Generic placeholder image

Current Nanotoxicity and Prevention (Discontinued)

Editor-in-Chief

ISSN (Print): 2665-9808
ISSN (Online): 2665-9816

Review Article

Microorganisms as Nano-factories for the Synthesis of Metal Nanoparticles

Author(s): Vinay Kumar*, Vijay Kumar, Neha Sharma, Sivarama Krishna Lakkaboyana and Subhrangsu Sunder Maitra

Volume 1, Issue 1, 2021

Published on: 06 May, 2020

Page: [78 - 91] Pages: 14

DOI: 10.2174/2665980801999200507090343

Abstract

Nanoparticles applications have revolutionized different areas of the research. These include medicine, surgery, drug delivery, wastewater treatment, agriculture, cancer therapy, etc. The use of nanoparticles is increasing day by day due to their promising characteristics. With the excessive use of the nanoparticles, their accumulation in the organisms and different environments have been reported. A very high increase in the accumulation and toxicity of nanoparticles has been reported in the last decade. Therefore, the nanoparticle research has now been shifted to find new techniques and methods to minimize the toxic effects of nanoparticles. In this context, the requirement of a safe design approach and the generation of fewer toxic nanoparticles are required. One of the eco-friendly approaches for safer nanoparticles synthesis is the use of living organisms for nanoparticles production. Microbes especially, bacteria, fungi, and yeasts, are considered safe, secure, and efficient systems for nanoparticle biosynthesis. This review is an attempt to understand the potential of microbes for the biosynthesis of nanoparticles.

Keywords: Nano-factories, biosynthesized nanoparticles, microorganisms, biogenic nanoparticles, toxicity reduction, eco-friendly.

