Green Solvent: Green Shadow on Chemical Synthesis

Author(s): Tejaswini Sahoo, Jagannath Panda, Jnanaranjan Sahu, Dayananda Sarangi, Sunil K. Sahoo, Braja. B. Nanda, Rojalin Sahu*

Journal Name: Current Organic Synthesis

Volume 17 , Issue 6 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


The natural beauty and purity of our planet has been contaminated deeply due to human selfish activities such as pollution, improper waste management, and various industrial and commercial discharges of untreated toxic by-products into the lap of nature. The collective impact of these hazardous suspensions into the natural habitat is very deadly. Challenges due to human activity on the environment have become ubiquitous. The chemical industry has a major role in human evolution and, predictably, opened gates of increased risk of pollution if the production is not done sustainably. In these circumstances, the notion of Green Chemistry has been identified as the efficient medium of synthesis of chemicals and procedures to eradicate the toxic production of harmful substances. Principles of Green Chemistry guide the scientist in their hunt towards chemical synthesis which requires the use of solvents. These solvents contaminate our air, water, land and surrounding due to its toxic properties. Even though sufficient precautions are taken for proper disposal of these solvents but it is difficult to be recycled. In order to preserve our future and coming generation from the adverse impacts associated with solvents it is very important to find alternative of this which will be easy to use, reusable and also eco-friendly. Solvents are used daily in various industrial processes as reaction medium, as diluters, and in separation procedures. As reaction medium, the role of solvent is to bring catalysts and reactants together and to release heat thus affecting activity and selectivity. The proper selection of the solvent considering its biological, physical and chemical properties is very necessary for product separation, environmental, safety handling and economic factors. Green solvents are the boon in this context. They are not only environmentally benign but also cost effective. The biggest challenge faced by the chemists is adaptation of methods and selection of solvents during chemical synthesis which will give negligible waste product and will remain human and nature friendly. During designing compounds for a particular reaction it is difficult to give assurance regarding the toxicity and biodegradability of the method. Chemists are still far away from predicting the various chemical and biological effects of the compounds on the back of the envelope. To achieve that point is formidable task but it will definitely act as inspiration for the coming generation of chemists. The green solvents are undoubtedly a far better approach to eliminate the negative impacts and aftermath of any chemical synthesis on the environment. Our study in this review covers an overview of green solvents, their role in safer chemical synthesis with reference to some of the important green solvents and their detail summarization.

Keywords: Green solvents, chemical synthesis, environmentally benign, cost effective, toxicity, eco-friendly.

Capello, C.; Fischer, U.; Hungerbühler, K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem., 2007, 9(9), 927-934.
Curzons, A.D.; David, J.C. Constable, David N. Mortimer, and Virginia L. Cunningham. So you think your process is green, how do you know?-Using principles of sustainability to determine what is green-A corporate perspective. Green Chem., 2001, 3(1), 1-6.
Jessop, P.G. Searching for green solvents. Green Chem., 2011, 13(6), 1391-1398.
Sheldon, R.A. Green solvents for sustainable organic synthesis: State of the art. Green Chem., 2005, 7(5), 267-278.
Anastas, P.T.; Kirchhoff, M.M. Origins, current status, and future challenges of green chemistry. Acc. Chem. Res., 2002, 35(9), 686-694.
[] [PMID: 12234198]
Bubalo, C.; Marina, S.V.; Redovniković, I.R.; Jokić, S. Green solvents for green technologies. J. Chem. Technol. Biotechnol., 2015, 90(9), 1631-1639.
Kalf, G.F.; Post, G.B.; Snyder, R. Solvent toxicology: Recent advances in the toxicology of benzene, the glycol ethers, and carbon tetrachloride. Annu. Rev. Pharmacol. Toxicol., 1987, 27(1), 399-427.
