic. Chem., 2006, 7, 296-319.
[http://dx.doi.org/10.1002/cphc.200500449]
[125]
Zhang, W.X.; Yang, Y.Y.; Zai, S.B.; Ng, S.W.; Chen, X.M. Syntheses, structures and magnetic properties of dinuclear Copper (II)-Lanthanide (III) complexes bridged by 2í Hydroxymethylí 1í methylimidazole. Eur. J. Inorg. Chem., 2008, 2008(5), 679-685.
[http://dx.doi.org/10.1002/ejic.200701041]
[126]
Mueller, U.; Schubert, M.; Teich, F.; Puetter, H.; Schierle-Arndt, K.; Pastre, J. Metal-organic frameworks-prospective industrial applications. J. Mater. Chem., 2006, 16(7), 626-636.
[http://dx.doi.org/10.1039/B511962F]
[127]
Wu, Y.; Kobayashi, A.; Halder, G.J.; Peterson, V.K.; Chapman, K.W.; Lock, N.; Southon, P.D.; Kepert, C.J. Negative thermal expansion in the metal-organic framework material Cu3(1,3,5-benzenetricarboxylate)2. Angew. Chem. Int. Ed. Engl., 2008, 47(46), 8929-8932.
[http://dx.doi.org/10.1002/anie.200803925] [PMID: 18850600]
[128]
Hoskins, B.F.; Robson, R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J. Am. Chem. Soc., 1989, 111(15), 5962-5964.
[http://dx.doi.org/10.1021/ja00197a079]
[129]
Boldyrev, V.; Tkáčová, K. Mechanochemistry of solids: Past, present, and prospects. J. Mater. Synth. Process., 2000, 8(3-4), 121-132.
[http://dx.doi.org/10.1023/A:1011347706721]
[130]
Kaupp, G. Mechanochemistry: the varied applications of mechanical bond-breaking. CrystEngComm, 2009, 11(3), 388-403.
[http://dx.doi.org/10.1039/B810822F]
[131]
Garay, A.L.; Pichon, A.; James, S.L. Solvent-free synthesis of metal complexes. Chem. Soc. Rev., 2007, 36(6), 846-855.
[http://dx.doi.org/10.1039/b600363j] [PMID: 17534472]
[132]
Beyer, M.K.; Clausen-Schaumann, H. Mechanochemistry: the mechanical activation of covalent bonds. Chem. Rev., 2005, 105(8), 2921-2948.
[http://dx.doi.org/10.1021/cr030697h] [PMID: 16092823]
[133]
Beldon, P.J.; Fábián, L.; Stein, R.S.; Thirumurugan, A.; Cheetham, A.K.; Friščić, T. Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry. Angew. Chem. Int. Ed. Engl., 2010, 49(50), 9640-9643.
[http://dx.doi.org/10.1002/anie.201005547] [PMID: 21077080]
[134]
Willans, C.E.; French, S.; Anderson, K.M.; Barbour, L.J.; Gertenbach, J-A.; Lloyd, G.O.; Dyer, R.J.; Junk, P.C.; Steed, J.W. Tripodal imidazole frameworks: Reversible vapour sorption both with and without significant structural changes. Dalton Trans., 2011, 40(3), 573-582.
[http://dx.doi.org/10.1039/C0DT01011A] [PMID: 21116573]
[135]
Friščić, T.; Fábián, L. Mechanochemical conversion of a metal oxide into coordination polymers and porous frameworks using liquid-assisted grinding (LAG). CrystEngComm, 2009, 11(5), 743-745.
[http://dx.doi.org/10.1039/b822934c]
[136]
Fujii, K.; Lazuen Garay, A.; Hill, J.; Sbircea, E.; Pan, Z.; Xu, M.; Apperley, D.C.; James, S.L.; Harris, K.D. Direct structure elucidation by powder X-ray diffraction of a metal-organic framework material prepared by solvent-free grinding. Chem. Commun. (Camb.), 2010, 46(40), 7572-7574.
[http://dx.doi.org/10.1039/c0cc02635b] [PMID: 20848020]
[137]
Yuan, W.; Friscić, T.; Apperley, D.; James, S.L. High reactivity of metal-organic frameworks under grinding conditions: parallels with organic molecular materials. Angew. Chem. Int. Ed. Engl., 2010, 49(23), 3916-3919.
[http://dx.doi.org/10.1002/anie.200906965] [PMID: 20422663]
[138]
Štrukil, V.; Fábián, L.; Reid, D.G.; Duer, M.J.; Jackson, G.J.; Eckert-Maksić, M.; Friščić, T. Towards an environmentally-friendly laboratory: dimensionality and reactivity in the mechanosynthesis of metal-organic compounds. Chem. Commun. (Camb.), 2010, 46(48), 9191-9193.
[http://dx.doi.org/10.1039/c0cc03822a] [PMID: 21060924]
[139]
Bang, J.H.; Suslick, K.S. Applications of ultrasound to the synthesis of nanostructured materials. Adv. Mater., 2010, 22(10), 1039-1059.
[http://dx.doi.org/10.1002/adma.200904093] [PMID: 20401929]
[140]
Mason, T.J.; Peters, D. Practical sonochemistry: Power ultrasound uses and applications; Woodhead Publishing, 2002.