Graphical Abstract
[1]
Qin D. Dezhi Q, Guangrui Y, Yabo W, Yanbiao Z, Li Z Green synthesis of biocompatible trypsin-conjugated Ag nanocomposite with antibacterial activity. Appl Surf Sci 2019; 469: 528-36.
[http://dx.doi.org/10.1016/j.apsusc.2018.11.057]
[2]
Wu D, Guo L, Li S-J. Synthesis, structural characterization and anti-breast cancer activity evaluation of three new Schiff base metal (II) complexes and their nanoparticles. J Mol Struct 2020.1199126938
[http://dx.doi.org/10.1016/j.molstruc.2019.126938]
[3]
Qi Y, Ye J, Ren S. In-situ synthesis of metal nanoparticles@metal-organic frameworks: Highly effective catalytic performance and synergistic antimicrobial activity. J Hazard Mater 2020; 387121687
[http://dx.doi.org/10.1016/j.jhazmat.2019.121687] [PMID: 31784130]
[4]
Nath D, Banerjee P. Green nanotechnology - a new hope for medical biology. Environ Toxicol Pharmacol 2013; 36(3): 997-1014.
[http://dx.doi.org/10.1016/j.etap.2013.09.002] [PMID: 24095717]
[5]
Kharisov BI, Kharissova OV, Ortiz-Mendez U. CRC concise encyclopedia of nanotechnology CRC Press 2016..
[http://dx.doi.org/10.1201/b19457]
[6]
Potara M, Boca S, Licarete E. Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly sensitive plasmonic platforms for intracellular SERS sensing and imaging. Nanoscale 2013; 5(13): 6013-22.
[http://dx.doi.org/10.1039/c3nr00005b] [PMID: 23715524]
[7]
Guo W, Yuan J, Dong Q, Wang E. Highly sequence-dependent formation of fluorescent silver nanoclusters in hybridized DNA duplexes for single nucleotide mutation identification. J Am Chem Soc 2010; 132(3): 932-4.
[http://dx.doi.org/10.1021/ja907075s] [PMID: 20038102]
[8]
Chai F, Wang C, Wang T, Ma Z, Su Z. L-cysteine functionalized gold nanoparticles for the colorimetric detection of Hg2+ induced by ultraviolet light. Nanotechnology 2010; 21(2)025501
[http://dx.doi.org/10.1088/0957-4484/21/2/025501] [PMID: 19955605]
[9]
Kim J, Sadowsky MJ, Hur H-G. Simultaneous synthesis of temperature-tunable peptide and gold nanoparticle hybrid spheres. Biomacromolecules 2011; 12(7): 2518-23.
[http://dx.doi.org/10.1021/bm200309x] [PMID: 21615084]
[10]
Noruzi M. Biosynthesis of gold nanoparticles using plant extracts. Bioprocess Biosyst Eng 2015; 38(1): 1-14.
[http://dx.doi.org/10.1007/s00449-014-1251-0] [PMID: 25090979]
[11]
Zhang L. , Li Z, Guangrui Y, Synthesis of HgS nanocrystals in the Lysozyme aqueous solution through biomimetic method. Appl Surf Sci 2012; 258(20): 8185-91.
[http://dx.doi.org/10.1016/j.apsusc.2012.05.018]
[12]
Da-Peng Y, Shouhui C, Peng H Bacteria-template synthesized silver microspheres with hollow and porous structures as excellent SERS substrate. Green Chem 2010; 12(11): 2038-42.
[http://dx.doi.org/10.1039/c0gc00431f]
[13]
Singh P, Kim YJ, Zhang D, Yang DC. Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends Biotechnol 2016; 34(7): 588-99.
[http://dx.doi.org/10.1016/j.tibtech.2016.02.006] [PMID: 26944794]
[14]
Luis C-H, Karla A-A, Jeisson U-Á Green synthesis of gold and silver nanoparticles. Res J Pharm Biol Chem Sci 2015; 6(3): 1710-6.
[15]
Deepak V, Umamaheshwaran PS, Guhan K. Synthesis of gold and silver nanoparticles using purified URAK. Colloids Surf B Biointerfaces 2011; 86(2): 353-8.
[http://dx.doi.org/10.1016/j.colsurfb.2011.04.019] [PMID: 21592748]
[16]
Quinteros MA, Bonilla JO, Alborés SV, Villegas LB, Páez PL. Biogenic nanoparticles: Synthesis, stability and biocompatibility mediated by proteins of Pseudomonas aeruginosa. Colloids Surf B Biointerfaces 2019; 184110517
[http://dx.doi.org/10.1016/j.colsurfb.2019.110517] [PMID: 31605948]
[17]
Ottoni CA, Lima Neto MC, Léo P, Ortolan BD, Barbieri E, De Souza AO. Environmental impact of biogenic silver nanoparticles in soil and aquatic organisms. Chemosphere 2020; 239124698
[http://dx.doi.org/10.1016/j.chemosphere.2019.124698] [PMID: 31493753]
[18]
Van de Walle A, Plan Sangnier A, Abou-Hassan A. Biosynthesis of magnetic nanoparticles from nano-degradation products revealed in human stem cells. Proc Natl Acad Sci USA 2019; 116(10): 4044-53.
[http://dx.doi.org/10.1073/pnas.1816792116] [PMID: 30760598]
[19]
Luo C-H, Shanmugam V, Yeh C-S. Nanoparticle biosynthesis using unicellular and subcellular supports. NPG Asia Mater 2015; 7(8)e209
[http://dx.doi.org/10.1038/am.2015.90]
[20]
Singh OV. Bio-nanoparticles: biosynthesis and sustainable biotechnological implications . John Wiley & Sons 2015..
[http://dx.doi.org/10.1002/9781118677629]
[21]
Krumov N. Perner-Nochta I, Oder S, Production of inorganic nanoparticles by microorganisms. Chem Eng Technol 2009; 32(7): 1026-35.
[http://dx.doi.org/10.1002/ceat.200900046]
[22]
Shiying H, Zhirui G, Yu Z, et al. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 2007; 61(18): 3984-7.
[http://dx.doi.org/10.1016/j.matlet.2007.01.018]
[23]
Sadowski Z. Synthesis of silver nanoparticles using microorganisms. Mater Sci Pol 2008; 26(2): 419-24.
[24]
Shantkriti S, Rani P. Biological synthesis of copper nanoparticles using Pseudomonas fluorescens. Int J Curr Microbiol Appl Sci 2014; 3(9): 374-83.
[25]
Kumar KH, Savalgi V. Microbial synthesis of zinc nanoparticles using fungus isolated from rhizosphere soil.. Int J Curr Microbiol Appl Sci 2017; 6: 2365-74.
[http://dx.doi.org/10.20546/ijcmas.2017.612.272]
[26]
Faramarzi MA, Sadighi A. Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Adv Colloid Interface Sci 2013; 189-190: 1-20.
[http://dx.doi.org/10.1016/j.cis.2012.12.001] [PMID: 23332127]
[27]
Martins M, Mourato C, Sanches S, Noronha JP, Crespo MTB, Pereira IAC. Biogenic platinum and palladium nanoparticles as new catalysts for the removal of pharmaceutical compounds. Water Res 2017; 108: 160-8.
[http://dx.doi.org/10.1016/j.watres.2016.10.071] [PMID: 27817891]
[28]
Borse V, Kaler A, Banerjee UC. International Conference on Recent Trends in Engineering and Technology. 1..
[29]
Brayner R, Barberousse H, Hemadi M. Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J Nanosci Nanotechnol 2007; 7(8): 2696-708.
[http://dx.doi.org/10.1166/jnn.2007.600] [PMID: 17685286]
[30]