[] [PMID: 3555320]
Beckman, E.J. Supercritical and near-critical CO2 in green chemical synthesis and processing. J. Supercrit. Fluids, 2004, 28(2-3), 121-191.
Ahn, Y.; Bae, S.J.; Kim, M.; Cho, S.K.; Baik, S.; Lee, J.I.; Cha, J.E. Review of supercritical CO2 power cycle technology and current status of research and development. Nucl. Eng. Technol., 2015, 47(6), 647-661.
Cooper, A.I. Recent developments in materials synthesis and processing using supercritical CO2. Adv. Mater., 2001, 13(14), 1111-1114.
Beckman, E.J. Oxidation reactions in CO2: Academic exercise or future green processes? Environ. Sci. Technol., 2003, 37(23), 5289-5296.
[] [PMID: 14700312]
Srinivas, P.; Mukhopadhyay, M. Oxidation of cyclohexane in supercritical carbon dioxide medium. Ind. Eng. Chem. Res., 1994, 33(12), 3118-3124.
Duan, Z-Q.; Hu, F. Highly efficient synthesis of phosphatidylserine in the eco-friendly solvent γ-valerolactone. Green Chem., 2012, 14(6), 1581-1583.
Zhang, T.; Li, W.; Xu, Z.; Liu, Q.; Ma, Q.; Jameel, H.; Chang, H.M.; Ma, L. Catalytic conversion of xylose and corn stalk into furfural over carbon solid acid catalyst in γ-valerolactone. Bioresour. Technol., 2016, 209, 108-114.
[] [PMID: 26967333]
Kumar, A.; Sharma, A.; de la Torre, B.G.; Albericio, F. scope and limitations of γ-valerolactone (gvl) as a green solvent to be used with base for fmoc removal in solid phase peptide synthesis. Molecules, 2019, 24(21), 4004.
[] [PMID: 31694279]
Gu, Y.; Jérôme, F. Glycerol as a sustainable solvent for green chemistry. Green Chem., 2010, 12(7), 1127-1138.
Abbott, A.P.; Harris, R.C.; Ryder, K.S.; D’Agostino, C.; Gladden, L.F.; Mantle, M.D. Glycerol eutectics as sustainable solvent systems. Green Chem., 2011, 13(1), 82-90.
Díaz-Álvarez, A.E.; Francos, J.; Lastra-Barreira, B.; Crochet, P.; Cadierno, V. Glycerol and derived solvents: New sustainable reaction media for organic synthesis. Chem. Commun. (Camb.), 2011, 47(22), 6208-6227.
[] [PMID: 21451852]
Delample, M.; Villandier, N.; Douliez, J-P.; Camy, S.; Condoret, J-S.; Pouilloux, Y.; Barrault, J.; Jérôme, F. Glycerol as a cheap, safe and sustainable solvent for the catalytic and regioselective β, β-diarylation of acrylates over palladium nanoparticles. Green Chem., 2010, 12(5), 804-808.
Leoneti, A.B.; Aragão-Leoneti, V.; De Oliveira, S.V.W.B. Glycerol as a by-product of biodiesel production in Brazil: Alternatives for the use of unrefined glycerol. Renew. Energy, 2012, 45, 138-145.
Bakhrou, N.; Lamaty, F.; Martinez, J.; Colacino, E. Ring-closing metathesis in glycerol under microwave activation. Tetrahedron Lett., 2010, 51(30), 3935-3937.
Bahrani, A.; Karimi-Jaberi, Z. A green one-pot synthesis of α-amino nitrile derivatives via Strecker reaction in deep eutectic solvents. Monatshefte für Chemie-Chemical Monthly, 2019, 150(2), 303-307.
He, H-X.; Du, D-M. Organocatalytic enantioselective strecker reaction of imines containing a thiazole moiety by using a cinchona‐based squaramide catalyst. Eur. J. Org. Chem., 2014, 2014(28), 6190-6199.