[http://dx.doi.org/10.1533/9781782420620]
[141]
Petrier, C.; Luche, J.; Luche, J. Synthetic organic sonochemistry; Plenum Press: New York, 1998, pp. 53-56.
[142]
Wu, Y.; Luo, H.; Wang, H. Synthesis of iron (III)-based metal-organic framework/graphene oxide composites with increased photocatalytic performance for dye degradation. RSC Advances, 2014, 4(76), 40435-40438.
[http://dx.doi.org/10.1039/C4RA07566H]
[143]
Rahimi, E.; Mohaghegh, N. New hybrid nanocomposite of copper terephthalate MOF-graphene oxide: synthesis, characterization and application as adsorbents for toxic metal ion removal from Sungun acid mine drainage. Environ. Sci. Pollut. Res. Int., 2017, 24(28), 22353-22360.
[http://dx.doi.org/10.1007/s11356-017-9823-6] [PMID: 28801872]
[144]
Yuan, X.; Wang, H.; Wu, Y.; Zeng, G.; Chen, X.; Leng, L.; Wu, Z.; Li, H. Oneí pot selfí assembly and photoreduction synthesis of silver nanoparticleí decorated reduced graphene oxide/MILí 125 (Ti) photocatalyst with improved visible light photocatalytic activity. Appl. Organomet. Chem., 2016, 30(5), 289-296.
[http://dx.doi.org/10.1002/aoc.3430]
[145]
Mao, J.; Ge, M.; Huang, J.; Lai, Y.; Lin, C.; Zhang, K.; Meng, K.; Tang, Y. Constructing multifunctional MOF@ rGO hydro-/aerogels by the self-assembly process for customized water remediation. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(23), 11873-11881.
[http://dx.doi.org/10.1039/C7TA01343D]
[146]
Lin, K-Y.A.; Lee, W-D. Self-assembled magnetic graphene supported ZIF-67 as a recoverable and efficient adsorbent for benzotriazole. Chem. Eng. J., 2016, 284, 1017-1027.
[http://dx.doi.org/10.1016/j.cej.2015.09.075]
[147]
Lin, K-Y.A.; Lee, W-D. Highly efficient removal of Malachite green from water by a magnetic reduced graphene oxide/zeolitic imidazolate framework self-assembled nanocomposite. Appl. Surf. Sci., 2016, 361, 114-121.
[http://dx.doi.org/10.1016/j.apsusc.2015.11.108]
[148]
Majumdar, S.; Tokay, B.; Martin-Gil, V.; Campbell, J.; Castro-Muñoz, R.; Ahmad, M.Z.; Fila, V. Mg-MOF-74/Polyvinyl acetate (PVAc) mixed matrix membranes for CO2 separation. Separ. Purif. Tech., 2019, 116, 411.
[149]
Chuah, C.Y.; Li, W.; Samarasinghe, S.; Sethunga, G.; Bae, T-H. Enhancing the CO2 separation performance of polymer membranes via the incorporation of amine-functionalized HKUST-1 nanocrystals. Microporous Mesoporous Mater., 2019, 290109680
[http://dx.doi.org/10.1016/j.micromeso.2019.109680]
[150]
Haque, E.; Jhung, S.H. Synthesis of isostructural metal-organic frameworks, CPO-27s, with ultrasound, microwave, and conventional heating: Effect of synthesis methods and metal ions. Chem. Eng. J., 2011, 173(3), 866-872.
[http://dx.doi.org/10.1016/j.cej.2011.08.037]
[151]
Yang, D-A.; Cho, H-Y.; Kim, J.; Yang, S-T.; Ahn, W-S. CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energy Environ. Sci., 2012, 5(4), 6465-6473.
[http://dx.doi.org/10.1039/C1EE02234B]
[152]
Wu, X.; Bao, Z.; Yuan, B.; Wang, J.; Sun, Y.; Luo, H.; Deng, S. Microwave synthesis and characterization of MOF-74 (M= Ni, Mg) for gas separation. Microporous Mesoporous Mater., 2013, 180, 114-122.
[http://dx.doi.org/10.1016/j.micromeso.2013.06.023]
[153]
Díaz-García, M.; Mayoral, A.; Diaz, I.; Sánchez-Sánchez, M. Nanoscaled M-MOF-74 materials prepared at room temperature. Cryst. Growth Des., 2014, 14(5), 2479-2487.
[http://dx.doi.org/10.1021/cg500190h]
[154]
Son, W-J.; Kim, J.; Kim, J.; Ahn, W-S. Sonochemical synthesis of MOF-5. Chem. Commun. (Camb.), 2008, 47, 6336-6338.
[http://dx.doi.org/10.1039/b814740j] [PMID: 19048147]
[155]
Choi, J-S.; Son, W-J.; Kim, J.; Ahn, W-S. Metal-organic framework MOF-5 prepared by microwave heating: Factors to be considered. Microporous Mesoporous Mater., 2008, 116(1-3), 727-731.
[http://dx.doi.org/10.1016/j.micromeso.2008.04.033]
[156]
Tranchemontagne, D.J.; Hunt, J.R.; Yaghi, O.M. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron, 2008, 64(36), 8553-8557.