Lengke MF, Fleet ME, Southam G. Synthesis of platinum nanoparticles by reaction of filamentous cyanobacteria with platinum(IV)-chloride complex. Langmuir 2006; 22(17): 7318-23.
[http://dx.doi.org/10.1021/la060873s] [PMID: 16893232]
[31]
Noman M, Shahid M, Ahmed T. Use of biogenic copper nanoparticles synthesized from a native Escherichia sp. as photocatalysts for azo dye degradation and treatment of textile effluents. Environ Pollut 2020; 257113514
[http://dx.doi.org/10.1016/j.envpol.2019.113514] [PMID: 31706778]
[32]
Bhargava A, Jain N, Khan MA, Pareek V, Dilip RV, Panwar J. Utilizing metal tolerance potential of soil fungus for efficient synthesis of gold nanoparticles with superior catalytic activity for degradation of rhodamine B. J Environ Manage 2016; 183: 22-32.
[http://dx.doi.org/10.1016/j.jenvman.2016.08.021] [PMID: 27567934]
[33]
Mishra A, Kumari M, Pandey S, Chaudhry V, Gupta KC, Nautiyal CS. Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresour Technol 2014; 166: 235-42.
[http://dx.doi.org/10.1016/j.biortech.2014.04.085] [PMID: 24914997]
[34]
Metuku RP. Biosynthesis of silver nanoparticles from Schizophyllum radiatum HE 863742.1: their characterization and antimicrobial activity. Biotech 2014; 4(3): 227-34..
[35]
Castro-Longoria E, Moreno-Velázquez SD, Vilchis-Nestor AR, Arenas-Berumen E, Avalos-Borja M. Production of platinum nanoparticles and nanoaggregates using Neurospora crassa. J Microbiol Biotechnol 2012; 22(7): 1000-4.
[http://dx.doi.org/10.4014/jmb.1110.10085] [PMID: 22580320]
[36]
Govender Y, Riddin T, Gericke M, Whiteley CG. Bioreduction of platinum salts into nanoparticles: a mechanistic perspective. Biotechnol Lett 2009; 31(1): 95-100.
[http://dx.doi.org/10.1007/s10529-008-9825-z] [PMID: 18773149]
[37]
Syed A, Ahmad A. Extracellular biosynthesis of platinum nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 2012; 97: 27-31.
[http://dx.doi.org/10.1016/j.colsurfb.2012.03.026] [PMID: 22580481]
[38]
Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ. Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials (Basel) 2015; 8(11): 7278-308.
[http://dx.doi.org/10.3390/ma8115377] [PMID: 28793638]
[39]
Seshadri S, Saranya K, Kowshik M. Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum. Biotechnol Prog 2011; 27(5): 1464-9.
[http://dx.doi.org/10.1002/btpr.651] [PMID: 21710608]
[40]
Apte M, Sambre D, Gaikawad S. Psychrotrophic yeast Yarrowia lipolytica NCYC 789 mediates the synthesis of antimicrobial silver nanoparticles via cell-associated melanin. AMB Express 2013; 3(1): 32.
[http://dx.doi.org/10.1186/2191-0855-3-32] [PMID: 23758863]
[41]
Shailesh R, Waghmare MN, Mulla SR, Kailas DS, Ecofriendly production of silver nanoparticles using Candida utilis and its mechanistic action against pathogenic microorganisms. 3 Biotech 2015; 5(1): 33-8..
[http://dx.doi.org/10.1007/s13205-014-0196-y]
[42]
Ortega FG, Fernández-Baldo MA, Fernández JG. Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast. Int J Nanomedicine 2015; 10: 2021-31.
[PMID: 25844035]
[43]
Korbekandi H, Mohseni S, Mardani Jouneghani R, Pourhossein M, Iravani S. Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae. Artif Cells Nanomed Biotechnol 2016; 44(1): 235-9.
[http://dx.doi.org/10.3109/21691401.2014.937870] [PMID: 25101816]
[44]
Zhang X Yuanyuan Q, Wenli S, et al. Biogenic synthesis of gold nanoparticles by yeast Magnusiomyces ingens LH-F1 for catalytic reduction of nitrophenols. Colloids Surf A Physicochem Eng Asp 2016; 497: 280-5.
[http://dx.doi.org/10.1016/j.colsurfa.2016.02.033]
[45]
Elahian F, Reiisi S, Shahidi A, Mirzaei SA. High-throughput bioaccumulation, biotransformation, and production of silver and selenium nanoparticles using genetically engineered Pichia pastoris. Nanomedicine (Lond) 2017; 13(3): 853-61.
[http://dx.doi.org/10.1016/j.nano.2016.10.009] [PMID: 27789260]
[46]
Mateus E, Nathalia M, Susana F, et al Yeast-derived biosynthesis of silver/silver chloride nanoparticles and their antiproliferative activity against bacteria. RSC Advances 2016; 6(12): 9893-904.
[http://dx.doi.org/10.1039/C5RA22727E]
[47]
Fernández JG. Production of silver nanoparticles using yeasts and evaluation of their antifungal activity against phytopathogenic fungi. Process Biochem 2016; 51(9): 1306-13.
[http://dx.doi.org/10.1016/j.procbio.2016.05.021]
[48]
Yang Z, Li Z, Lu X. Controllable Biosynthesis and Properties of Gold Nanoplates Using Yeast Extract. Nano-Micro Lett 2017; 9(1): 5.
[http://dx.doi.org/10.1007/s40820-016-0102-8] [PMID: 30460302]
[49]
Bonilla JJA. Green Synthesis of Silver Nanoparticles Using Maltose and Cysteine and Their Effect on Cell Wall Envelope Shapes and Microbial Growth of Candida spp. J Nanosci Nanotechnol 2017; 17(3): 1729-39.
[http://dx.doi.org/10.1166/jnn.2017.12822]
[50]
Moghaddam AB, Moniri M, Azizi S. Biosynthesis of ZnO Nanoparticles by a New Pichia kudriavzevii Yeast Strain and Evaluation of Their Antimicrobial and Antioxidant Activities. Molecules 2017; 22(6)E872
[http://dx.doi.org/10.3390/molecules22060872] [PMID: 28538674]
[51]
Salvadori MR. Dead biomass of Amazon yeast: A new insight into bioremediation and recovery of silver by intracellular synthesis of nanoparticles. J Environ Sci Health A Tox Hazard Subst Environ Eng 2017; 52(11): 1112-20..
[http://dx.doi.org/10.1080/10934529.2017.1340754]
[52]
Qu Y, You S, Zhang X. Biosynthesis of gold nanoparticles using cell-free extracts of Magnusiomyces ingens LH-F1 for nitrophenols reduction. Bioprocess Biosyst Eng 2018; 41(3): 359-67.
[http://dx.doi.org/10.1007/s00449-017-1869-9] [PMID: 29188359]
[53]
Cunha FA, Cunha MDCSO, da Frota SM. Biogenic synthesis of multifunctional silver nanoparticles from Rhodotorula glutinis and Rhodotorula mucilaginosa: antifungal, catalytic and cytotoxicity activities. World J Microbiol Biotechnol 2018; 34(9): 127.
[http://dx.doi.org/10.1007/s11274-018-2514-8] [PMID: 30084085]
[54]
Sriramulu M, Sumathi S. Biosynthesis of palladium nanoparticles using Saccharomyces cerevisiae extract and its photocatalytic degradation behaviour. Advances in Natural Sciences: Nanoscience and Nanotechnology 2018; 9(2)025018
[http://dx.doi.org/10.1088/2043-6254/aac506]