Florindo, C.; Branco, L.C.; Marrucho, I.M. Quest for Green-Solvent Design: From Hydrophilic to Hydrophobic (Deep). Eutectic Solvents. Chem.Sus.Chem., 2019, 12(8), 1549-1559.
[] [PMID: 30811105]
Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. (Camb.), 2003, 1(1), 70-71.
[] [PMID: 12610970]
Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. J. Am. Chem. Soc., 2004, 126(29), 9142-9147.
[] [PMID: 15264850]
Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep eutectic solvents (DESs) and their applications. Chem. Rev., 2014, 114(21), 11060-11082.
[] [PMID: 25300631]
Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jérôme, F. Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev., 2012, 41(21), 7108-7146.
[] [PMID: 22806597]
Tang, B.; Row, K.H. Recent developments in deep eutectic solvents in chemical sciences. Monatshefte für Chemie-Chemical Monthly, 2013, 144(10), 1427-1454.
Mamajanov, I.; Engelhart, A.E.; Bean, H.D.; Hud, N.V. DNA and RNA in anhydrous media: duplex, triplex, and G-quadruplex secondary structures in a deep eutectic solvent. Angew. Chem. Int. Ed. Engl., 2010, 49(36), 6310-6314.
[] [PMID: 20623813]
Maugeri, Z.; Domínguez de María, P. Novel choline-chloride-based deep-eutectic-solvents with renewable hydrogen bond donors: Levulinic acid and sugar-based polyols. RSC Advances, 2012, 2(2), 421-425.
Dai, Y.; van Spronsen, J.; Witkamp, G-J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta, 2013, 766, 61-68.
[] [PMID: 23427801]
García, G.; Aparicio, S.; Ullah, R.; Atilhan, M. Deep eutectic solvents: Physicochemical properties and gas separation applications. Energy Fuels, 2015, 29, 2616-2644.
Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.L.; Ana Rita, C.D. Natural deep eutectic solvents–solvents for the 21st century. ACS Sustain. Chem.& Eng., 2014, 2(5), 1063-1071.
Abbott, A.P.; Capper, G.; Davies, D.L.; McKenzie, K.J.; Obi, S.U. Solubility of metal oxides in deep eutectic solvents based on choline chloride. J. Chem. Eng. Data, 2006, 51(4), 1280-1282.
Zhang, Z-H.; Zhang, X-N.; Mo, L-P.; Li, Y-X.; Ma, F-P. Catalyst-free synthesis of quinazoline derivatives using low melting sugar–urea–salt mixture as a solvent. Green Chem., 2012, 14(5), 1502-1506.
Francisco, M.; van den Bruinhorst, A.; Kroon, M.C. New natural and renewable low transition temperature mixtures (LTTMs): Screening as solvents for lignocellulosic biomass processing. Green Chem., 2012, 14(8), 2153-2157.
del Monte, F.; Carriazo, D.; Serrano, M.C.; Gutiérrez, M.C.; Ferrer, M.L. Deep eutectic solvents in polymerizations: A greener alternative to conventional syntheses. ChemSusChem, 2014, 7(4), 999-1009.
[] [PMID: 24376090]
Wagle, D.V.; Zhao, H.; Baker, G.A. Deep eutectic solvents: Sustainable media for nanoscale and functional materials. Acc. Chem. Res., 2014, 47(8), 2299-2308.
[] [PMID: 24892971]
Kalinski, C.; Lemoine, H.; Schmidt, J.; Burdack, C.; Kolb, J.; Umkehrer, M.; Ross, G. Multicomponent reactions as a powerful tool for generic drug synthesis. Synthesis, 2008, 2008(24), 4007-4011.
Touré, B.B.; Hall, D.G. Natural product synthesis using multicomponent reaction strategies. Chem. Rev., 2009, 109(9), 4439-4486.