[http://dx.doi.org/10.1016/j.tet.2008.06.036]
[157]
Jung, D-W.; Yang, D-A.; Kim, J.; Kim, J.; Ahn, W-S. Facile synthesis of MOF-177 by a sonochemical method using 1-methyl-2-pyrrolidinone as a solvent. Dalton Trans., 2010, 39(11), 2883-2887.
[http://dx.doi.org/10.1039/b925088c] [PMID: 20200716]
[158]
Furukawa, H.; Miller, M.A.; Yaghi, O.M. Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal-organic frameworks. J. Mater. Chem., 2007, 17(30), 3197-3204.
[http://dx.doi.org/10.1039/b703608f]
[159]
Razavi, S.A.A.; Masoomi, M.Y.; Morsali, A. Morphology-dependent sensing performance of dihydro-tetrazine functionalized MOF toward Al(III). Ultrason. Sonochem., 2018, 41, 17-26.
[http://dx.doi.org/10.1016/j.ultsonch.2017.09.009] [PMID: 29137740]
[160]
Masoomi, M.Y.; Bagheri, M.; Morsali, A. Porosity and dye adsorption enhancement by ultrasonic synthesized Cd(II) based metal-organic framework. Ultrason. Sonochem., 2017, 37, 244-250.
[http://dx.doi.org/10.1016/j.ultsonch.2017.01.018] [PMID: 28427630]
[161]
Masoomi, M.Y.; Bagheri, M.; Morsali, A.; Junk, P.C. High photodegradation efficiency of phenol by mixed-metal-organic frameworks. Inorg. Chem. Front., 2016, 3(7), 944-951.
[http://dx.doi.org/10.1039/C6QI00067C]
[162]
Chalati, T.; Horcajada, P.; Gref, R.; Couvreur, P.; Serre, C. Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A. J. Mater. Chem., 2011, 21(7), 2220-2227.
[http://dx.doi.org/10.1039/C0JM03563G]
[163]
Gordon, J.; Kazemian, H.; Rohani, S. Rapid and efficient crystallization of MIL-53 (Fe) by ultrasound and microwave irradiation. Microporous Mesoporous Mater., 2012, 162, 36-43.
[http://dx.doi.org/10.1016/j.micromeso.2012.06.009]
[164]
da Silva, G.G.; Silva, C.S.; Ribeiro, R.T.; Ronconi, C.M.; Barros, B.S.; Neves, J.L.; Júnior, S.A. Sonoelectrochemical synthesis of metal-organic frameworks. Synth. Met., 2016, 220, 369-373.
[http://dx.doi.org/10.1016/j.synthmet.2016.07.003]
[165]
Li, Z-Q.; Qiu, L-G.; Xu, T.; Wu, Y.; Wang, W.; Wu, Z-Y.; Jiang, X. Ultrasonic synthesis of the microporous metal-organic framework Cu3 (BTC) 2 at ambient temperature and pressure: an efficient and environmentally friendly method. Mater. Lett., 2009, 63(1), 78-80.
[http://dx.doi.org/10.1016/j.matlet.2008.09.010]
[166]
Seo, Y-K.; Hundal, G.; Jang, I.T.; Hwang, Y.K.; Jun, C-H.; Chang, J-S. Microwave synthesis of hybrid inorganic-organic materials including porous Cu3 (BTC) 2 from Cu (II)-trimesate mixture. Microporous Mesoporous Mater., 2009, 119(1-3), 331-337.
[http://dx.doi.org/10.1016/j.micromeso.2008.10.035]
[167]
Schlesinger, M.; Schulze, S.; Hietschold, M.; Mehring, M. Evaluation of synthetic methods for microporous metal-organic frameworks exemplified by the competitive formation of [Cu2 (btc) 3 (H2O) 3] and [Cu2 (btc)(OH)(H2O)]. Microporous Mesoporous Mater., 2010, 132(1-2), 121-127.
[http://dx.doi.org/10.1016/j.micromeso.2010.02.008]
[168]
Krawiec, P.; Kramer, M.; Sabo, M.; Kunschke, R.; Fröde, H.; Kaskel, S. Improved Hydrogen Storage in the Metal-organic Framework Cu3 (BTC) 2. Adv. Eng. Mater., 2006, 8(4), 293-296.
[http://dx.doi.org/10.1002/adem.200500223]
[169]
Burtch, N.C.; Jasuja, H.; Walton, K.S. Water stability and adsorption in metal-organic frameworks. Chem. Rev., 2014, 114(20), 10575-10612.
[http://dx.doi.org/10.1021/cr5002589] [PMID: 25264821]
[170]
Wang, C.; Liu, X.; Keser Demir, N.; Chen, J.P.; Li, K. Applications of water stable metal-organic frameworks. Chem. Soc. Rev., 2016, 45(18), 5107-5134.
[http://dx.doi.org/10.1039/C6CS00362A] [PMID: 27406473]
[171]
Canivet, J.; Fateeva, A.; Guo, Y.; Coasne, B.; Farrusseng, D. Water adsorption in MOFs: Fundamentals and applications. Chem. Soc. Rev., 2014, 43(16), 5594-5617.
[http://dx.doi.org/10.1039/C4CS00078A] [PMID: 24875439]
[172]
Feng, D.; Wang, K.; Wei, Z.; Chen, Y-P.; Simon, C.M.; Arvapally, R.K.; Martin, R.L.; Bosch, M.; Liu, T-F.; Fordham, S.; Yuan, D.; Omary, M.A.; Haranczyk, M.; Smit, B.; Zhou, H.C. Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal-organic frameworks. Nat. Commun., 2014, 5, 5723.