[55]
Jalal M, Ansari MA, Alzohairy MA. Biosynthesis of Silver Nanoparticles from Oropharyngeal Candida glabrata Isolates and Their Antimicrobial Activity against Clinical Strains of Bacteria and Fungi. Nanomaterials (Basel) 2018; 8(8)E586
[http://dx.doi.org/10.3390/nano8080586] [PMID: 30071582]
[56]
Ragupathi RKR, Arumugam D, Ramya K, et al Green synthesis of silver nanoparticles using marine macroalga Chaetomorpha linum. Applied Nanoscience (Switzerland) 2013; 3(3): 229-33.
[http://dx.doi.org/10.1007/s13204-012-0125-5]
[57]
Zinicovscaia I. Use of bacteria and microalgae in synthesis of nanoparticles. Chemistry Journal of Moldova 2012; 2: 32-8.
[58]
Fawcett D. A review of current research into the biogenic synthesis of metal and metal oxide nanoparticles via marine algae and seagrasses. J Nanosci 2017; 2017.
[http://dx.doi.org/10.1155/2017/8013850]
[59]
Chisti Y. Biodiesel from microalgae. Biotechnol Adv 2007; 25(3): 294-306.
[http://dx.doi.org/10.1016/j.biotechadv.2007.02.001] [PMID: 17350212]
[60]
Chisti Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol 2008; 26(3): 126-31.
[http://dx.doi.org/10.1016/j.tibtech.2007.12.002] [PMID: 18221809]
[61]
Chisti Y, Moo-Young M. Disruption of microbial cells for intracellular products. Enzyme Microb Technol 1986; 8(4): 194-204.
[http://dx.doi.org/10.1016/0141-0229(86)90087-6]
[62]
Molina G, Belarbi FG, Acién FA, Robles M, Yusuf C Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 2003; 20.(7-8): 491-15..
[63]
Gaurav S, Nakuleshwar DJ, Manoj K, Mohammad IA Biological synthesis of silver nanoparticles by cell-free extract of Spirulina platensis J Nanotechnol 2015, Article ID 132675.
[64]
Roychoudhury P, Pal R. Spirogyra submaxima a green alga for nanogold production. J Algal Biomass Utln 2014; 5(1): 15-9.
[65]
Mohseniazar M, Barin M, Zarredar H, Alizadeh S, Shanehbandi D. Potential of microalgae and lactobacilli in biosynthesis of silver nanoparticles. Bioimpacts 2011; 1(3): 149-52.
[PMID: 23678420]
[66]
Dahoumane SA, Djediat C, Yéprémian C. Recycling and adaptation of Klebsormidium flaccidum microalgae for the sustained production of gold nanoparticles. Biotechnol Bioeng 2012; 109(1): 284-8.
[http://dx.doi.org/10.1002/bit.23276] [PMID: 21809325]
[67]
Xie J, Lee JY, Wang DI, Ting YP. Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions. Small 2007; 3(4): 672-82.
[http://dx.doi.org/10.1002/smll.200600612] [PMID: 17299827]
[68]
Clémence S, Roberta B, Jérémie M, et al Nano-gold biosynthesis by silica-encapsulated micro-algae: A “living” bio-hybrid material. J Mater Chem 2010; 20(42): 9342-7.
[http://dx.doi.org/10.1039/c0jm01735c]
[69]
Shakibaie M, Forootanfar H, Mollazadeh-Moghaddam K. Green synthesis of gold nanoparticles by the marine microalga Tetraselmis suecica. Biotechnol Appl Biochem 2010; 57(2): 71-5.
[http://dx.doi.org/10.1042/BA20100196] [PMID: 20923412]
[70]
Oza G. Facile biosynthesis of gold nanoparticles exploiting optimum pH and temperature of fresh water algae Chlorella pyrenoidusa. Adv Appl Sci Res 2012; 3(3): 1405-12.
[71]
Satyajyoti S, Asad S, Sana M, et al Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis. Mater Lett 2012; 79: 116-8.
[http://dx.doi.org/10.1016/j.matlet.2012.04.009]
[72]
González-Ballesteros N, Prado-López S, Rodríguez-González JB, Lastra M, Rodríguez-Argüelles MC. Green synthesis of gold nanoparticles using brown algae Cystoseira baccata: Its activity in colon cancer cells. Colloids Surf B Biointerfaces 2017; 153: 190-8.
[http://dx.doi.org/10.1016/j.colsurfb.2017.02.020] [PMID: 28242372]
[73]
Patel V, Berthold D, Puranik P, Gantar M. Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol Rep (Amst) 2014; 5(1): 112-9.
[PMID: 28626689]
[74]
Aziz N, Faraz M, Pandey R. Facile Algae-Derived Route to Biogenic Silver Nanoparticles: Synthesis, Antibacterial, and Photocatalytic Properties. Langmuir 2015; 31(42): 11605-12.
[http://dx.doi.org/10.1021/acs.langmuir.5b03081] [PMID: 26447769]
[75]
Namvar F. Green synthesis and characterization of gold nanoparticles using the marine macroalgae Sargassum muticum. Res Chem Intermed 2015; 41(8): 5723-30.
[http://dx.doi.org/10.1007/s11164-014-1696-4]
[76]
Sharma A. Algae as crucial organisms in advancing nanotechnology: a systematic review. J Appl Phycol 2016; 28(3): 1759-74.
[http://dx.doi.org/10.1007/s10811-015-0715-1]
[77]
Prasad R, Pandey R, Barman I. Engineering tailored nanoparticles with microbes: quo vadis? Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016; 8(2): 316-30.
[http://dx.doi.org/10.1002/wnan.1363] [PMID: 26271947]
[78]
Lengke MF, Fleet ME, Southam G. Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex. Langmuir 2007; 23(5): 2694-9.
[http://dx.doi.org/10.1021/la0613124] [PMID: 17309217]
[79]
Aboelfetoh EF, El-Shenody RA, Ghobara MM. Eco-friendly synthesis of silver nanoparticles using green algae (Caulerpa serrulata): reaction optimization, catalytic and antibacterial activities. Environ Monit Assess 2017; 189(7): 349.
[http://dx.doi.org/10.1007/s10661-017-6033-0] [PMID: 28646435]
[80]
Parial D, Pal R. Green synthesis of gold nanoparticles using cyanobacteria and their characterization. Indian J Appl Res 2014; 4: 69-72.
[http://dx.doi.org/10.15373/2249555X/JAN2014/22]
[81]
Sharma B. Biosynthesis of gold nanoparticles using a freshwater green alga, Prasiola crispa. Mater Lett 2014; 116: 94-7.
[http://dx.doi.org/10.1016/j.matlet.2013.10.107]
[82]
Velgosova O. Green synthesis of Ag nanoparticles: Effect of algae life cycle on Ag nanoparticle production and long-term stability. Trans Nonferrous Met Soc China 2018; 28(5): 974-9.
[http://dx.doi.org/10.1016/S1003-6326(18)64732-6]
[83]
Arya A, Mishra V, Chundawat TS. Green synthesis of silver nanoparticles from green algae (Botryococcus braunii) and its catalytic behavior for the synthesis of benzimidazoles. Chemical Data Collections 2019; p. 20100190.
[http://dx.doi.org/10.1016/j.cdc.2019.100190]
[84]
Fatima R, Priya M, Indurthi L, Radhakrishnan V, Sudhakaran R. Biosynthesis of silver nanoparticles using red algae Portieria hornemannii and its antibacterial activity against fish pathogens. Microb Pathog 2020; 138103780