[] [PMID: 19480390]
Ramezanpour, S.; Panahi, A.; Rominger, F. Diastereoselective synthesis of peptidomimetics in one-pot Ugi reaction using trans-4-isopropylcyclohexanecarboxylic acid. Monatshefte für Chemie-Chemical Monthly, 2018, 149(3), 625-633.
Weber, L. The application of multi-component reactions in drug discovery. Curr. Med. Chem., 2002, 9(23), 2085-2093.
[] [PMID: 12470248]
Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev., 2012, 112(6), 3083-3135.
[] [PMID: 22435608]
Strecker, A. The artificial synthesis of lactic acid and a new homologue of glycine. Liebigs Ann. Chem., 1850, 75, 27-45.
Eberhard, R.; Christian, E. A convenient synthesis of 1-benzyl-1, 2, 3, 4-tetrahydroisoquinolines by combined Strecker/Bruylants reaction. Monatshefte für Chemie/Chemical Monthly, 2004, 135(10), 1289-1295.
Ganem, B. Strategies for innovation in multicomponent reaction design. Acc. Chem. Res., 2009, 42(3), 463-472.
[] [PMID: 19175315]
Corey, E.J.; Gin, D.Y.; Kania, R.S. Enantioselective total synthesis of ecteinascidin 743. J. Am. Chem. Soc., 1996, 118(38), 9202-9203.
Benner, S.A.; Kim, H-J.; Kim, M-J.; Ricardo, A. Planetary organic chemistry and the origins of biomolecules. Cold Spring Harb. Perspect. Biol., 2010, 2(7) a003467
[] [PMID: 20504964]
Aoki, K.; Ijima, T.; Kamiyama, H.; Kamiko, K.; Terauchi, Y. Anagliptin decreases serum lathosterol level in patients with type 2 diabetes: A pilot study. Expert Opin. Pharmacother., 2015, 16(12), 1749-1754.
[] [PMID: 26098722]
Paget, C.J.; Kisner, K.; Stone, R.L.; DeLong, D.C. Heterocyclic substituted ureas. I. Immunosuppression and virus inhibition by benzimidazoleureas. J. Med. Chem., 1969, 12(6), 1010-1015.
[] [PMID: 5351440]
Patil, J.; Ghodke, S.; Jain, R.; Dandekar, P. Extraction of Vitamin D from button mushroom (agaricus bisporus) using deep eutectic solvent and ultrasonication. ACS Sustain. Chem.& Eng., 2018, 6(8), 10578-10586.
Yang, W-Y.; Won, T.H.; Ahn, C-H.; Lee, S-H.; Yang, H-C.; Shin, J.; Oh, K-B. Streptococcus mutans sortase A inhibitory metabolites from the flowers of Sophora japonica. Bioorg. Med. Chem. Lett., 2015, 25(7), 1394-1397.
[] [PMID: 25746812]
López-Revuelta, A.; Sánchez-Gallego, J.I.; Hernández-Hernández, A.; Sánchez-Yagüe, J.; Llanillo, M. Membrane cholesterol contents influence the protective effects of quercetin and rutin in erythrocytes damaged by oxidative stress. Chem. Biol. Interact., 2006, 161(1), 79-91.
[] [PMID: 16620793]
Kim, J.M.; Yun-Choi, H.S. Anti-platelet effects of flavonoids and flavonoid-glycosides from Sophora japonica. Arch. Pharm. Res., 2008, 31(7), 886-890.
[] [PMID: 18704331]
Lee, D-S.; Kim, K-S.; Li, B.; Choi, H-G.; Keo, S.; Jun, K-Y.; Park, J-H.; Kim, Y-C. Anti-inflammatory effect of the Cirsium japonicum var. ussuriense 70% ethanolic extract in RAW264. 7 cells by heme oxygenase-1 expression. Korean J. Pharmacogn., 2012, 43(1), 39-45.
Birt, D.F.; Hendrich, S.; Wang, W. Dietary agents in cancer prevention: Flavonoids and isoflavonoids. Pharmacol. Ther., 2001, 90(2-3), 157-177.
[] [PMID: 11578656]
Mastuda, H.; Morikawa, T.; Ueda, K.; Managi, H.; Yoshikawa, M. Structural requirements of flavonoids for inhibition of antigen-Induced degranulation, TNF-α and IL-4 production from RBL-2H3 cells. Bioorg. Med. Chem., 2002, 10(10), 3123-3128.
[] [PMID: 12150856]
Khandelwal, S.; Tailor, Y.K.; Kumar, M. Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic transformations. J. Mol. Liq., 2016, 215, 345-386.
Radošević, K.; Bubalo, M.C.; Srček, V.G.; Grgas, D.; Dragičević, T.L.; Redovniković, I.R. Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents. Ecotoxicol. Environ. Saf., 2015, 112, 46-53.
[] [PMID: 25463852]
Zhang, C-W.; Xia, S-Q.; Ma, P-S. Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresour. Technol., 2016, 219, 1-5.
[] [PMID: 27468171]
Liu, Y.; Zhang, H.; Yu, H.; Guo, S.; Chen, D. Deep eutectic solvent as a green solvent for enhanced extraction of narirutin, naringin, hesperidin and neohesperidin from Aurantii Fructus. Phytochem. Anal., 2019, 30(2), 156-163.
[] [PMID: 30426588]
Jiang, Y.; Bai, X.; Zhu, X.; Li, J. The effects of Fructus Aurantii extract on the 5-hydroxytryptamine and vasoactive intestinal peptide contents of the rat gastrointestinal tract. Pharm. Biol., 2014, 52(5), 581-585.
[] [PMID: 24707973]
Wu, Z.; Zhang, S.; Li, P.; Lu, X.; Wang, J.; Zhao, L.; Wang, Y. Effect of aurantii fructus immaturus flavonoid on the contraction of isolated gastric smooth muscle strips in rats. Evid. Based Complement. Alternat. Med., 2016, 20165616905
[] [PMID: 27429637]
Lin, Z.; Wang, H.; Xu, Y.; Dong, J.; Hashi, Y.; Chen, S. Identification of antioxidants in Fructus aurantii and its quality evaluation using a new on-line combination of analytical techniques. Food Chem., 2012, 134(2), 1181-1191.
[] [PMID: 23107746]
Chen, H-F.; Zhang, W-G.; Yuan, J-B.; Li, Y-G.; Yang, S-L.; Yang, W-L. Simultaneous quantification of polymethoxylated flavones and coumarins in Fructus aurantii and Fructus aurantii immaturus using HPLC-ESI-MS/MS. J. Pharm. Biomed. Anal., 2012, 59, 90-95.
[] [PMID: 22071443]
Wei, J.I.A.; Cheng, C.A.O. Optimal extracting conditions for flavonoids in Fructus Aurantii Immaturus with central composite design and response surface method. Yaowu Fenxi Zazhi, 2012, 32(7), 1267-1271.
Xiao, Y.M.; Zhang, J.J.; Weng, Y.C.; Zhao, Q.C. Extraction process of flavanone in Citrus aurantium L. by orthogonal design. Shiyong Yaowu Yu Linchuang, 2013, 16(2), 127-129.
Wang, J.; Zhao, Y-M.; Guo, C-Y.; Zhang, S-M.; Liu, C-L.; Zhang, D-S.; Bai, X-M. Ultrasound-assisted extraction of total flavonoids from Inula helenium. Pharmacogn. Mag., 2012, 8(30), 166-170.
[] [PMID: 22701292]
Duan, L.; Zhang, C.; Zhang, C.; Xue, Z.; Zheng, Y.; Guo, L. Green extraction of phenolic acids from artemisia argyi leaves by tailor-made ternary deep eutectic solvents. Molecules, 2019, 24(15), 2842.
[] [PMID: 31387251]
Seddon, K.R. Ionic liquids for clean technology. J. Chem. Tech. Biotech. Int. Res. Proc. Environ. Clean Technol., 1997, 68(4), 351-356.
Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev., 1999, 99(8), 2071-2084.
[] [PMID: 11849019]
Seddon, K. Ionic liquids: Designer solvents for green synthesis. Chem. Eng., 2002, 730, 33-35.
Kubisa, P. Application of ionic liquids as solvents for polymerization processes. Prog. Polym. Sci., 2004, 29(1), 3-12.
Carmichael, Adrian J.; Haddleton, David M. Polymer synthesis in ionic liquids. In:, Ionic Liquids in Synthesis. Peter Wasserscheid Thomas Welton , Ed.. 2003, 319-335.
Jain, N.; Kumar, A.; Chauhan, S.; Chauhan, S.M.S. Chemical and biochemical transformations in ionic liquids. Tetrahedron, 2005, 5(61), 1015-1060.
Husum, T.L.; Jørgensen, C.T.; Christensen, M.W.; Kirk, O. Enzyme catalysed synthesis in ambient temperature ionic liquids. Biocatal. Biotransform., 2001, 19(4), 331-338.
Kragl, U.; Eckstein, M.; Kaftzik, N. Enzyme catalysis in ionic liquids. Curr. Opin. Biotechnol., 2002, 13(6), 565-571.
[] [PMID: 12482515]
Park, S.; Kazlauskas, R.J. Biocatalysis in ionic liquids - advantages beyond green technology. Curr. Opin. Biotechnol., 2003, 14(4), 432-437.
[] [PMID: 12943854]
Sheldon, R.A.; Lau, R.M.; Sorgedrager, M.J.; van Rantwijk, F.; Seddon, K.R. Biocatalysis in ionic liquids. Green Chem., 2002, 4(2), 147-151.
van Rantwijk, F.; Madeira Lau, R.; Sheldon, R.A. Biocatalytic transformations in ionic liquids. Trends Biotechnol., 2003, 21(3), 131-138.
[] [PMID: 12628370]
Mantz, R.A.; Trulove, P.C.; Wasserscheid, P.; Welton, T. Physicochemical properties of ionic liquids.In:Ionic liquids in synthesis; , 2003.
Gordon, C.M. New developments in catalysis using ionic liquids. Appl. Catal. A Gen., 2001, 222(1-2), 101-117.
Houlton, S. Ionic liquids: the route to cleaner and more efficient fine chemical synthesis? Chem. Week, 2004, 166(7), S10-S11.
Zhao, H. Innovative applications of ionic liquids as “green” engineering liquids. Chem. Eng. Commun., 2006, 193(12), 1660-1677.
Meng, X.; Zhang, S.; Xu, H.; Liu, K.; Wu, Z.; Zhang, Z. Ionic liquid-assisted solvothermal synthesis of ni particles and study of their electrocatalytic effect for calcium dobesilate oxidation. Z. Naturforsch. B, 2009, 64(8), 929-934.
Chowdhury, S.; Mohan, R.S.; Scott, J.L. Reactivity of ionic liquids. Tetrahedron, 2007, 63(11), 2363-2389.
Huddleston, J.G.; Visser, A.E.; Reichert, W.M.; Willauer, H.D.; Broker, G.A.; Rogers, R.D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem., 2001, 3(4), 156-164.
Sun, J.; Shin-ichiro, F.; Arai, M. Development in the green synthesis of cyclic carbonate from carbon dioxide using ionic liquids. J. Organomet. Chem., 2005, 690(15), 3490-3497.
Sheldon, R. Catalytic reactions in ionic liquids. Chem. Commun. (Camb.), 2001, 23(23), 2399-2407.
[] [PMID: 12239988]
Zhao, D.; Wu, M.; Kou, Y.; Min, E. Ionic liquids: Applications in catalysis. Catal. Today, 2002, 74(1-2), 157-189.
Wasserscheid, P.; Keim, W. Ionic liquids-New solutions for transition metal catalysis. Angew. Chem. Int. Ed. Engl., 2000, 39(21), 3772-3789.
[<3772:aid-anie3772>;2-5] [PMID: 11091453]
Wang, J-Q.; Yue, X-D.; Cai, F.; He, L-N. Solventless synthesis of cyclic carbonates from carbon dioxide and epoxides catalyzed by silica-supported ionic liquids under supercritical conditions. Catal. Commun., 2007, 8(2), 167-172.
Holbrey, J.D.; Seddon, K.R. Ionic liquids. Clean Prod. Process., 1999, 1(4), 223-236.
Blanchard, L.A.; Dan, H.; Beckman, E.J.; Brennecke, J.F. Green processing using ionic liquids and CO 2. Nature, 1999, 399(6731), 28.
Anthony, J.L.; Maginn, E.J.; Brennecke, J.F. Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. J. Phys. Chem. B, 2002, 106(29), 7315-7320.
Wasserscheid, P.; Welton, T., Eds.; Ionic liquids in synthesis; John Wiley & Sons, 2008.
Rogers, R.D. Ionic liquids: Industrial applications to green chemistry. ACS symposium series, American Chemical Society. 2002.
Hallett, J.P.; Welton, T. Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem. Rev., 2011, 111(5), 3508-3576.
[] [PMID: 21469639]
Vygodskii, Ya.S. Ionic liquids as novel promising reaction media for organic and polymer syntheses. Polym. Sci. J. Ser. C., 2001, 43, 236-251.
Zhao, H.; Malhotra, S.V. Applications of ionic liquids in organic synthesis. Aldrichim Acta, 2002.
Kubisa, P. Ionic liquids as solvents for polymerization processes—Progress and challenges. Prog. Polym. Sci., 2009, 34(12), 1333-1347.
Huddleston, J.G.; Willauer, H.D.; Swatloski, R.P.; Visser, A.E.; Rogers, R.D. Room temperature ionic liquids as novel media for ‘clean’liquid–liquid extraction. Chem. Commun., 1998, 16, 1765-1766.
Suarez, P.A.Z.; Jeane, E.L.D.; Sandra, E.; Roberto, F.D.S.; Jairton, D.; The use of new ionic liquids in two-phase catalytic hydrogenation reaction by rhodium complexes. Polyhedron, 1996, 15(7), 1217-1219.
Freemantle, M. New horizons for ionic liquids. Chem. Eng. News, 2001, 79(1), 21-21.
Schneider, S.; Hawkins, T.; Rosander, M.; Vaghjiani, G.; Chambreau, S.; Drake, G. Ionic liquids as hypergolic fuels. Energy Fuels, 2008, 22(4), 2871-2872.
van Rantwijk, F.; Sheldon, R.A. Biocatalysis in ionic liquids. Chem. Rev., 2007, 107(6), 2757-2785.
Ichikawa, T.; Yoshio, M.; Hamasaki, A.; Mukai, T.; Ohno, H.; Kato, T. Self-organization of room-temperature ionic liquids exhibiting liquid-crystalline bicontinuous cubic phases: formation of nano-ion channel networks. J. Am. Chem. Soc., 2007, 129(35), 10662-10663.
[] [PMID: 17696434]
Hapiot, P.; Lagrost, C. Electrochemical reactivity in room-temperature ionic liquids. Chem. Rev., 2008, 108(7), 2238-2264.
[] [PMID: 18564878]
Han, X.; Armstrong, D.W. Ionic liquids in separations. Acc. Chem. Res., 2007, 40(11), 1079-1086.
[] [PMID: 17910515]
Haumann, M.; Riisager, A. Hydroformylation in room temperature ionic liquids (RTILs): catalyst and process developments. Chem. Rev., 2008, 108(4), 1474-1497.
[] [PMID: 18355093]
Du, Y.; Wu, Y.; Liu, A-H.; He, L-N. Quaternary ammonium bromide functionalized polyethylene glycol: A highly efficient and recyclable catalyst for selective synthesis of 5-aryl-2-oxazolidinones from carbon dioxide and aziridines under solvent-free conditions. J. Org. Chem., 2008, 73(12), 4709-4712.
[] [PMID: 18473439]
Han, S.; Kim, C.; Kwon, D. Thermal/oxidative degradation and stabilization of polyethylene glycol. Polymer (Guildf.), 1997, 38(2), 317-323.
Aresta, M.; Dibenedetto, A. Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans., 2007, 28(28), 2975-2992.
[] [PMID: 17622414]
Wang, J-Q.; He, L-N.; Miao, C-X.; Gao, J. The free-radical chemistry of polyethylene glycol: Organic reactions in compressed carbon dioxide. ChemSusChem, 2009, 2(8), 755-760.
[] [PMID: 19569165]
Burgués‐Ceballos, I.; Machui, F.; Min, J.; Ameri, T.; Voigt, M.M.; Luponosov, Y.N.; Ponomarenko, S.A.; Lacharmoise, P.D.; Campoy‐Quiles, M.; Brabec, C.J. Solubility based identification of green solvents for small molecule organic solar cells. Adv. Funct. Mater., 2014, 24(10), 1449-1457.
Chen, X.; Liu, X.; Burgers, M.A.; Huang, Y.; Bazan, G.C. Green-solvent-processed molecular solar cells. Angew. Chem. Int. Ed. Engl., 2014, 53(52), 14378-14381.
[] [PMID: 25389005]
Cvjetko, B.M.; Ćurko, N.; Tomašević, M.; Kovačević Ganić, K.; Radojčić Redovniković, I. Green extraction of grape skin phenolics by using deep eutectic solvents. Food Chem., 2016, 200, 159-166.
[] [PMID: 26830574]
Ruesgas-Ramón, M.; Figueroa-Espinoza, M.C.; Durand, E. Application of deep eutectic solvents (DES) for phenolic compounds extraction: overview, challenges, and opportunities. J. Agric. Food Chem., 2017, 65(18), 3591-3601.
[] [PMID: 28414232]
Liao, J-H.; Wu, P-C.; Bai, Y-H. Eutectic mixture of choline chloride/urea as a green solvent in synthesis of a coordination polymer:[Zn (O3PCH2CO2)]• NH4. Inorg. Chem. Commun., 2005, 8(4), 390-392.
Visser, A.E.; Swatloski, R.P.; Reichert, W.M.; Griffin, S.T.; Rogers, R.D. Traditional extractants in nontraditional solvents: Groups 1 and 2 extraction by crown ethers in room-temperature ionic liquids. Ind. Eng. Chem. Res., 2000, 39(10), 3596-3604.
Holbrey, J.D.W.; Matthew, Reichert; R. G., Reddy; and R. D., Rogers Ionic liquids as green solvents: Progress and prospects. ACS symposium series, American Chemical Society Washington DC; 2003 Vol. 856. , 121-133.
Zhao, H.; Baker, G.A. Ionic liquids and deep eutectic solvents for biodiesel synthesis: A review. J. Chem. Technol. Biotechnol., 2013, 88(1), 3-12.
Abbott, A.P.; Cullis, P.M.; Gibson, M.J.; Harris, R.C.; Raven, E. Extraction of glycerol from biodiesel into a eutectic based ionic liquid. Green Chem., 2007, 9(8), 868-872.
García, C.; Hoyos, P.; Hernáiz, M.J. Enzymatic synthesis of carbohydrates and glycoconjugates using lipases and glycosidases in green solvents. Biocatal. Biotransform., 2018, 36(2), 131-140.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [426 - 439]
Pages: 14
DOI: 10.2174/1570179417666200506102535
Price: $65

Article Metrics

PDF: 41