[http://dx.doi.org/10.1038/ncomms6723] [PMID: 25474702]
[173]
Xuan, W.; Zhu, C.; Liu, Y.; Cui, Y. Mesoporous metal-organic framework materials. Chem. Soc. Rev., 2012, 41(5), 1677-1695.
[http://dx.doi.org/10.1039/C1CS15196G] [PMID: 22008884]
[174]
Nasalevich, M.; Van der Veen, M.; Kapteijn, F.; Gascon, J. Metal-organic frameworks as heterogeneous photocatalysts: advantages and challenges. CrystEngComm, 2014, 16(23), 4919-4926.
[http://dx.doi.org/10.1039/C4CE00032C]
[175]
Wen, M.; Li, G.; Liu, H.; Chen, J.; An, T.; Yamashita, H. Metal-organic framework-based nanomaterials for adsorption and photocatalytic degradation of gaseous pollutants: Recent progress and challenges. Environ. Sci. Nano, 2019, 6(4), 1006-1025.
[http://dx.doi.org/10.1039/C8EN01167B]
[176]
Wen, M.; Mori, K.; Kuwahara, Y.; An, T.; Yamashita, H. Design of single-site photocatalysts by using metal-organic frameworks as a matrix. Chem. Asian J., 2018, 13(14), 1767-1779.
[http://dx.doi.org/10.1002/asia.201800444] [PMID: 29756680]
[177]
Zhang, Z.; Li, X.; Liu, B.; Zhao, Q.; Chen, G. Hexagonal microspindle of NH2-MIL-101 (Fe) metal-organic frameworks with visible-light-induced photocatalytic activity for the degradation of toluene 2016.
[http://dx.doi.org/10.1039/C5RA23154J]
[178]
Li, X.; Le, Z.; Chen, X.; Li, Z.; Wang, W.; Liu, X.; Wu, A.; Xu, P.; Zhang, D. Graphene oxide enhanced amine-functionalized titanium metal organic framework for visible-light-driven photocatalytic oxidation of gaseous pollutants. Appl. Catal. B, 2018, 236, 501-508.
[http://dx.doi.org/10.1016/j.apcatb.2018.05.052]
[179]
Qiu, J.; Zhang, X.; Feng, Y.; Zhang, X.; Wang, H.; Yao, J. Modified metal-organic frameworks as photocatalysts. Appl. Catal. B, 2018, 231, 317-342.
[http://dx.doi.org/10.1016/j.apcatb.2018.03.039]
[180]
Wang, H.; Yuan, X.; Wu, Y.; Zeng, G.; Dong, H.; Chen, X.; Leng, L.; Wu, Z.; Peng, L. In situ synthesis of In2S3@ MIL-125 (Ti) core-shell microparticle for the removal of tetracycline from wastewater by integrated adsorption and visible-light-driven photocatalysis. Appl. Catal. B, 2016, 186, 19-29.
[http://dx.doi.org/10.1016/j.apcatb.2015.12.041]
[181]
Li, G.; Wu, L.; Li, F.; Xu, P.; Zhang, D.; Li, H. Photoelectrocatalytic degradation of organic pollutants via a CdS quantum dots enhanced TiO2 nanotube array electrode under visible light irradiation. Nanoscale, 2013, 5(5), 2118-2125.
[http://dx.doi.org/10.1039/c3nr34253k] [PMID: 23381869]
[182]
Haque, E.; Lee, J.E.; Jang, I.T.; Hwang, Y.K.; Chang, J-S.; Jegal, J.; Jhung, S.H. Adsorptive removal of methyl orange from aqueous solution with metal-organic frameworks, porous chromium-benzenedicarboxylates. J. Hazard. Mater., 2010, 181(1-3), 535-542.
[http://dx.doi.org/10.1016/j.jhazmat.2010.05.047] [PMID: 20627406]
[183]
Haque, E.; Lo, V.; Minett, A.I.; Harris, A.T.; Church, T.L. Dichotomous adsorption behaviour of dyes on an amino-functionalised metal-organic framework, amino-MIL-101 (Al). J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(1), 193-203.
[http://dx.doi.org/10.1039/C3TA13589F]
[184]
Haque, E.; Jun, J.W.; Jhung, S.H. Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). J. Hazard. Mater., 2011, 185(1), 507-511.
[http://dx.doi.org/10.1016/j.jhazmat.2010.09.035] [PMID: 20933323]
[185]
Barbero, N.; Vione, D. Why dyes should not be used to test the photocatalytic activity of semiconductor oxides; Publications, A.C.S., Ed.; , 2016.
[http://dx.doi.org/10.1021/acs.est.6b00213]
[186]
Seo, Y.S.; Khan, N.A.; Jhung, S.H. Adsorptive removal of methylchlorophenoxypropionic acid from water with a metal-organic framework. Chem. Eng. J., 2015, 270, 22-27.
[http://dx.doi.org/10.1016/j.cej.2015.02.007]
[187]
Jung, B.K.; Hasan, Z.; Jhung, S.H. Adsorptive removal of 2, 4-dichlorophenoxyacetic acid (2, 4-D) from water with a metal-organic framework. Chem. Eng. J., 2013, 234, 99-105.