[http://dx.doi.org/10.1016/j.micpath.2019.103780] [PMID: 31622663]
[85]
Yılmaz Öztürk B, Yenice Gürsu B, Dağ İ. Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum. Process Biochem 2019.
[86]
Hamouda RA, Abd El-Mongy M, Eid KF. Comparative study between two red algae for biosynthesis silver nanoparticles capping by SDS: Insights of characterization and antibacterial activity. Microb Pathog 2019; 129: 224-32.
[http://dx.doi.org/10.1016/j.micpath.2019.02.016] [PMID: 30769027]
[87]
El-Rafie HM, El-Rafie MH, Zahran MK. Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae. Carbohydr Polym 2013; 96(2): 403-10.
[http://dx.doi.org/10.1016/j.carbpol.2013.03.071] [PMID: 23768580]
[88]
Colin JA. Gold nanoparticles synthesis assisted by marine algae extract: Biomolecules shells from a green chemistry approach. Chem Phys Lett 2018; 708: 210-5.
[http://dx.doi.org/10.1016/j.cplett.2018.08.022]
[89]
Srivastava SK, Constanti M. Room temperature biogenic synthesis of multiple nanoparticles (Ag, Pd, Fe, Rh, Ni, Ru, Pt, Co, and Li) by Pseudomonas aeruginosa SM1. J Nanopart Res 2012; 14(4): 831.
[http://dx.doi.org/10.1007/s11051-012-0831-7]
[90]
Hulkoti NI, Taranath TC. Biosynthesis of nanoparticles using microbes- a review. Colloids Surf B Biointerfaces 2014; 121: 474-83.
[http://dx.doi.org/10.1016/j.colsurfb.2014.05.027] [PMID: 25001188]
[91]
Ramanathan R, O’Mullane AP, Parikh RY, Smooker PM, Bhargava SK, Bansal V. Bacterial kinetics-controlled shape-directed biosynthesis of silver nanoplates using Morganella psychrotolerans. Langmuir 2011; 27(2): 714-9.
[http://dx.doi.org/10.1021/la1036162] [PMID: 21142094]
[92]
Yumei L. ., Rapid biosynthesis of silver nanoparticles based on flocculation and reduction of an exopolysaccharide from arthrobacter sp. B4: its antimicrobial activity and phytotoxicity. Journal of Nanomaterials 2017; 2017.
[http://dx.doi.org/10.1155/2017/9703614]
[93]
Malhotra A, Dolma K, Kaur N. Biosynthesis of gold and silver nanoparticles using a novel marine strain of Stenotrophomonas. Bioresour Technol 2013; 142: 727-31.
[http://dx.doi.org/10.1016/j.biortech.2013.05.109] [PMID: 23791020]
[94]
Mehta A, Sidhu C, Pinnaka AK, Roy Choudhury A. Extracellular polysaccharide production by a novel osmotolerant marine strain of Alteromonas macleodii and its application towards biomineralization of silver. PLoS One 2014; 9(6)e98798
[http://dx.doi.org/10.1371/journal.pone.0098798] [PMID: 24932690]
[95]
Raj R, Dalei K, Chakraborty J, Das S. Extracellular polymeric substances of a marine bacterium mediated synthesis of CdS nanoparticles for removal of cadmium from aqueous solution. J Colloid Interface Sci 2016; 462: 166-75.
[http://dx.doi.org/10.1016/j.jcis.2015.10.004] [PMID: 26454375]
[96]
Gahlawat G, Shikha S, Chaddha BS, Chaudhuri SR, Mayilraj S, Choudhury AR. Microbial glycolipoprotein-capped silver nanoparticles as emerging antibacterial agents against cholera. Microb Cell Fact 2016; 15(1): 25.
[http://dx.doi.org/10.1186/s12934-016-0422-x] [PMID: 26829922]
[97]
Beveridge TJ, Murray RG. Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 1980; 141(2): 876-87.
[http://dx.doi.org/10.1128/JB.141.2.876-887.1980] [PMID: 6767692]
[98]
Klaus-Joerger T, Joerger R, Olsson E, Granqvist C. Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 2001; 19(1): 15-20.
[http://dx.doi.org/10.1016/S0167-7799(00)01514-6] [PMID: 11146098]
[99]
Das VL. Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech 2014; 4(2): 121-6..
[http://dx.doi.org/10.1007/s13205-013-0130-8]
[100]
Saravanan M, Barik SK. MubarakAli D, Prakash P, Pugazhendhi A. Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microb Pathog 2018; 116: 221-6.
[http://dx.doi.org/10.1016/j.micpath.2018.01.038] [PMID: 29407231]
[101]
Sunkar S, Nachiyar CV. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pac J Trop Biomed 2012; 2(12): 953-9.
[http://dx.doi.org/10.1016/S2221-1691(13)60006-4] [PMID: 23593575]
[102]
Divya M. Biogenic synthesis and effect of silver nanoparticles (AgNPs) to combat catheter-related urinary tract infections. Biocatal Agric Biotechnol 2019.18101037
[http://dx.doi.org/10.1016/j.bcab.2019.101037]
[103]
Kulkarni RR, Shaiwale NS, Deobagkar DN, Deobagkar DD. Synthesis and extracellular accumulation of silver nanoparticles by employing radiation-resistant Deinococcus radiodurans, their characterization, and determination of bioactivity. Int J Nanomedicine 2015; 10: 963-74.
[PMID: 25673991]
[104]
Müller A. Effect of culture medium on the extracellular synthesis of silver nanoparticles using Klebsiella pneumoniae, Escherichia coli and Pseudomonas jessinii. Biocatal Agric Biotechnol 2016; 6: 107-15.
[http://dx.doi.org/10.1016/j.bcab.2016.02.012]
[105]
Kaur H. Marine microbe as nano-factories for copper biomineralization. Biotechnol Bioprocess Eng; BBE 2015; 20(1): 51-7.
[http://dx.doi.org/10.1007/s12257-014-0432-7]
[106]
Ahmed E. Synthesis of ultra-small platinum, palladium and gold nanoparticles by Shewanella loihica PV-4 electrochemically active biofilms and their enhanced catalytic activities. J Saudi Chem Soc 2018; 22(8): 919-29.
[http://dx.doi.org/10.1016/j.jscs.2018.02.002]
[107]
Zonaro E, Piacenza E, Presentato A. Ochrobactrum sp. MPV1 from a dump of roasted pyrites can be exploited as bacterial catalyst for the biogenesis of selenium and tellurium nanoparticles. Microb Cell Fact 2017; 16(1): 215.
[http://dx.doi.org/10.1186/s12934-017-0826-2] [PMID: 29183326]
[108]
Srinath B, Namratha K, Byrappa K. Eco-friendly synthesis of gold nanoparticles by Bacillus subtilis and their environmental applications. Adv Sci Lett 2018; 24(8): 5942-6.
[http://dx.doi.org/10.1166/asl.2018.12224]
[109]
Manimaran M, Kannabiran K. Actinomycetes-mediated biogenic synthesis of metal and metal oxide nanoparticles: progress and challenges. Lett Appl Microbiol 2017; 64(6): 401-8.
[http://dx.doi.org/10.1111/lam.12730] [PMID: 28267874]
[110]
Otari SV. Green biosynthesis of silver nanoparticles from an actinobacteria Rhodococcus sp. Mater Lett 2012; 72: 92-4.
[http://dx.doi.org/10.1016/j.matlet.2011.12.109]
[111]
Otari SV, Patil RM, Nadaf NH, Ghosh SJ, Pawar SH. Green synthesis of silver nanoparticles by microorganism using organic pollutant: its antimicrobial and catalytic application. Environ Sci Pollut Res Int 2014; 21(2): 1503-13.
[http://dx.doi.org/10.1007/s11356-013-1764-0] [PMID: 23925656]
[112]
Karthik L, Kumar G, Kirthi AV, Rahuman AA, Bhaskara Rao KV. Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosyst Eng 2014; 37(2): 261-7.
[http://dx.doi.org/10.1007/s00449-013-0994-3] [PMID: 23771163]
[113]
Buszewski B. nska, M. Szultka-Mlynska, P. Golinska, M. Wypij, D. Laskowski and H. Dahm. J Microbiol Immunol Infect 2016; 20: 1-10.
[114]
Abd-Elnaby HM. Antibacterial and anticancer activity of extracellular synthesized silver nanoparticles from marine Streptomyces rochei MHM13. Egyptian Journal of Aquatic Research 2016; 42(3): 301-12.
[http://dx.doi.org/10.1016/j.ejar.2016.05.004]
[115]
Silva-Vinhote N. Extracellular biogenic synthesis of silver nanoparticles by Actinomycetes from amazonic biome and its antimicrobial efficiency. Afr J Biotechnol 2017; 16(43): 2072-82.
[http://dx.doi.org/10.5897/AJB2017.16148]
[116]
Wypij M, Czarnecka J, Świecimska M, Dahm H, Rai M, Golinska P. Synthesis, characterization and evaluation of antimicrobial and cytotoxic activities of biogenic silver nanoparticles synthesized from Streptomyces xinghaiensis OF1 strain. World J Microbiol Biotechnol 2018; 34(2): 23.
[http://dx.doi.org/10.1007/s11274-017-2406-3] [PMID: 29305718]
[117]
Ranjitha VR, Rai VR. Actinomycetes mediated synthesis of gold nanoparticles from the culture supernatant of Streptomyces griseoruber with special reference to catalytic activity. 3 Biotech 2017; 7(5): 299..
[http://dx.doi.org/10.1007/s13205-017-0930-3]
[118]
Hassan SE-D, Fouda A, Radwan AA. , et al Endophytic actinomycetes Streptomyces spp mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. J Biol Inorg Chem 2019; 24(3): 377-93.
[http://dx.doi.org/10.1007/s00775-019-01654-5] [PMID: 30915551]
[119]
Rajput S, Werezuk R, Lange RM, McDermott MT. Fungal Isolate Optimized for Biogenesis of Silver Nanoparticles with Enhanced Colloidal Stability. Langmuir 2016; 32(34): 8688-97.
[http://dx.doi.org/10.1021/acs.langmuir.6b01813] [PMID: 27466012]
[120]
Suryavanshi P. Colletotrichum sp.- mediated synthesis of sulphur and aluminium oxide nanoparticles and its in vitro activity against selected food-borne pathogens. Lebensm Wiss Technol 2017; 81: 188-94.
[http://dx.doi.org/10.1016/j.lwt.2017.03.038]
[121]
Supandi Y, Merdekawati F. In Silico Study of Pyrazolylaminoquinazoline Toxicity by Lazar, Protox, and Admet Predictor. J Appl Pharm Sci 2018; 8(09): 119-29.
[http://dx.doi.org/10.7324/JAPS.2018.8918]
[122]
Gupta I, Duran N, Rai M. Nano-silver toxicity: emerging concerns and consequences in human healthNano-Antimicrobials . Springer 2012; pp. 525-48..
[http://dx.doi.org/10.1007/978-3-642-24428-5_18]
[123]
Orłowski P. Toxicity of silver nanoparticles in monocytes and keratinocytes: potential to induce inflammatory reactions. Cent Eur J Immunol 2012; 37: 123-30.
[124]
van der Veer WM, Bloemen MC, Ulrich MM. , et al Potential cellular and molecular causes of hypertrophic scar formation. Burns 2009; 35(1): 15-29.
[http://dx.doi.org/10.1016/j.burns.2008.06.020] [PMID: 18952381]
[125]
Babadi VY. Evaluation of iron oxide nanoparticles effects on tissue and enzymes of liver in rats. J Pharm Biomed Sci 2012; 23(23): 1-4.
[126]
Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 2005; 19(7): 975-83.
[http://dx.doi.org/10.1016/j.tiv.2005.06.034] [PMID: 16125895]
[127]
Card JW, Zeldin DC, Bonner JC, Nestmann ER. Pulmonary applications and toxicity of engineered nanoparticles. Am J Physiol Lung Cell Mol Physiol 2008; 295(3): L400-11.
[http://dx.doi.org/10.1152/ajplung.00041.2008] [PMID: 18641236]
[128]
AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2009; 3(2): 279-90.
[http://dx.doi.org/10.1021/nn800596w] [PMID: 19236062]
[129]
Singh RP, Ramarao P. Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol Lett 2012; 213(2): 249-59.
[http://dx.doi.org/10.1016/j.toxlet.2012.07.009] [PMID: 22820426]
[130]
Rai M. , Cyto-, geno-, and ecotoxicity of copper nanoparticles, in Nanotoxicology. Springer. 2014; pp. 325-45.
[131]
Mittal S, Pandey AK. Cerium oxide nanoparticles induced toxicity in human lung cells: role of ROS mediated DNA damage and apoptosis. BioMed research international 2014; 2014
[http://dx.doi.org/10.1155/2014/891934]
[132]
Shukla RK, Kumar A, Gurbani D, Pandey AK, Singh S, Dhawan A. TiO(2) nanoparticles induce oxidative DNA damage and apoptosis in human liver cells. Nanotoxicology 2013; 7(1): 48-60.
[http://dx.doi.org/10.3109/17435390.2011.629747] [PMID: 22047016]
[133]
Dos Santos CA, Seckler MM, Ingle AP. , et al Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharm Sci 2014; 103(7): 1931-44.
[http://dx.doi.org/10.1002/jps.24001] [PMID: 24824033]
[134]
Turner NA, Xia F, Azhar G, Zhang X, Liu L, Wei JY. Oxidative stress induces DNA fragmentation and caspase activation via the c-Jun NH2-terminal kinase pathway in H9c2 cardiac muscle cells. J Mol Cell Cardiol 1998; 30(9): 1789-801.
[http://dx.doi.org/10.1006/jmcc.1998.0743] [PMID: 9769235]
[135]
Priyaragini S, Sathishkumar S, Bhaskararao K. Biosynthesis of silver nanoparticles using actinobacteria and evaluating its antimicrobial and cytotoxicity activity. Int J Pharm Pharm Sci 2013; 5(2): 709-12.
[136]
Kim J-H, Lee Y, Kim EJ. , et al. Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening. Environ Sci Technol 2014; 48(6): 3477-85.
[http://dx.doi.org/10.1021/es4043462] [PMID: 24579868]
[137]
Nel A. Toxic potential of materials at the nanolevel. science 2006; 311(5761): 622-7.
[http://dx.doi.org/ 10.1126/science.1114397]
[138]
Oberdörster G. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 2010; 267(1): 89-105.
[http://dx.doi.org/10.1111/j.1365-2796.2009.02187.x] [PMID: 20059646]
[139]
Duffin R, Tran L, Brown D, Stone V, Donaldson K. Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhal Toxicol 2007; 19(10): 849-56.
[http://dx.doi.org/10.1080/08958370701479323] [PMID: 17687716]
[140]
Rheder DT, Guilger M, Bilesky-José N. , et al. Synthesis of biogenic silver nanoparticles using Althaea officinalis as reducing agent: evaluation of toxicity and ecotoxicity. Sci Rep 2018; 8(1): 12397.
[http://dx.doi.org/10.1038/s41598-018-30317-9] [PMID: 30120279]
[141]
Khan I, Bahuguna A, Krishnan M. , et al. The effect of biogenic manufactured silver nanoparticles on human endothelial cells and zebrafish model. Sci Total Environ 2019; 679: 365-77.
[http://dx.doi.org/10.1016/j.scitotenv.2019.05.045] [PMID: 31085416]
[142]
Huang H, Zhou M, Ruan L. , et al, AMPK mediates the neurotoxicity of iron oxide nanoparticles retained in mitochondria or lysosomes. Metallomics 2019; 11(7): 1200-6.
[http://dx.doi.org/10.1039/C9MT00103D] [PMID: 31241124]
[143]
Deplanche K, Caldelari I, Mikheenko IP, Sargent F, Macaskie LE. Involvement of hydrogenases in the formation of highly catalytic Pd(0) nanoparticles by bioreduction of Pd(II) using Escherichia coli mutant strains. Microbiology 2010; 156(9): 2630-40.
[http://dx.doi.org/10.1099/mic.0.036681-0]
[144]
Pantidos N, Horsfall LE. Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nano Nanotech 2014; 5(5): 1.
[145]
Yong P, Rowson NA, Farr JPG, Harris IR, Macaskie LE. Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotech and Bioeng 2002; 80(4): 369-79.
[http://dx.doi.org/10.1002/bit.10369]
[146]
Ali J, Ali N, Jamil SUU, Waseem H, K, Pan G. Insight into eco-friendly fabrication of silver nanoparticles by Pseudomonas aeruginosa and its potential impacts. J Environ Chem Eng 2017; 5(4): 3266-72.
[http://dx.doi.org/10.1016/j.jece.2017.06.038]
[147]
Ali J, Hameed A, Ahmed S, Ali MI, Zainab S, Ali N. Role of catalytic protein and stabilising agents in the transformation of Ag ions to nanoparticles by Pseudomonas aeruginosa. IET Nanobiotechnol 2016; 10(5): 295-300.
[http://dx.doi.org/10.1049/iet-nbt.2015.0093]
[148]
Bharde A, Rautaray D, Bansal V. , Ahmad A, Sarkar I, Yusuf SM, Sastry M. Extracellular biosynthesis of magnetite using fungi. Small 2006; 2(1): 135-41.
[http://dx.doi.org/10.1002/smll.200500180]
[149]
Castro, L., Blázquez, M. L., Muñoz, J. A., González, F., & Ballester, A. (2013). Biological synthesis of metallic nanoparticles using algae. IET Nanobiotechnol, 7(3), 109-116. .
[http://dx.doi.org/10.1049/iet-nbt.2012.0041]
[150]
Correa-Llantén, D. N., Muñoz-Ibacache, S. A., Castro, M. E., Muñoz PA, Blamey, JM. Gold nanoparticles synthesized by Geobacillus sp. strain ID17 a thermophilic bacterium isolated from Deception Island, Antarctica. Microbial Cell, 2013; 12(1): 75..
[http://dx.doi.org/10.1186/1475-2859-12-75]
[151]
Das SK, Dickinson C, Lafir F, Brougham DF, Marsili E. Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chemistry 2012; 14(5): 1322-34.
[http://dx.doi.org/10.1039/c2gc16676c]
[152]
Dhanasekar N, Rahul GR, Narayanan KB, Raman G, Sakthivel N. Green chemistry approach for the synthesis of gold nanoparticles using the fungus Alternaria sp. J Microbiol Biotechnol 2015; 25(7): 1129-35.
[http://dx.doi.org/10.4014/jmb.1410.10036]
[153]
Dhas TS, Kumar VG, Karthick V, Govindaraju K, Shankara . T. (2014). Biosynthesis of gold nanoparticles using Sargassum swartzii and its cytotoxicity effect on HeLa cells. Spectrochimica Acta - Part A: Biomol Spec 2014; 133: 102-6.
[http://dx.doi.org/10.1016/j.saa.2014.05.042]
[154]
Du L, Jiang H, Liu X, Wang E. Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochem Communcations, 2007; 9(5): 1165-70.
[http://dx.doi.org/10.1016/j.elecom.2007.01.007]
[155]
Govindaraju K, Basha SK, Kumar VG, Singaravelu G. Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J Mat Sci 43(15): 5115-22.
[http://dx.doi.org/10.1007/s10853-008-2745-4]
[156]
Huang J, Lin L, Sun D, Chen H, Yang D, Li Q. Bio-inspired synthesis of metal nanomaterials and applications. Chem Soc Rev 2015; 44(17): 6330-74.
[http://dx.doi.org/10.1039/c5cs00133A]
[157]
Hunter WJ, Manter DK. Bio-reduction of selenite to elemental red selenium by Tetrathiobacter kashmirensis. Curr Microbiol 2008; 57(1): 83-8.
[http://dx.doi.org/10.1007/s00284-008-9160-6]
[158]
Kalishwaralal K, Deepak V, Ram K p S, Gurunathan S. Biological synthesis of gold nanocubes from Bacillus licheniformis. Bioresour Technol 2009; 100(21): 5356-8.
[http://dx.doi.org/10.1016/j.biortech.2009.05.051]
[159]
Kalishwaralal K, Deepak V, Kumar P S, . Kottaisamy M, BarathManiKanth, S., Kartikeyan, B., & Gurunathan, S. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Coll Surfaces B Biointerf 2010; 77(2): 257-62.
[http://dx.doi.org/10.1016/j.colsurfb.2010.02.007]
[160]
Kikuchi F, Kato Y, Furihata K. , Kogure T, Imura Y, Yoshimura E, Suzuki M. Formation of gold nanoparticles by glycolipids of Lactobacillus casei. Sci Rep 2016; 6(1): 34626.
[http://dx.doi.org/10.1038/srep34626]
[161]
Kumar CG, Poornachandra Y, Chandrasekhar C. Green synthesis of bacterial mediated anti-proliferative gold nanoparticles: inducing mitotic arrest (G2/M phase) and apoptosis (intrinsic pathway). Nanoscale 2015; 7(44): 18738-50.
[http://dx.doi.org/10.1039/c5nr04577K]
[162]
Kumar SA, Peter YA, Nadeau JL. Facile biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin. Nanotechnology 2008; 19(49)495101
[http://dx.doi.org/10.1088/0957-4484/19/49/495101]
[163]
Law N, Ansari S, Livens FR, Renshaw JC, Lloyd JR. Formation of nanoscale elemental silver particles via enzymatic reduction by Geobacter sulfurreducens. Appl Envir Microbiol 2008; 74(22): 7090-3.
[164]
Luo P, Liu Y, Xia Y, Xu H, Xie G. Aptamer biosensor for sensitive detection of toxin A of Clostridium difficile using gold nanoparticles synthesized by Bacillus stearothermophilus. Biosens Bioelec 2014; 54: 217-21.
[http://dx.doi.org/10.1016/j.bios.2013.11.013]
[165]
Mabbett AN, Yong P, Farr JPG, Macaskie LE. Reduction of Cr(VI) by “palladized” biomass of Desulfovibrio desulfuricans ATCC 29577. Biotechnol Bioeng 2004; 87(1): 104-9.
[http://dx.doi.org/10.1002/bit.20105]
[166]
Malarkodi C, Rajeshkumar S, Vanaj M, Paulkumar K, Gnanajobitha G, Annadurai G. Eco-friendly synthesis and characterization of gold nanoparticles using Klebsiella pneumoniae. J Nanostruct Chem 2013; 3(1): 2013
[167]
Manjunath HM, Joshi G, Raju NG. Biofabrication of gold nanoparticles using marine endophytic fungus - Penicillium citrinum. IET Nanobiotechnol 2017; 11(1): 40-4.
[http://dx.doi.org/10.1049/iet-nbt.2016.0065]
[168]
Markus J, Mathiyalagan R, Kim . , et al. Intracellular synthesis of gold nanoparticles with antioxidant activity by probiotic Lactobacillus kimchicus DCY51T isolated from Korean kimchi. Enzyme Microb Technol 2016; 95: 85-93.
[http://dx.doi.org/10.1016/j.enzmictec.2016.08.018]
[169]
Mishra A, Tripathy SK, Wahab R. , Jeong, S. H., Hwang, I., Yang YB.Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C 2 C 12 cells. Appl Microbiol Biotechnol 2011; 92(3): 617-30.
[http://dx.doi.org/10.1007/s00253-011-3556-0]
[170]
Mishra A, Tripathy SK, Yun SI. Fungus mediated synthesis of gold nanoparticles and their conjugation with genomic DNA isolated from Escherichia coli and Staphylococcus aureus. Process Biochemistry 2012; 47(5): 701-11.
[http://dx.doi.org/10.1016/j.procbio.2012.01.017]
[171]
Mohammed Fayaz A, Girilal M, Rahman M, Venkatesan R, Kalaichelvan PT. Biosynthesis of silver and gold nanoparticles using thermophilic bacterium Geobacillus stearothermophilus. Process Biochem 2008; 46(10): 1958-62.
[http://dx.doi.org/10.1016/j.procbio.2011.07.003]
[172]
Nangia Y, Wangoo N, Goyal N, Shekhawat G, Suri CR. A novel bacterial isolate Stenotrophomonas maltophilia as living factory for synthesis of gold nanoparticles. Microbial Cell Fact 2009; 8(1): 39.
[http://dx.doi.org/10.1186/1475-2859-8-39]
[173]
Narayanan KB, Sakthivel N. Mycocrystallization of gold ions by the fungus Cylindrocladium floridanum. World J Microbiol Biotech 2013; 29(11): 2207-11.
[http://dx.doi.org/10.1007/s11274-013-1379-0]
[174]
Oves M, Khan MS, Zaidi A. , Ahmed AS, Ahmed F, Azam A. Antibacterial and cytotoxic efficacy of extracellular silver nanoparticles biofabricated from chromium reducing novel OS4 strain of Stenotrophomonas maltophilia. PLOS ONE 2013; 8(3)e59140
[http://dx.doi.org/10.1371/journal.pone.0059140]
[175]
Parab HJ, Jung C, Lee JH, Park HG. A gold nanorod-based optical DNA biosensor for the diagnosis of pathogens. Biosensors and Bioelectron 2010; 26(2): 667-73.
[http://dx.doi.org/10.1016/j.bios.2010.06.067]
[176]
Park K, Hsiao MS, Yi YJ. , Izor S, Koerner H, Jawaid A, Vaia R.A. Highly Concentrated Seed-Mediated Synthesis of Monodispersed Gold Nanorods. ACS Appl Mat Inter 2017; 9(31): 26363-71.
[http://dx.doi.org/10.1021/acsami.7b08003]
[177]
Philip D. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochimica Acta - Part A: Mol Biomol Spect 2009; 73(2): 374-81.
[http://dx.doi.org/10.1016/j.saa.2009.02.037]
[178]
Priyadarshini E, Pradhan N. Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: A review. Sens Actuators B Chem 2017; 238: 888-902.
[http://dx.doi.org/10.1016/j.snb.2016.06.081]
[179]
Quester K, Borja A, Nestor ARV, Lopez MAC, Longoria E.C. SERS properties of different sized and shaped gold nanoparticles biosynthesized under different environmental conditions by Neurospora crassa extract. PLOS ONE 2013; 8 : e77486.
[180]
Rajathi F A, Parthiban C, Kumar V G, Anantharaman P. Green synthesis of silver nanoparticles from deoiled brown algal extract via Box-Behnken based design and their antimicrobial and sensing properties De Gruyter 2012; 99: 166-173..
[181]
Sarkar J, Ray S, Chattopadhyay D, Laskar A, Acharya K. Mycogenesis of gold nanoparticles using a phytopathogen Alternaria alternata. Biopro Biosyst Eng 2012; 35(4): 637-43.
[http://dx.doi.org/10.1007/s00449-011-0646-4]
[182]
Satyanarayana RA, Chen CY, Chen CC, Jean JS, Chen HR, Wang J.C Biological synthesis of gold and silver nanoparticles mediated by the bacteria Bacillus subtilis. J Nano Nanotech 2010; 10(10): 6567-74.
[http://dx.doi.org/10.1166/jnn.2010.2519]
[183]
Sayed ET, Barakat NAM, Abdelkareem MA, Fouad H, Nakagawa N. Yeast extract as an effective and safe mediator for the baker’s-yeast-based microbial fuel cell. Industrial and Engineering Chemistry Research, 2015; 54(12): 3116-22.
[http://dx.doi.org/10.1021/ie5042325]
[184]
Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach. Process Biochem 2007; 42(5): 919-23.
[http://dx.doi.org/10.1016/j.procbio.2007.02.005]
[185]
Sheikhloo Z, Salouti M. Intracellular biosynthesis of gold nanoparticles by the fungus Penicillium chrysogenum. Int J Nanosci Nanotechnol 2011; 7: 102-5.
[186]
Sheikhloo Z, Salouti M, Katiraee F. Biological Synthesis of Gold Nanoparticles by Fungus Epicoccum nigrum. J Cluster Sci 2011; 22(4): 661-5.
[http://dx.doi.org/10.1007/s10876-011-0412-4]
[187]
Srivastava SK, Yamada R, Ogino C, Kondo A. Biogenic synthesis and characterization of gold nanoparticles by Escherichia coli K12 and its heterogeneous catalysis in degradation of 4-nitrophenol. Nanoscale Res Lett 2013; 8
[188]
Suresh AK, Pelletier DA, Wang W. Broich ML, Moon JW, Gu B, Doktycz, M.J. Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis. Acta Biomaterialia 2011; 7(5): 2148-52.
[http://dx.doi.org/10.1016/j.actbio.2011.01.023]
[189]
Vala AK. Exploration on green synthesis of gold nanoparticles by a marine-derived fungus Aspergillus sydowii. Environ Prog Sustainable Energy 2015; 34(1): 194-7.
[190]
Verma VC, Singh SK, Solanki R, Prakash S. Biofabrication of anisotropic gold nanotriangles using extract of endophytic Aspergillus clavatus as a dual functional reductant and stabilizer. Nanoscale Res Lett 2011; 6: 16.
[191]
Wadhwani SA, Shedbalkar UU, Singh R, Karve MS, Chopade BA. Novel polyhedral gold nanoparticles: green synthesis, optimization and characterization by environmental isolate of Acinetobacter sp. SW30. World J Microbiol Biotechnol 2014; 30(10): 2723-31.
[http://dx.doi.org/10.1007/s11274-014-1696-y]
[192]
Yamal G, Sharmila P, Rao K S, & , Pardha-Saradhi P. (2013). Yeast Extract Mannitol medium and its constituents promote synthesis of Au nanoparticles. Process Biochem 2013; 48(3): 532-8.
[http://dx.doi.org/10.1016/j.procbio.2013.02.011]

© 2024 Bentham Science Publishers | Privacy Policy