[http://dx.doi.org/10.1016/j.cej.2013.08.110]
[188]
De Smedt, C.; Spanoghe, P.; Biswas, S.; Leus, K.; Van Der Voort, P. Comparison of different solid adsorbents for the removal of mobile pesticides from aqueous solutions. Adsorption, 2015, 21(3), 243-254.
[http://dx.doi.org/10.1007/s10450-015-9666-8]
[189]
Zhu, X.; Li, B.; Yang, J.; Li, Y.; Zhao, W.; Shi, J.; Gu, J. Effective adsorption and enhanced removal of organophosphorus pesticides from aqueous solution by Zr-based MOFs of UiO-67. ACS Appl. Mater. Interfaces, 2015, 7(1), 223-231.
[http://dx.doi.org/10.1021/am5059074] [PMID: 25514633]
[190]
Han, T.; Xiao, Y.; Tong, M.; Huang, H.; Liu, D.; Wang, L.; Zhong, C. Synthesis of CNT@ MIL-68 (Al) composites with improved adsorption capacity for phenol in aqueous solution. Chem. Eng. J., 2015, 275, 134-141.
[http://dx.doi.org/10.1016/j.cej.2015.04.005]
[191]
Park, E.Y.; Hasan, Z.; Khan, N.A.; Jhung, S.H. Adsorptive removal of bisphenol-A from water with a metal-organic framework, a porous chromium-benzenedicarboxylate. J. Nanosci. Nanotechnol., 2013, 13(4), 2789-2794.
[http://dx.doi.org/10.1166/jnn.2013.7411] [PMID: 23763161]
[192]
Qin, F-X.; Jia, S-Y.; Liu, Y.; Li, H-Y.; Wu, S-H. Adsorptive removal of bisphenol A from aqueous solution using metal-organic frameworks. Desal. Water Treat., 2015, 54(1), 93-102.
[http://dx.doi.org/10.1080/19443994.2014.883331]
[193]
Huo, S-H.; Yan, X-P. Metal-organic framework MIL-100 (Fe) for the adsorption of malachite green from aqueous solution. J. Mater. Chem., 2012, 22(15), 7449-7455.
[http://dx.doi.org/10.1039/c2jm16513a]
[194]
Liu, B.; Yang, F.; Zou, Y.; Peng, Y. Adsorption of phenol and p-nitrophenol from aqueous solutions on metal-organic frameworks: effect of hydrogen bonding. J. Chem. Eng. Data, 2014, 59(5), 1476-1482.
[http://dx.doi.org/10.1021/je4010239]
[195]
Carrales-Alvarado, D.H.; Ocampo-Pérez, R.; Leyva-Ramos, R.; Rivera-Utrilla, J. Removal of the antibiotic metronidazole by adsorption on various carbon materials from aqueous phase. J. Colloid Interface Sci., 2014, 436, 276-285.
[http://dx.doi.org/10.1016/j.jcis.2014.08.023] [PMID: 25280372]
[196]
Smith, S.C.; Rodrigues, D.F. Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications. Carbon, 2015, 91, 122-143.
[http://dx.doi.org/10.1016/j.carbon.2015.04.043]
[197]
Yang, Q.; Chen, G.; Zhang, J.; Li, H. Adsorption of sulfamethazine by multi-walled carbon nanotubes: effects of aqueous solution chemistry. RSC Advances, 2015, 5(32), 25541-25549.
[http://dx.doi.org/10.1039/C4RA15056B]
[198]
Martucci, A.; Cremonini, M.A.; Blasioli, S.; Gigli, L.; Gatti, G.; Marchese, L.; Braschi, I. Adsorption and reaction of sulfachloropyridazine sulfonamide antibiotic on a high silica mordenite: A structural and spectroscopic combined study. Microporous Mesoporous Mater., 2013, 170, 274-286.
[http://dx.doi.org/10.1016/j.micromeso.2012.11.031]
[199]
Nielsen, L.; Bandosz, T.J. Analysis of sulfamethoxazole and trimethoprim adsorption on sewage sludge and fish waste derived adsorbents. Microporous Mesoporous Mater., 2016, 220, 58-72.
[http://dx.doi.org/10.1016/j.micromeso.2015.08.025]
[200]
Sarker, M.; Song, J.Y.; Jhung, S.H. Adsorptive removal of anti-inflammatory drugs from water using graphene oxide/metal-organic framework composites. Chem. Eng. J., 2018, 335, 74-81.
[http://dx.doi.org/10.1016/j.cej.2017.10.138]
[201]
Abdul Kareem, F.A.; Shariff, A.M.; Ullah, S.; Dreisbach, F.; Keong, L.K.; Mellon, N.; Garg, S. Experimental measurements and modeling of supercritical CO2 adsorption on 13X and 5A zeolites. J. Nat. Gas Sci. Eng., 2018, 50, 115-127.
[http://dx.doi.org/10.1016/j.jngse.2017.11.016]
[202]
Abdul Kareem, F.A.; Shariff, A.M.; Ullah, S.; Mellon, N.; Keong, L.K. Adsorption of pure and predicted binary (CO2:CH4) mixtures on 13X-Zeolite: Equilibrium and kinetic properties at offshore conditions. Microporous Mesoporous Mater., 2018, 267, 221-234.
[http://dx.doi.org/10.1016/j.micromeso.2018.04.007]
[203]
F. A.. AbdulKareem; A. Mohd.; Shariff; S. Ullah, T. L. See L. K. Keong, N. Mellon. Adsorption performance of 5A molecular sieve zeolite in water vapor-binary gas environment: Experimental and modeling evaluation. J. Ind. Eng. Chem., 2018, 64, 173-187.
[204]
Abdul Kareem, F.A.; Shariff, A.M.; Ullah, S.; Garg, S.; Dreisbach, F.; Keong, L.K.; Mellon, N. Experimental and Neural Network Modeling of Partial Uptake for a Carbon Dioxide/Methane/Water Ternary Mixture on 13X Zeolite. Energy Technol. (Weinheim), 2017, 5(8), 1373-1391.
[http://dx.doi.org/10.1002/ente.201600688]
[205]
Cychosz, K.A.; Matzger, A.J. Water stability of microporous coordination polymers and the adsorption of pharmaceuticals from water. Langmuir, 2010, 26(22), 17198-17202.
[http://dx.doi.org/10.1021/la103234u] [PMID: 20923216]
[206]
Azhar, M.R.; Abid, H.R.; Sun, H.; Periasamy, V.; Tadé, M.O.; Wang, S. Excellent performance of copper based metal organic framework in adsorptive removal of toxic sulfonamide antibiotics from wastewater. J. Colloid Interface Sci., 2016, 478, 344-352.
[http://dx.doi.org/10.1016/j.jcis.2016.06.032] [PMID: 27318714]
[207]
Adams, C.; Wang, Y.; Loftin, K.; Meyer, M. Removal of antibiotics from surface and distilled water in conventional water treatment processes. J. Environ. Eng., 2002, 128(3), 253-260.
[http://dx.doi.org/10.1061/(ASCE)0733-9372(2002)128:3(253)]
[208]
Braschi, I.; Blasioli, S.; Gigli, L.; Gessa, C.E.; Alberti, A.; Martucci, A. Removal of sulfonamide antibiotics from water: Evidence of adsorption into an organophilic zeolite Y by its structural modifications. J. Hazard. Mater., 2010, 178(1-3), 218-225.
[http://dx.doi.org/10.1016/j.jhazmat.2010.01.066] [PMID: 20133061]
[209]
Wang, H.; Yu, T.; Tan, X.; Zhang, H.; Li, P.; Liu, H.; Shi, L.; Li, X.; Ye, J. Enhanced photocatalytic oxidation of isopropanol by HKUST-1@ TiO2 core-shell structure with ultrathin anatase porous shell: Toxic intermediate control. Ind. Eng. Chem. Res., 2016, 55(29), 8096-8103.
[http://dx.doi.org/10.1021/acs.iecr.6b01400]
[210]
Hu, Y.; Huang, Z.; Zhou, L.; Wang, D.; Li, G. Synthesis of nanoscale titania embedded in MIL-101 for the adsorption and degradation of volatile pollutants with thermal desorption gas chromatography and mass spectrometry detection. J. Sep. Sci., 2014, 37(12), 1482-1488.
[http://dx.doi.org/10.1002/jssc.201400100] [PMID: 24659452]
[211]
Li, X.; Chen, G. Hexagonal microspindle of NH2-MIL-101 (Fe) metal-organic frameworks with visible-light-induced photocatalytic activity for the degradation of toluene. RSC Advances, 2016, 6, 4289-4295.
[212]
Chen, D-M.; Liu, X-H.; Zhang, N-N.; Liu, C-S.; Du, M. Immobilization of polyoxometalate in a cage-based metal-organic framework towards enhanced stability and highly effective dye degradation. Polyhedron, 2018, 152, 108-113.
[http://dx.doi.org/10.1016/j.poly.2018.05.059]
[213]
Gao, Y.; Li, S.; Li, Y.; Yao, L.; Zhang, H. Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53 (Fe) under visible LED light mediated by persulfate. Appl. Catal. B, 2017, 202, 165-174.
[http://dx.doi.org/10.1016/j.apcatb.2016.09.005]
[214]
Ai, L.; Zhang, C.; Li, L.; Jiang, J. Iron terephthalate metal-organic framework: revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation. Appl. Catal. B, 2014, 148, 191-200.
[http://dx.doi.org/10.1016/j.apcatb.2013.10.056]
[215]
Du, J-J.; Yuan, Y-P.; Sun, J-X.; Peng, F-M.; Jiang, X.; Qiu, L-G.; Xie, A-J.; Shen, Y-H.; Zhu, J-F. New photocatalysts based on MIL-53 metal-organic frameworks for the decolorization of methylene blue dye. J. Hazard. Mater., 2011, 190(1-3), 945-951.
[http://dx.doi.org/10.1016/j.jhazmat.2011.04.029] [PMID: 21531507]
[216]
Zhang, Y.; Zhou, J.; Feng, Q.; Chen, X.; Hu, Z. Visible light photocatalytic degradation of MB using UiO-66/g-C3N4 heterojunction nanocatalyst. Chemosphere, 2018, 212, 523-532.
[http://dx.doi.org/10.1016/j.chemosphere.2018.08.117] [PMID: 30165279]
[217]
Huang, J.; Zhang, X.; Song, H.; Chen, C.; Han, F.; Wen, C. Protonated graphitic carbon nitride coated metal-organic frameworks with enhanced visible-light photocatalytic activity for contaminants degradation. Appl. Surf. Sci., 2018, 441, 85-98.
[http://dx.doi.org/10.1016/j.apsusc.2018.02.027]
[218]
Wang, H.; Yuan, X.; Wu, Y.; Zeng, G.; Chen, X.; Leng, L.; Li, H. Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal. Appl. Catal. B, 2015, 174, 445-454.
[http://dx.doi.org/10.1016/j.apcatb.2015.03.037]
[219]
Ding, J.; Yang, Z.; He, C.; Tong, X.; Li, Y.; Niu, X.; Zhang, H. UiO-66(Zr) coupled with Bi(2)MoO(6) as photocatalyst for visible-light promoted dye degradation. J. Colloid Interface Sci., 2017, 497, 126-133.
[http://dx.doi.org/10.1016/j.jcis.2017.02.060] [PMID: 28282564]
[220]
Sha, Z.; Chan, H.S.O.; Wu, J. Ag2CO3/UiO-66(Zr) composite with enhanced visible-light promoted photocatalytic activity for dye degradation. J. Hazard. Mater., 2015, 299, 132-140.
[http://dx.doi.org/10.1016/j.jhazmat.2015.06.016] [PMID: 26100934]
[221]
Sha, Z.; Sun, J.; Chan, H.S.O.; Jaenicke, S.; Wu, J. Enhanced Photocatalytic activity of the AgI/UiO-66(Zr) Composite for Rhodamine B degradation under visible-light irradiation. ChemPlusChem, 2015, 80(8), 1321-1328.
[http://dx.doi.org/10.1002/cplu.201402430] [PMID: 31973301]
[222]
Sha, Z.; Wu, J. Enhanced visible-light photocatalytic performance of BiOBr/UiO-66 (Zr) composite for dye degradation with the assistance of UiO-66. RSC Advances, 2015, 5(49), 39592-39600.
[http://dx.doi.org/10.1039/C5RA04869A]
[223]
Sha, Z.; Sun, J.; Chan, H.S.O.; Jaenicke, S.; Wu, J. Bismuth tungstate incorporated zirconium metal-organic framework composite with enhanced visible-light photocatalytic performance. RSC Advances, 2014, 4(110), 64977-64984.
[http://dx.doi.org/10.1039/C4RA13000F]
[224]
Gao, J.; Miao, J.; Li, P-Z.; Teng, W.Y.; Yang, L.; Zhao, Y.; Liu, B.; Zhang, Q. A p-type Ti(IV)-based metal-organic framework with visible-light photo-response. Chem. Commun. (Camb.), 2014, 50(29), 3786-3788.
[http://dx.doi.org/10.1039/C3CC49440C] [PMID: 24522830]
[225]
Xu, W-T.; Ma, L.; Ke, F.; Peng, F-M.; Xu, G-S.; Shen, Y-H.; Zhu, J-F.; Qiu, L-G.; Yuan, Y-P. Metal-organic frameworks MIL-88A hexagonal microrods as a new photocatalyst for efficient decolorization of methylene blue dye. Dalton Trans., 2014, 43(9), 3792-3798.
[http://dx.doi.org/10.1039/C3DT52574K] [PMID: 24448232]
[226]
Wang, C-C.; Zhang, Y-Q.; Zhu, T.; Wang, P.; Gao, S-J. Photocatalytic degradation of methylene blue and methyl orange in a Zn (II)-based Metal-Organic Framework. Desalination Water Treat., 2016, 57(38), 17844-17851.
[http://dx.doi.org/10.1080/19443994.2015.1088807]
[227]
Jing, H-P.; Wang, C-C.; Zhang, Y-W.; Wang, P.; Li, R. Photocatalytic degradation of methylene blue in ZIF-8. RSC Advances, 2014, 4(97), 54454-54462.
[http://dx.doi.org/10.1039/C4RA08820D]
[228]
Guesh, K.; Caiuby, C.A.; Mayoral, A.l.; Díaz-García, M.; Díaz, I.; Sanchez-Sanchez, M. Sustainable preparation of MIL-100 (Fe) and its photocatalytic behavior in the degradation of methyl orange in water. Cryst. Growth Des., 2017, 17(4), 1806-1813.
[http://dx.doi.org/10.1021/acs.cgd.6b01776]
[229]
Wang, C.; Xue, Y.; Wang, P.; Ao, Y. Effects of water environmental factors on the photocatalytic degradation of sulfamethoxazole by AgI/UiO-66 composite under visible light irradiation. J. Alloys Compd., 2018, 748, 314-322.
[http://dx.doi.org/10.1016/j.jallcom.2018.03.129]
[230]
Huang, W.; Jing, C.; Zhang, X.; Tang, M.; Tang, L.; Wu, M.; Liu, N. Integration of plasmonic effect into spindle-shaped MIL-88A (Fe): Steering charge flow for enhanced visible-light photocatalytic degradation of ibuprofen. Chem. Eng. J., 2018, 349, 603-612.
[http://dx.doi.org/10.1016/j.cej.2018.05.121]
[231]
Yang, C.; You, X.; Cheng, J.; Zheng, H.; Chen, Y. A novel visible-light-driven In-based MOF/graphene oxide composite photocatalyst with enhanced photocatalytic activity toward the degradation of amoxicillin. Appl. Catal. B, 2017, 200, 673-680.
[http://dx.doi.org/10.1016/j.apcatb.2016.07.057]
[232]
He, L.; Dong, Y.; Zheng, Y.; Jia, Q.; Shan, S.; Zhang, Y. A novel magnetic MIL-101(Fe)/TiO2 composite for photo degradation of tetracycline under solar light. J. Hazard. Mater., 2019, 361, 85-94.
[http://dx.doi.org/10.1016/j.jhazmat.2018.08.079] [PMID: 30176419]
[233]
Wang, D.; Jia, F.; Wang, H.; Chen, F.; Fang, Y.; Dong, W.; Zeng, G.; Li, X.; Yang, Q.; Yuan, X. Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs. J. Colloid Interface Sci., 2018, 519, 273-284.
[http://dx.doi.org/10.1016/j.jcis.2018.02.067] [PMID: 29505989]
[234]
Hu, Q.; Di, J.; Wang, B.; Ji, M.; Chen, Y.; Xia, J.; Li, H.; Zhao, Y. In-situ preparation of NH2-MIL-125 (Ti)/BiOCl composite with accelerating charge carriers for boosting visible light photocatalytic activity. Appl. Surf. Sci., 2019, 466, 525-534.
[http://dx.doi.org/10.1016/j.apsusc.2018.10.020]
[235]
Dong, W.; Wang, D.; Wang, H.; Li, M.; Chen, F.; Jia, F.; Yang, Q.; Li, X.; Yuan, X.; Gong, J.; Li, H.; Ye, J. Facile synthesis of In2S3/UiO-66 composite with enhanced adsorption performance and photocatalytic activity for the removal of tetracycline under visible light irradiation. J. Colloid Interface Sci., 2019, 535, 444-457.
[http://dx.doi.org/10.1016/j.jcis.2018.10.008] [PMID: 30321780]
[236]
Liang, R.; Huang, R.; Ying, S.; Wang, X.; Yan, G.; Wu, L. Facile in situ growth of highly dispersed palladium on phosphotungstic-acid-encapsulated MIL-100 (Fe) for the degradation of pharmaceuticals and personal care products under visible light. Nano Res., 2018, 11(2), 1109-1123.
[http://dx.doi.org/10.1007/s12274-017-1730-0]
[237]
Liang, R.; Luo, S.; Jing, F.; Shen, L.; Qin, N.; Wu, L. A simple strategy for fabrication of Pd@ MIL-100 (Fe) nanocomposite as a visible-light-driven photocatalyst for the treatment of pharmaceuticals and personal care products (PPCPs). Appl. Catal. B, 2015, 176, 240-248.
[http://dx.doi.org/10.1016/j.apcatb.2015.04.009]
[238]
Oladipo, A.A. MIL-53 (Fe)-based photo-sensitive composite for degradation of organochlorinated herbicide and enhanced reduction of Cr (VI). Process Saf. Environ. Prot., 2018, 116, 413-423.
[http://dx.doi.org/10.1016/j.psep.2018.03.011]
[239]
Oladipo, A.A.; Vaziri, R.; Abureesh, M.A. Highly robust AgIO3/MIL-53 (Fe) nanohybrid composites for degradation of organophosphorus pesticides in single and binary systems: application of artificial neural networks modelling. J. Taiwan Inst. Chem. Eng., 2018, 83, 133-142.
[http://dx.doi.org/10.1016/j.jtice.2017.12.013]
[240]
Xue, Y.; Wang, P.; Wang, C.; Ao, Y. Efficient degradation of atrazine by BiOBr/UiO-66 composite photocatalyst under visible light irradiation: Environmental factors, mechanisms and degradation pathways. Chemosphere, 2018, 203, 497-505.
[http://dx.doi.org/10.1016/j.chemosphere.2018.04.017] [PMID: 29649691]
[241]
Mohaghegh, N.; Tasviri, M.; Rahimi, E.; Gholami, M. Comparative studies on Ag3PO4/BiPO4-metal-organic framework-graphene-based nanocomposites for photocatalysis application. Appl. Surf. Sci., 2015, 351, 216-224.
[http://dx.doi.org/10.1016/j.apsusc.2015.05.135]
[242]
Wu, X-Y.; Qi, H-X.; Ning, J-J.; Wang, J-F.; Ren, Z-G.; Lang, J-P. One silver (I)/tetraphosphine coordination polymer showing good catalytic performance in the photodegradation of nitroaromatics in aqueous solution. Appl. Catal. B, 2015, 168, 98-104.
[http://dx.doi.org/10.1016/j.apcatb.2014.12.024]
[243]
Li, J.; Yang, J.; Liu, Y.Y.; Ma, J.F. Two heterometallic-organic frameworks composed of iron(III)-salen-based ligands and d(10) metals: gas sorption and visible-light photocatalytic degradation of 2-chlorophenol. Chemistry, 2015, 21(11), 4413-4421.
[http://dx.doi.org/10.1002/chem.201406349] [PMID: 25651991]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy