Maternal Vitamin D and its Role in Determining Fetal Origins of Mental Health

Author(s): Giulia Lisi*, Michele Ribolsi, Alberto Siracusano, Cinzia Niolu

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 21 , 2020

Become EABM
Become Reviewer

Abstract:

There is evidence that mental health disorders may have roots in fetal life and are associated with deficiencies in various micronutrients, including vitamin D. During pregnancy, vitamin D balance is influenced by an increase in maternal calcitriol and a substantial increase in maternal Vitamin D Binding Protein concentrations. In the early stages of life, vitamin D is necessary to mediate numerous brain processes such as proliferation, apoptosis, and neurotransmission. Furthermore, Vitamin D has a recognized anti-inflammatory activity that normally suppresses inflammation. Increased activation of hypothalamo-pituitary-adrenal axis (HPA) and inflammation during gestation may influence maternal health and fetal neurodevelopment during and beyond pregnancy. A deficit of Vitamin D and maternal stressful events during gestation, such as perinatal depression, could influence the efficacy of the immune system altering its activity.

Vitamin D deficiency during gestation associated with a reduction in fetal brain development has been widely described and correlated with alteration in the production of the brain-derived neurotrophic factor. To this regard, many studies highlights that low maternal vitamin D dosage during gestation has been related to a significantly greater risk to develop schizophrenia and other severe mental illnesses in later life. The objective of this paper is a comprehensive overview of maternal vitamin D balance in determining the fetal origins of mental health with some references to the link between vitamin D levels, inflammatory responses to stress and mental disorders in adult life.

Keywords: Vitamin D, perinatal depression, pregnancy, neurodevelopment, maternal stress, schizophrenia, autism spectrum disorders, attention deficit hyperactivity disorder.

[1]
O’Donnell KJ, Meaney MJ. Fetal Origins of Mental Health: The Developmental Origins of Health and Disease Hypothesis. Am J Psychiatry 2017; 174(4): 319-28.
[http://dx.doi.org/10.1176/appi.ajp.2016.16020138] [PMID: 27838934]
[2]
Schlotz W, Phillips DI. Fetal origins of mental health: evidence and mechanisms. Brain Behav Immun 2009; 23(7): 905-16.
[http://dx.doi.org/10.1016/j.bbi.2009.02.001] [PMID: 19217937]
[3]
Ferreira AJ. Emotional factors in prenatal environment. A review. J Nerv Ment Dis 1965; 141(1): 108-18.
[http://dx.doi.org/10.1097/00005053-196507000-00011] [PMID: 5320604]
[4]
Barker DJ. Intrauterine programming of adult disease. Mol Med Today 1995; 1(9): 418-23.
[http://dx.doi.org/10.1016/S1357-4310(95)90793-9] [PMID: 9415190]
[5]
Barker DJ. The Wellcome Foundation Lecture, 1994. The fetal origins of adult disease. Proc Biol Sci 1995; 262(1363): 37-43.
[http://dx.doi.org/10.1098/rspb.1995.0173] [PMID: 7479990]
[6]
Barker DJ. The fetal and infant origins of disease. Eur J Clin Invest 1995; 25(7): 457-63.
[http://dx.doi.org/10.1111/j.1365-2362.1995.tb01730.x] [PMID: 7556362]
[7]
Bateson P, Barker D, Clutton-Brock T, et al. Developmental plasticity and human health. Nature 2004; 430(6998): 419-21.
[http://dx.doi.org/10.1038/nature02725] [PMID: 15269759]
[8]
Gluckman PD, Hanson MA. Developmental and epigenetic pathways to obesity: an evolutionary-developmental perspective. Int J Obes 2008; 32(Suppl. 7): S62-71.
[http://dx.doi.org/10.1038/ijo.2008.240] [PMID: 19136993]
[9]
Gluckman PD, Beedle AS, Hanson MA, Yap EP. Developmental perspectives on individual variation: implications for understanding nutritional needs. Nestle Nutr Workshop Ser Pediatr Program 2008; 62: 1-9. disucssion -12
[http://dx.doi.org/10.1159/000146243]
[10]
Seckl JR, Holmes MC. Mechanisms of disease: glucocorticoids, their placental metabolism and fetal ‘programming’ of adult pathophysiology. Nat Clin Pract Endocrinol Metab 2007; 3(6): 479-88.
[http://dx.doi.org/10.1038/ncpendmet0515] [PMID: 17515892]
[11]
Van den Bergh BR. Developmental programming of early brain and behaviour development and mental health: a conceptual framework. Dev Med Child Neurol 2011; 53(Suppl. 4): 19-23.
[http://dx.doi.org/10.1111/j.1469-8749.2011.04057.x] [PMID: 21950389]
[12]
Mandy M, Nyirenda M. Developmental Origins of Health and Disease: the relevance to developing nations. Int Health 2018; 10(2): 66-70.
[http://dx.doi.org/10.1093/inthealth/ihy006] [PMID: 29528398]
[13]
Barker DJ. The fetal and infant origins of adult disease. BMJ 1990; 301(6761): 1111.
[http://dx.doi.org/10.1136/bmj.301.6761.1111] [PMID: 2252919]
[14]
Barker DJ. Developmental origins of adult health and disease. J Epidemiol Community Health 2004; 58(2): 114-5.
[http://dx.doi.org/10.1136/jech.58.2.114] [PMID: 14729887]
[15]
Bale TL. Epigenetic and transgenerational reprogramming of brain development. Nat Rev Neurosci 2015; 16(6): 332-44.
[http://dx.doi.org/10.1038/nrn3818] [PMID: 25921815]
[16]
Bale TL, Baram TZ, Brown AS, et al. Early life programming and neurodevelopmental disorders. Biol Psychiatry 2010; 68(4): 314-9.
[http://dx.doi.org/10.1016/j.biopsych.2010.05.028] [PMID: 20674602]
[17]
Griffiths BB, Hunter RG. Neuroepigenetics of stress. Neuroscience 2014; 275: 420-35.
[http://dx.doi.org/10.1016/j.neuroscience.2014.06.041] [PMID: 24976514]
[18]
Harris A, Seckl J. Glucocorticoids, prenatal stress and the programming of disease. Horm Behav 2011; 59(3): 279-89.
[http://dx.doi.org/10.1016/j.yhbeh.2010.06.007] [PMID: 20591431]
[19]
Meaney MJ, Szyf M, Seckl JR. Epigenetic mechanisms of perinatal programming of hypothalamic-pituitary-adrenal function and health. Trends Mol Med 2007; 13(7): 269-77.
[http://dx.doi.org/10.1016/j.molmed.2007.05.003] [PMID: 17544850]
[20]
Stroud LR, Papandonatos GD, Parade SH, et al. Prenatal Major Depressive Disorder, Placenta Glucocorticoid and Serotonergic Signaling, and Infant Cortisol Response. Psychosom Med 2016; 78(9): 979-90.
[http://dx.doi.org/10.1097/PSY.0000000000000410] [PMID: 27763986]
[21]
Bock J, Poeggel G, Gruss M, Wingenfeld K, Braun K. Infant cognitive training preshapes learning-relevant prefrontal circuits for adult learning: learning-induced tagging of dendritic spines. Cereb Cortex 2014; 24(11): 2920-30.
[http://dx.doi.org/10.1093/cercor/bht148] [PMID: 23771981]
[22]
Faulk C, Dolinoy DC. Timing is everything: the when and how of environmentally induced changes in the epigenome of animals. Epigenetics 2011; 6(7): 791-7.
[http://dx.doi.org/10.4161/epi.6.7.16209] [PMID: 21636976]
[23]
Polanska K, Krol A, Merecz-Kot D, et al. Maternal stress during pregnancy and neurodevelopmental outcomes of children during the first 2 years of life. J Paediatr Child Health 2017; 53(3): 263-70.
[http://dx.doi.org/10.1111/jpc.13422] [PMID: 28168801]
[24]
Buffa G, Dahan S, Sinclair I, et al. Prenatal stress and child development: A scoping review of research in low- and middle-income countries. PLoS One 2018; 13(12)e0207235
[http://dx.doi.org/10.1371/journal.pone.0207235] [PMID: 30592715]
[25]
Fineberg AM, Ellman LM, Schaefer CA, et al. Fetal exposure to maternal stress and risk for schizophrenia spectrum disorders among offspring: Differential influences of fetal sex. Psychiatry Res 2016; 236: 91-7.
[http://dx.doi.org/10.1016/j.psychres.2015.12.026] [PMID: 26753951]
[26]
Zhu P, Hao JH, Tao RX, et al. Sex-specific and time-dependent effects of prenatal stress on the early behavioral symptoms of ADHD: a longitudinal study in China. Eur Child Adolesc Psychiatry 2015; 24(9): 1139-47.
[http://dx.doi.org/10.1007/s00787-015-0701-9] [PMID: 25791080]
[27]
Gerardin P, Wendland J, Bodeau N, et al. Depression during pregnancy: is the developmental impact earlier in boys? A prospective case-control study. J Clin Psychiatry 2011; 72(3): 378-87.
[http://dx.doi.org/10.4088/JCP.09m05724blu] [PMID: 21208585]
[28]
Loomans EM, van der Stelt O, van Eijsden M, Gemke RJ, Vrijkotte T, den Bergh BR. Antenatal maternal anxiety is associated with problem behaviour at age five. Early Hum Dev 2011; 87(8): 565-70.
[http://dx.doi.org/10.1016/j.earlhumdev.2011.04.014] [PMID: 21576004]
[29]
Buss C, Entringer S, Wadhwa PD. Fetal programming of brain development: intrauterine stress and susceptibility to psychopathology. Sci Signal 2012; 5(245): pt7.
[http://dx.doi.org/10.1126/scisignal.2003406] [PMID: 23047922]
[30]
Van den Bergh BR, Mennes M, Oosterlaan J, et al. High antenatal maternal anxiety is related to impulsivity during performance on cognitive tasks in 14- and 15-year-olds. Neurosci Biobehav Rev 2005; 29(2): 259-69.
[http://dx.doi.org/10.1016/j.neubiorev.2004.10.010] [PMID: 15811497]
[31]
van den Bergh BR, Mennes M, Stevens V, et al. ADHD deficit as measured in adolescent boys with a continuous performance task is related to antenatal maternal anxiety. Pediatr Res 2006; 59(1): 78-82.
[http://dx.doi.org/10.1203/01.pdr.0000191143.75673.52] [PMID: 16327007]
[32]
Mennes M, Van den Bergh B, Lagae L, Stiers P. Developmental brain alterations in 17 year old boys are related to antenatal maternal anxiety. Clin Neurophysiol 2009; 120(6): 1116-22.
[http://dx.doi.org/10.1016/j.clinph.2009.04.003] [PMID: 19433367]
[33]
Mennes M, Stiers P, Lagae L, Van den Bergh B. Long-term cognitive sequelae of antenatal maternal anxiety: involvement of the orbitofrontal cortex. Neurosci Biobehav Rev 2006; 30(8): 1078-86.
[http://dx.doi.org/10.1016/j.neubiorev.2006.04.003] [PMID: 16780948]
[34]
Mennes M. Commentary: Leveraging discovery science to advance child and adolescent psychiatric research--a commentary on Zhao and Castellanos 2016. J Child Psychol Psychiatry 2016; 57(3): 440-2.
[http://dx.doi.org/10.1111/jcpp.12538] [PMID: 26889901]
[35]
Harvison KW, Molfese DL, Woodruff-Borden J, Weigel RA. Neonatal auditory evoked responses are related to perinatal maternal anxiety. Brain Cogn 2009; 71(3): 369-74.
[http://dx.doi.org/10.1016/j.bandc.2009.06.004] [PMID: 19616356]
[36]
Hunter SK, Mendoza JH, D’Anna K, et al. Antidepressants may mitigate the effects of prenatal maternal anxiety on infant auditory sensory gating. Am J Psychiatry 2012; 169(6): 616-24.
[http://dx.doi.org/10.1176/appi.ajp.2012.11091365] [PMID: 22581104]
[37]
Otte RA, Donkers FC, Braeken MA, Van den Bergh BR. Multimodal processing of emotional information in 9-month-old infants II: prenatal exposure to maternal anxiety. Brain Cogn 2015; 95: 107-17.
[http://dx.doi.org/10.1016/j.bandc.2014.12.001] [PMID: 25839110]
[38]
Favaro A, Tenconi E, Degortes D, Manara R, Santonastaso P. Neural correlates of prenatal stress in young women. Psychol Med 2015; 45(12): 2533-43.
[http://dx.doi.org/10.1017/S003329171500046X] [PMID: 25786412]
[39]
Soe NN, Wen DJ, Poh JS, et al. Pre- and Post-Natal Maternal Depressive Symptoms in Relation with Infant Frontal Function, Connectivity, and Behaviors. PLoS One 2016; 11(4)e0152991
[http://dx.doi.org/10.1371/journal.pone.0152991] [PMID: 27073881]
[40]
Loomans EM, van der Stelt O, van Eijsden M, Gemke RJ, Vrijkotte TG, Van den Bergh BR. High levels of antenatal maternal anxiety are associated with altered cognitive control in five-year-old children. Dev Psychobiol 2012; 54(4): 441-50.
[http://dx.doi.org/10.1002/dev.20606] [PMID: 21953508]
[41]
Qiu A, Anh TT, Li Y, et al. Prenatal maternal depression alters amygdala functional connectivity in 6-month-old infants. Transl Psychiatry 2015. 5e508
[http://dx.doi.org/10.1038/tp.2015.3] [PMID: 25689569]
[42]
Copper RL, Goldenberg RL, Das A, et al. National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. The preterm prediction study: maternal stress is associated with spontaneous preterm birth at less than thirty-five weeks’ gestation. Am J Obstet Gynecol 1996; 175(5): 1286-92.
[http://dx.doi.org/10.1016/S0002-9378(96)70042-X] [PMID: 8942502]
[43]
Propper CB, Holochwost SJ. The influence of proximal risk on the early development of the autonomic nervous system. Dev Rev 2013; 33: 151-67.
[http://dx.doi.org/10.1016/j.dr.2013.05.001]
[44]
Suurland J, van der Heijden KB, Smaling HJA, Huijbregts SCJ, van Goozen SHM, Swaab H. Infant autonomic nervous system response and recovery: Associations with maternal risk status and infant emotion regulation. Dev Psychopathol 2017; 29(3): 759-73.
[http://dx.doi.org/10.1017/S0954579416000456] [PMID: 27581204]
[45]
McEwen BS, Gray JD, Nasca C. 60 YEARS OF NEUROENDOCRINOLOGY: Redefining neuroendocrinology: stress, sex and cognitive and emotional regulation. J Endocrinol 2015; 226(2): T67-83.
[http://dx.doi.org/10.1530/JOE-15-0121] [PMID: 25934706]
[46]
Alkon A, Boyce WT, Tran L, Harley KG, Neuhaus J, Eskenazi B. Prenatal adversities and Latino children’s autonomic nervous system reactivity trajectories from 6 months to 5 years of age. PLoS One 2014; 9(1)e86283
[http://dx.doi.org/10.1371/journal.pone.0086283] [PMID: 24466003]
[47]
Capron LE, Glover V, Pearson RM, et al. Associations of maternal and paternal antenatal mood with offspring anxiety disorder at age 18 years. J Affect Disord 2015; 187: 20-6.
[http://dx.doi.org/10.1016/j.jad.2015.08.012] [PMID: 26301478]
[48]
Kok R, Bakermans-Kranenburg MJ, van Ijzendoorn MH, et al. The role of maternal stress during pregnancy, maternal discipline, and child COMT Val158Met genotype in the development of compliance. Dev Psychobiol 2013; 55(5): 451-64.
[http://dx.doi.org/10.1002/dev.21049] [PMID: 22614783]
[49]
Lindsay KL, Buss C, Wadhwa PD, Entringer S. The Interplay Between Nutrition and Stress in Pregnancy: Implications for Fetal Programming of Brain Development. Biol Psychiatry 2019; 85(2): 135-49.
[http://dx.doi.org/10.1016/j.biopsych.2018.06.021] [PMID: 30057177]
[50]
Lindsay KL, Buss C, Wadhwa PD, Entringer S. The Interplay between Maternal Nutrition and Stress during Pregnancy: Issues and Considerations. Ann Nutr Metab 2017; 70(3): 191-200.
[http://dx.doi.org/10.1159/000457136] [PMID: 28301838]
[51]
Cuomo A, Maina G, Bolognesi S, et al. Prevalence and Correlates of Vitamin D Deficiency in a Sample of 290 Inpatients With Mental Illness. Front Psychiatry 2019; 10: 167.
[http://dx.doi.org/10.3389/fpsyt.2019.00167] [PMID: 31001150]
[52]
Adam TC, Epel ES. Stress, eating and the reward system. Physiol Behav 2007; 91(4): 449-58.
[http://dx.doi.org/10.1016/j.physbeh.2007.04.011] [PMID: 17543357]
[53]
Kiecolt-Glaser JK. Stress, food, and inflammation: psychoneuroimmunology and nutrition at the cutting edge. Psychosom Med 2010; 72(4): 365-9.
[http://dx.doi.org/10.1097/PSY.0b013e3181dbf489] [PMID: 20410248]
[54]
Dallman MF. Stress-induced obesity and the emotional nervous system. Trends Endocrinol Metab 2010; 21(3): 159-65.
[http://dx.doi.org/10.1016/j.tem.2009.10.004] [PMID: 19926299]
[55]
Entringer S, Buss C, Wadhwa PD. Prenatal stress, development, health and disease risk: A psychobiological perspective-2015 Curt Richter Award Paper. Psychoneuroendocrinology 2015; 62: 366-75.
[http://dx.doi.org/10.1016/j.psyneuen.2015.08.019] [PMID: 26372770]
[56]
Yehuda S. Omega-6/omega-3 ratio and brain-related functions. World Rev Nutr Diet 2003; 92: 37-56.
[http://dx.doi.org/10.1159/000073791] [PMID: 14579682]
[57]
Rao TS, Asha MR, Ramesh BN, Rao KS. Understanding nutrition, depression and mental illnesses. Indian J Psychiatry 2008; 50(2): 77-82.
[http://dx.doi.org/10.4103/0019-5545.42391] [PMID: 19742217]
[58]
Baltaci AK, Mogulkoc R, Baltaci SB. Review: The role of zinc in the endocrine system. Pak J Pharm Sci 2019; 32(1): 231-9.
[PMID: 30772815]
[59]
Yam KY, Naninck EF, Schmidt MV, Lucassen PJ, Korosi A. Early-life adversity programs emotional functions and the neuroendocrine stress system: the contribution of nutrition, metabolic hormones and epigenetic mechanisms. Stress 2015; 18(3): 328-42.
[http://dx.doi.org/10.3109/10253890.2015.1064890] [PMID: 26260665]
[60]
Karras SN, Wagner CL, Castracane VD. Understanding vitamin D metabolism in pregnancy: From physiology to pathophysiology and clinical outcomes. Metabolism 2018; 86: 112-23.
[http://dx.doi.org/10.1016/j.metabol.2017.10.001] [PMID: 29066285]
[61]
Kovacs CS. The role of vitamin D in pregnancy and lactation: insights from animal models and clinical studies. Annu Rev Nutr 2012; 32: 97-123.
[http://dx.doi.org/10.1146/annurev-nutr-071811-150742] [PMID: 22483092]
[62]
Steichen JJ, Tsang RC, Gratton TL, Hamstra A, DeLuca HF. Vitamin D homeostasis in the perinatal period: 1,25-dihydroxyvitamin D in maternal, cord, and neonatal blood. N Engl J Med 1980; 302(6): 315-9.
[http://dx.doi.org/10.1056/NEJM198002073020603] [PMID: 7350498]
[63]
Turner M, Barré PE, Benjamin A, Goltzman D, Gascon-Barré M. Does the maternal kidney contribute to the increased circulating 1,25-dihydroxyvitamin D concentrations during pregnancy? Miner Electrolyte Metab 1988; 14(4): 246-52.
[PMID: 3211093]
[64]
Kirby BJ, Ma Y, Martin HM, Buckle Favaro KL, Karaplis AC, Kovacs CS. Upregulation of calcitriol during pregnancy and skeletal recovery after lactation do not require parathyroid hormone. J Bone Miner Res 2013; 28(9): 1987-2000.
[http://dx.doi.org/10.1002/jbmr.1925] [PMID: 23505097]
[65]
Pahuja DN, DeLuca HF. Stimulation of intestinal calcium transport and bone calcium mobilization by prolactin in vitamin D-deficient rats. Science 1981; 214(4524): 1038-9.
[http://dx.doi.org/10.1126/science.7302575] [PMID: 7302575]
[66]
Colin EM, Van Den Bemd GJ, Van Aken M, et al. Evidence for involvement of 17beta-estradiol in intestinal calcium absorption independent of 1,25-dihydroxyvitamin D3 level in the Rat. J Bone Miner Res 1999; 14(1): 57-64.
[http://dx.doi.org/10.1359/jbmr.1999.14.1.57] [PMID: 9893066]
[67]
Jaeger P, Jones W, Clemens TL, Hayslett JP. Evidence that calcitonin stimulates 1,25-dihydroxyvitamin D production and intestinal absorption of calcium in vivo. J Clin Invest 1986; 78(2): 456-61.
[http://dx.doi.org/10.1172/JCI112597] [PMID: 3755446]
[68]
Lieben L, Benn BS, Ajibade D, et al. Trpv6 mediates intestinal calcium absorption during calcium restriction and contributes to bone homeostasis. Bone 2010; 47(2): 301-8.
[http://dx.doi.org/10.1016/j.bone.2010.04.595] [PMID: 20399919]
[69]
Cai Q, Chandler JS, Wasserman RH, Kumar R, Penniston JT. Vitamin D and adaptation to dietary calcium and phosphate deficiencies increase intestinal plasma membrane calcium pump gene expression. Proc Natl Acad Sci USA 1993; 90(4): 1345-9.
[http://dx.doi.org/10.1073/pnas.90.4.1345] [PMID: 7679502]
[70]
Shin JS, Choi MY, Longtine MS, Nelson DM. Vitamin D effects on pregnancy and the placenta. Placenta 2010; 31(12): 1027-34.
[http://dx.doi.org/10.1016/j.placenta.2010.08.015] [PMID: 20863562]
[71]
Tamblyn JA, Hewison M, Wagner CL, Bulmer JN, Kilby MD. Immunological role of vitamin D at the maternal-fetal interface. J Endocrinol 2015; 224(3): R107-21.
[http://dx.doi.org/10.1530/JOE-14-0642] [PMID: 25663707]
[72]
Evans KN, Nguyen L, Chan J, et al. Effects of 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 on cytokine production by human decidual cells. Biol Reprod 2006; 75(6): 816-22.
[http://dx.doi.org/10.1095/biolreprod.106.054056] [PMID: 16957024]
[73]
Zhang JY, Lucey AJ, Horgan R, Kenny LC, Kiely M. Impact of pregnancy on vitamin D status: a longitudinal study. Br J Nutr 2014; 112(7): 1081-7.
[http://dx.doi.org/10.1017/S0007114514001883] [PMID: 25159824]
[74]
Ma R, Gu Y, Zhao S, Sun J, Groome LJ, Wang Y. Expressions of vitamin D metabolic components VDBP, CYP2R1, CYP27B1, CYP24A1, and VDR in placentas from normal and preeclamptic pregnancies. Am J Physiol Endocrinol Metab 2012; 303(7): E928-35.
[http://dx.doi.org/10.1152/ajpendo.00279.2012] [PMID: 22871339]
[75]
Wierzejska R, Jarosz M, Sawicki W, et al. Vitamin D Concentration in Maternal and Umbilical Cord Blood by Season. Int J Environ Res Public Health 2017; 14(10): 14.
[http://dx.doi.org/10.3390/ijerph14101121] [PMID: 28954405]
[76]
Moon RJ, Davies JH, Cooper C, Harvey NC. Vitamin D, and Maternal and Child Health. Calcif Tissue Int 2019.
[PMID: 31089772]
[77]
Karras S, Paschou SA, Kandaraki E, et al. Hypovitaminosis D in pregnancy in the Mediterranean region: a systematic review. Eur J Clin Nutr 2016; 70(9): 979-86.
[http://dx.doi.org/10.1038/ejcn.2016.12] [PMID: 26931671]
[78]
Zenkert-Andersson K, Hedeland H, Manhem P. [Too little exposure to sun may cause vitamin D deficiency. Muslim women in Sweden are a risk group]. Lakartidningen 1996; 93(46): 4153-5.
[PMID: 8984270]
[79]
Coussons-Read ME. Effects of prenatal stress on pregnancy and human development: mechanisms and pathways. Obstet Med 2013; 6(2): 52-7.
[http://dx.doi.org/10.1177/1753495x12473751] [PMID: 27757157]
[80]
Sircar M, Thadhani R, Karumanchi SA. Pathogenesis of preeclampsia. Curr Opin Nephrol Hypertens 2015; 24(2): 131-8.
[http://dx.doi.org/10.1097/MNH.0000000000000105] [PMID: 25636145]
[81]
Singla R, Gurung P, Aggarwal N, Dutta U, Kochhar R. Relationship between preeclampsia and vitamin D deficiency: a case control study. Arch Gynecol Obstet 2015; 291(6): 1247-51.
[http://dx.doi.org/10.1007/s00404-014-3550-8] [PMID: 25476065]
[82]
Kim RH, Ryu BJ, Lee KM, Han JW, Lee SK. Vitamin D facilitates trophoblast invasion through induction of epithelial-mesenchymal transition. Am J Reprod Immunol 2018; 79(2): 79.
[http://dx.doi.org/10.1111/aji.12796] [PMID: 29205625]
[83]
Yu H, Shen YT, Li HL, Yan Y, Ren ML, Wang B. The relationship between maternal serum prenatal screening combined with epidemiological study and early onset preeclampsia. Arch Gynecol Obstet 2014; 289(4): 749-53.
[http://dx.doi.org/10.1007/s00404-013-3039-x] [PMID: 24091485]
[84]
Yu Y, Zhang S, Wang G, et al. The combined association of psychosocial stress and chronic hypertension with preeclampsia. Am J Obstet Gynecol 2013; 209(438): e1-e12.
[http://dx.doi.org/10.1016/j.ajog.2013.07.003]
[85]
Perkins AV, Linton EA, Eben F, Simpson J, Wolfe CD, Redman CW. Corticotrophin-releasing hormone and corticotrophin-releasing hormone binding protein in normal and pre-eclamptic human pregnancies. Br J Obstet Gynaecol 1995; 102(2): 118-22.
[http://dx.doi.org/10.1111/j.1471-0528.1995.tb09063.x] [PMID: 7756202]
[86]
Tuovinen S, Räikkönen K, Kajantie E, et al. OS103. Hypertensive disorders during pregnancy and cognitive decline of the offspring up to old age: the helsinki birth cohort study. Pregnancy Hypertens 2012; 2(3): 235-6.
[http://dx.doi.org/10.1016/j.preghy.2012.04.104] [PMID: 26105317]
[87]
Chen L, Wang X, Ding Q, Shan N, Qi H. Development of Postpartum Depression in Pregnant Women with Preeclampsia: A Retrospective Study. BioMed Res Int 2019; 20199601476
[http://dx.doi.org/10.1155/2019/9601476] [PMID: 30937313]
[88]
Dachew BA, Scott JG, Mamun A, Alati R. Pre-eclampsia and the risk of attention-deficit/hyperactivity disorder in offspring: Findings from the ALSPAC birth cohort study. Psychiatry Res 2019; 272: 392-7.
[http://dx.doi.org/10.1016/j.psychres.2018.12.123] [PMID: 30605798]
[89]
Melchior H, Kurch-Bek D, Mund M. The Prevalence of Gestational Diabetes. Dtsch Arztebl Int 2017; 114(24): 412-8.
[PMID: 28669379]
[90]
Ojo O, Weldon SM, Thompson T, Vargo EJ. The Effect of Vitamin D Supplementation on Glycaemic Control in Women with Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Int J Environ Res Public Health 2019; 16(10): 16.
[http://dx.doi.org/10.3390/ijerph16101716] [PMID: 31100793]
[91]
Krishnaveni GV, Veena SR, Jones A, et al. Exposure to maternal gestational diabetes is associated with higher cardiovascular responses to stress in adolescent indians. J Clin Endocrinol Metab 2015; 100(3): 986-93.
[http://dx.doi.org/10.1210/jc.2014-3239] [PMID: 25478935]
[92]
Kubo A, Ferrara A, Brown SD, et al. Perceived psychosocial stress and gestational weight gain among women with gestational diabetes. PLoS One 2017; 12(3)e0174290
[http://dx.doi.org/10.1371/journal.pone.0174290] [PMID: 28350836]
[93]
von Websky K, Hasan AA, Reichetzeder C, Tsuprykov O, Hocher B. Impact of vitamin D on pregnancy-related disorders and on offspring outcome. J Steroid Biochem Mol Biol 2018; 180: 51-64.
[http://dx.doi.org/10.1016/j.jsbmb.2017.11.008] [PMID: 29169993]
[94]
Weinstock M. The potential influence of maternal stress hormones on development and mental health of the offspring. Brain Behav Immun 2005; 19(4): 296-308.
[http://dx.doi.org/10.1016/j.bbi.2004.09.006] [PMID: 15944068]
[95]
Simanek AM, Meier HC. Association Between Prenatal Exposure to Maternal Infection and Offspring Mood Disorders: A Review of the Literature. Curr Probl Pediatr Adolesc Health Care 2015; 45(11): 325-64.
[http://dx.doi.org/10.1016/j.cppeds.2015.06.008] [PMID: 26476880]
[96]
Laplante DP, Brunet A, King S. The effects of maternal stress and illness during pregnancy on infant temperament: Project Ice Storm. Pediatr Res 2016; 79(1-1): 107-3.
[http://dx.doi.org/10.1038/pr.2015.177] [PMID: 26375472]
[97]
Stuart-Parrigon K, Stuart S. Perinatal depression: an update and overview. Curr Psychiatry Rep 2014; 16(9): 468.
[http://dx.doi.org/10.1007/s11920-014-0468-6] [PMID: 25034859]
[98]
Alhusen JL, Alvarez C. Perinatal depression: A clinical update. Nurse Pract 2016; 41(5): 50-5.
[http://dx.doi.org/10.1097/01.NPR.0000480589.09290.3e] [PMID: 26934457]
[99]
Association AP. Diagnostic and statistical manual of mental disorders. 5th ed. 2018.
[100]
Dickens MJ, Pawluski JL. The HPA Axis During the Perinatal Period: Implications for Perinatal Depression. Endocrinology 2018; 159(11): 3737-46.
[http://dx.doi.org/10.1210/en.2018-00677] [PMID: 30256957]
[101]
Sparling TM, Nesbitt RC, Henschke N, Gabrysch S. Nutrients and perinatal depression: a systematic review. J Nutr Sci 2017. 6e61
[http://dx.doi.org/10.1017/jns.2017.58] [PMID: 29296279]
[102]
Sparling TM, Henschke N, Nesbitt RC, Gabrysch S. The role of diet and nutritional supplementation in perinatal depression: a systematic review. Matern Child Nutr 2017; 13(1): 13.
[http://dx.doi.org/10.1111/mcn.12235] [PMID: 26840379]
[103]
Cui X, Pelekanos M, Liu PY, Burne TH, McGrath JJ, Eyles DW. The vitamin D receptor in dopamine neurons; its presence in human substantia nigra and its ontogenesis in rat midbrain. Neuroscience 2013; 236: 77-87.
[http://dx.doi.org/10.1016/j.neuroscience.2013.01.035] [PMID: 23352937]
[104]
Buell JS, Dawson-Hughes B. Vitamin D and neurocognitive dysfunction: preventing “D”ecline? Mol Aspects Med 2008; 29(6): 415-22.
[http://dx.doi.org/10.1016/j.mam.2008.05.001] [PMID: 18579197]
[105]
Zittermann A, Dembinski J, Stehle P. Low vitamin D status is associated with low cord blood levels of the immunosuppressive cytokine interleukin-10. Pediatr Allergy Immunol 2004; 15(3): 242-6.
[http://dx.doi.org/10.1111/j.1399-3038.2004.00140.x] [PMID: 15209957]
[106]
Hoogendijk WJ, Lips P, Dik MG, Deeg DJ, Beekman AT, Penninx BW. Depression is associated with decreased 25-hydroxyvitamin D and increased parathyroid hormone levels in older adults. Arch Gen Psychiatry 2008; 65(5): 508-12.
[http://dx.doi.org/10.1001/archpsyc.65.5.508] [PMID: 18458202]
[107]
Robinson M, Whitehouse AJ, Newnham JP, et al. Low maternal serum vitamin D during pregnancy and the risk for postpartum depression symptoms. Arch Women Ment Health 2014; 17(3): 213-9.
[http://dx.doi.org/10.1007/s00737-014-0422-y] [PMID: 24663685]
[108]
Murphy PK, Mueller M, Hulsey TC, Ebeling MD, Wagner CL. An exploratory study of postpartum depression and vitamin d. J Am Psychiatr Nurses Assoc 2010; 16(3): 170-7.
[http://dx.doi.org/10.1177/1078390310370476] [PMID: 21659271]
[109]
Anglin RE, Samaan Z, Walter SD, McDonald SD. Vitamin D deficiency and depression in adults: systematic review and meta-analysis. Br J Psychiatry 2013; 202: 100-7.
[http://dx.doi.org/10.1192/bjp.bp.111.106666] [PMID: 23377209]
[110]
Pan A, Lu L, Franco OH, Yu Z, Li H, Lin X. Association between depressive symptoms and 25-hydroxyvitamin D in middle-aged and elderly Chinese. J Affect Disord 2009; 118(1-3): 240-3.
[http://dx.doi.org/10.1016/j.jad.2009.02.002] [PMID: 19249103]
[111]
Wagner CL, Hollis BW. The Implications of Vitamin D Status During Pregnancy on Mother and her Developing Child. Front Endocrinol (Lausanne) 2018; 9: 500.
[http://dx.doi.org/10.3389/fendo.2018.00500] [PMID: 30233496]
[112]
Eyles DW, Trzaskowski M, Vinkhuyzen AAE, Mattheisen M, Meier S, Gooch H, et al. The association between neonatal vitamin D status and risk of schizophrenia. Sci Rep-Uk 2018; p. 8.
[113]
Hawes JE, Tesic D, Whitehouse AJ, Zosky GR, Smith JT, Wyrwoll CS. Maternal vitamin D deficiency alters fetal brain development in the BALB/c mouse. Behav Brain Res 2015; 286: 192-200.
[http://dx.doi.org/10.1016/j.bbr.2015.03.008] [PMID: 25753408]
[114]
Larqué E, Morales E, Leis R, Blanco-Carnero JE. Maternal and Foetal Health Implications of Vitamin D Status during Pregnancy. Ann Nutr Metab 2018; 72(3): 179-92.
[http://dx.doi.org/10.1159/000487370] [PMID: 29533937]
[115]
Chi MZ, Zhu L, Zhang ZL, et al. The Relationship between Maternal Serum Vitamin D Levels and Infant Neurodevelopment and Anthropometry: A Prospective Observational Study. J Nutr Sci Vitaminol (Tokyo) 2018; 64(2): 161-7.
[http://dx.doi.org/10.3177/jnsv.64.161] [PMID: 29710034]
[116]
Yates NJ, Tesic D, Feindel KW, et al. Vitamin D is crucial for maternal care and offspring social behaviour in rats. J Endocrinol 2018; 237(2): 73-85.
[http://dx.doi.org/10.1530/JOE-18-0008] [PMID: 29559544]
[117]
Janbek J, Specht IO, Heitmann BL. Associations between vitamin D status in pregnancy and offspring neurodevelopment: a systematic literature review. Nutr Rev 2019; 77(5): 330-49.
[http://dx.doi.org/10.1093/nutrit/nuy071] [PMID: 30806662]
[118]
Dhamayanti M, Noviandhari A, Supriadi S, Judistiani RT, Setiabudiawan B. Association of maternal vitamin D deficiency and infants’ neurodevelopmental status: A cohort study on vitamin D and its impact during pregnancy and childhood in Indonesia. J Paediatr Child Health 2019.
[PMID: 31062441]
[119]
Cortese M, Munger KL, Martinez-Lapiscina EH, Barro C, Edan G, Freedman MS, et al. Vitamin D, smoking, EBV and long-term cognitive performance among CIS patients: 11-year follow-up of BENEFIT. Mult Scler J 2018; 24: 983-4.
[120]
Stessman LE, Peeples ES. Vitamin D and Its Role in Neonatal Hypoxic-Ischemic Brain Injury. Neonatology 2018; 113(4): 305-12.
[http://dx.doi.org/10.1159/000486819] [PMID: 29466806]
[121]
Richards C, Jones C, Groves L, Moss J, Oliver C. Prevalence of autism spectrum disorder phenomenology in genetic disorders: a systematic review and meta-analysis. Lancet Psychiatry 2015; 2(10): 909-16.
[http://dx.doi.org/10.1016/S2215-0366(15)00376-4] [PMID: 26341300]
[122]
Fernell E, Bejerot S, Westerlund J, et al. Autism spectrum disorder and low vitamin D at birth: a sibling control study. Mol Autism 2015; 6: 3.
[http://dx.doi.org/10.1186/2040-2392-6-3] [PMID: 25874075]
[123]
Vinkhuyzen AAE, Eyles DW, Burne THJ, et al. Gestational vitamin D deficiency and autism-related traits: the Generation R Study. Mol Psychiatry 2018; 23(2): 240-6.
[http://dx.doi.org/10.1038/mp.2016.213] [PMID: 27895322]
[124]
Whitehouse AJO, Holt BJ, Serralha M, Holt PG, Kusel MMH, Hart PH. Maternal serum vitamin D levels during pregnancy and offspring neurocognitive development. Pediatrics 2012; 129(3): 485-93.
[http://dx.doi.org/10.1542/peds.2011-2644] [PMID: 22331333]
[125]
Vuillermot S, Luan W, Meyer U, Eyles D. Vitamin D treatment during pregnancy prevents autism-related phenotypes in a mouse model of maternal immune activation. Mol Autism 2017; 8: 9.
[http://dx.doi.org/10.1186/s13229-017-0125-0] [PMID: 28316773]
[126]
Cannell JJ. Autism and vitamin D. Med Hypotheses 2008; 70(4): 750-9.
[http://dx.doi.org/10.1016/j.mehy.2007.08.016] [PMID: 17920208]
[127]
Cuomo AFA. Vitamina D e malattie psichiatriche. Vitamin D-Updates 2019; 2: 3-10.
[128]
Chiang M, Natarajan R, Fan X. Vitamin D in schizophrenia: a clinical review. Evid Based Ment Health 2016; 19(1): 6-9.
[http://dx.doi.org/10.1136/eb-2015-102117] [PMID: 26767392]
[129]
Belvederi Murri M, Respino M, Masotti M, et al. Vitamin D and psychosis: mini meta-analysis. Schizophr Res 2013; 150(1): 235-9.
[http://dx.doi.org/10.1016/j.schres.2013.07.017] [PMID: 23906618]
[130]
Valipour G, Saneei P, Esmaillzadeh A. Serum vitamin D levels in relation to schizophrenia: a systematic review and meta-analysis of observational studies. J Clin Endocrinol Metab 2014; 99(10): 3863-72.
[http://dx.doi.org/10.1210/jc.2014-1887] [PMID: 25050991]
[131]
Lally J, Gardner-Sood P, Firdosi M, et al. Clinical correlates of vitamin D deficiency in established psychosis. BMC Psychiatry 2016; 16: 76.
[http://dx.doi.org/10.1186/s12888-016-0780-2] [PMID: 27000113]
[132]
Crews M, Lally J, Gardner-Sood P, et al. Vitamin D deficiency in first episode psychosis: a case-control study. Schizophr Res 2013; 150(2-3): 533-7.
[http://dx.doi.org/10.1016/j.schres.2013.08.036] [PMID: 24060571]
[133]
Torrey EF, Miller J, Rawlings R, Yolken RH. Seasonality of births in schizophrenia and bipolar disorder: a review of the literature. Schizophr Res 1997; 28(1): 1-38.
[http://dx.doi.org/10.1016/S0920-9964(97)00092-3] [PMID: 9428062]
[134]
Dealberto MJ. Ethnic origin and increased risk for schizophrenia in immigrants to countries of recent and longstanding immigration. Acta Psychiatr Scand 2010; 121(5): 325-39.
[http://dx.doi.org/10.1111/j.1600-0447.2009.01535.x] [PMID: 20105146]
[135]
Berg AO, Melle I, Torjesen PA, Lien L, Hauff E, Andreassen OA. A cross-sectional study of vitamin D deficiency among immigrants and Norwegians with psychosis compared to the general population. J Clin Psychiatry 2010; 71(12): 1598-604.
[http://dx.doi.org/10.4088/JCP.09m05299yel] [PMID: 20441728]
[136]
Humble MB, Gustafsson S, Bejerot S. Low serum levels of 25-hydroxyvitamin D (25-OHD) among psychiatric out-patients in Sweden: relations with season, age, ethnic origin and psychiatric diagnosis. J Steroid Biochem Mol Biol 2010; 121(1-2): 467-70.
[http://dx.doi.org/10.1016/j.jsbmb.2010.03.013] [PMID: 20214992]
[137]
Itzhaky D, Amital D, Gorden K, Bogomolni A, Arnson Y, Amital H. Low serum vitamin D concentrations in patients with schizophrenia. Isr Med Assoc J 2012; 14(2): 88-92.
[PMID: 22693787]
[138]
Narr KL, Toga AW, Szeszko P, et al. Cortical thinning in cingulate and occipital cortices in first episode schizophrenia. Biol Psychiatry 2005; 58(1): 32-40.
[http://dx.doi.org/10.1016/j.biopsych.2005.03.043] [PMID: 15992520]
[139]
Lawrie SM, Abukmeil SS. Brain abnormality in schizophrenia. A systematic and quantitative review of volumetric magnetic resonance imaging studies. Br J Psychiatry 1998; 172: 110-20.
[http://dx.doi.org/10.1192/bjp.172.2.110] [PMID: 9519062]
[140]
McGrath J, Saari K, Hakko H, et al. Vitamin D supplementation during the first year of life and risk of schizophrenia: a Finnish birth cohort study. Schizophr Res 2004; 67(2-3): 237-45.
[http://dx.doi.org/10.1016/j.schres.2003.08.005] [PMID: 14984883]
[141]
Vinkhuyzen AAE, Eyles DW, Burne TH, et al. Prevalence and predictors of vitamin D deficiency based on maternal mid-gestation and neonatal cord bloods: The Generation R Study. J Steroid Biochem Mol Biol 2016; 164: 161-7.
[http://dx.doi.org/10.1016/j.jsbmb.2015.09.018] [PMID: 26385604]
[142]
Hedelin M, Löf M, Olsson M, et al. Dietary intake of fish, omega-3, omega-6 polyunsaturated fatty acids and vitamin D and the prevalence of psychotic-like symptoms in a cohort of 33,000 women from the general population. BMC Psychiatry 2010; 10: 38.
[http://dx.doi.org/10.1186/1471-244X-10-38] [PMID: 20504323]
[143]
McGrath J, Eyles D, Mowry B, Yolken R, Buka S. Low maternal vitamin D as a risk factor for schizophrenia: a pilot study using banked sera. Schizophr Res 2003; 63(1-2): 73-8.
[http://dx.doi.org/10.1016/S0920-9964(02)00435-8] [PMID: 12892860]
[144]
McGrath JJ, Eyles DW, Pedersen CB, et al. Neonatal vitamin D status and risk of schizophrenia: a population-based case-control study. Arch Gen Psychiatry 2010; 67(9): 889-94.
[http://dx.doi.org/10.1001/archgenpsychiatry.2010.110] [PMID: 20819982]
[145]
Gracious BL, Finucane TL, Friedman-Campbell M, Messing S, Parkhurst MN. Vitamin D deficiency and psychotic features in mentally ill adolescents: a cross-sectional study. BMC Psychiatry 2012; 12: 38.
[http://dx.doi.org/10.1186/1471-244X-12-38] [PMID: 22571731]
[146]
Hardingham GE, Do KQ. Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis. Nat Rev Neurosci 2016; 17(2): 125-34.
[http://dx.doi.org/10.1038/nrn.2015.19] [PMID: 26763624]
[147]
Mitra S, Nizamie SH, Goyal N. Mirror neuron activity in schizophrenia may remain unaffected by duration of untreated psychosis. Asian J Psychiatr 2017; 27: 16-7.
[http://dx.doi.org/10.1016/j.ajp.2017.02.014] [PMID: 28558891]
[148]
Berk M, Copolov D, Dean O, et al. N-acetyl cysteine as a glutathione precursor for schizophrenia--a double-blind, randomized, placebo-controlled trial. Biol Psychiatry 2008; 64(5): 361-8.
[http://dx.doi.org/10.1016/j.biopsych.2008.03.004] [PMID: 18436195]
[149]
Garcion E, Sindji L, Leblondel G, Brachet P, Darcy F. 1,25-dihydroxyvitamin D3 regulates the synthesis of gamma-glutamyl transpeptidase and glutathione levels in rat primary astrocytes. J Neurochem 1999; 73(2): 859-66.
[http://dx.doi.org/10.1046/j.1471-4159.1999.0730859.x] [PMID: 10428085]
[150]
Jain SK, Micinski D. Vitamin D upregulates glutamate cysteine ligase and glutathione reductase, and GSH formation, and decreases ROS and MCP-1 and IL-8 secretion in high-glucose exposed U937 monocytes. Biochem Biophys Res Commun 2013; 437(1): 7-11.
[http://dx.doi.org/10.1016/j.bbrc.2013.06.004] [PMID: 23770363]
[151]
Kesby JP, Cui X, Burne TH, Eyles DW. Altered dopamine ontogeny in the developmentally vitamin D deficient rat and its relevance to schizophrenia. Front Cell Neurosci 2013; 7: 111.
[http://dx.doi.org/10.3389/fncel.2013.00111] [PMID: 23882183]
[152]
Cui X, Pelekanos M, Burne TH, McGrath JJ, Eyles DW. Maternal vitamin D deficiency alters the expression of genes involved in dopamine specification in the developing rat mesencephalon. Neurosci Lett 2010; 486(3): 220-3.
[http://dx.doi.org/10.1016/j.neulet.2010.09.057] [PMID: 20884326]
[153]
Cui X, Pertile R, Liu P, Eyles DW. Vitamin D regulates tyrosine hydroxylase expression: N-cadherin a possible mediator. Neuroscience 2015; 304: 90-100.
[http://dx.doi.org/10.1016/j.neuroscience.2015.07.048] [PMID: 26210580]
[154]
Uhlhaas PJ, Singer W. High-frequency oscillations and the neurobiology of schizophrenia. Dialogues Clin Neurosci 2013; 15(3): 301-13.
[PMID: 24174902]
[155]
Uhlhaas PJ. Dysconnectivity, large-scale networks and neuronal dynamics in schizophrenia. Curr Opin Neurobiol 2013; 23(2): 283-90.
[http://dx.doi.org/10.1016/j.conb.2012.11.004] [PMID: 23228430]
[156]
Lewis DA, Sweet RA. Schizophrenia from a neural circuitry perspective: advancing toward rational pharmacological therapies. J Clin Invest 2009; 119(4): 706-16.
[http://dx.doi.org/10.1172/JCI37335] [PMID: 19339762]
[157]
Morales E, Julvez J, Torrent M, et al. Vitamin D in Pregnancy and Attention Deficit Hyperactivity Disorder-like Symptoms in Childhood. Epidemiology 2015; 26(4): 458-65.
[http://dx.doi.org/10.1097/EDE.0000000000000292] [PMID: 25867115]
[158]
Mossin MH, Aaby JB, Dalgård C, Lykkedegn S, Christesen HT, Bilenberg N. Inverse associations between cord vitamin D and attention deficit hyperactivity disorder symptoms: A child cohort study. Aust N Z J Psychiatry 2017; 51(7): 703-10.
[http://dx.doi.org/10.1177/0004867416670013] [PMID: 27694636]
[159]
Goksugur SB, Tufan AE, Semiz M, et al. Vitamin D status in children with attention-deficit-hyperactivity disorder. Pediatr Int 2014; 56(4): 515-9.
[http://dx.doi.org/10.1111/ped.12286] [PMID: 24417979]
[160]
Avcil S, Uysal P, Yilmaz M, Erge D, Demirkaya SK, Eren E. Vitamin D Deficiency and a Blunted Parathyroid Hormone Response in Children with Attention-Deficit/Hyperactivity Disorder. Clin Lab 2017; 63(3): 435-43.
[http://dx.doi.org/10.7754/Clin.Lab.2016.160629] [PMID: 28271675]
[161]
Rucklidge JJ, Frampton CM, Gorman B, Boggis A. Vitamin-mineral treatment of attention-deficit hyperactivity disorder in adults: double-blind randomised placebo-controlled trial. Br J Psychiatry 2014; 204: 306-15.
[http://dx.doi.org/10.1192/bjp.bp.113.132126] [PMID: 24482441]
[162]
Rucklidge JJ, Johnstone J, Gorman B, Boggis A, Frampton CM. Moderators of treatment response in adults with ADHD treated with a vitamin-mineral supplement. Prog Neuropsychopharmacol Biol Psychiatry 2014; 50: 163-71.
[http://dx.doi.org/10.1016/j.pnpbp.2013.12.014] [PMID: 24374068]
[163]
Patrick RP, Ames BN. Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior. FASEB J 2015; 29(6): 2207-22.
[http://dx.doi.org/10.1096/fj.14-268342] [PMID: 25713056]
[164]
Gaspar P, Cases O, Maroteaux L. The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci 2003; 4(12): 1002-12.
[http://dx.doi.org/10.1038/nrn1256] [PMID: 14618156]
[165]
Popa-Wagner A, Mitran S, Sivanesan S, Chang E, Buga AM. ROS and brain diseases: the good, the bad, and the ugly. Oxid Med Cell Longev 2013; 2013963520
[http://dx.doi.org/10.1155/2013/963520] [PMID: 24381719]
[166]
Volkow ND. Long-term safety of stimulant use for ADHD: findings from nonhuman primates. Neuropsychopharmacology 2012; 37(12): 2551-2.
[http://dx.doi.org/10.1038/npp.2012.127] [PMID: 23070200]
[167]
Mohammadpour N, Jazayeri S, Tehrani-Doost M, et al. Effect of vitamin D supplementation as adjunctive therapy to methylphenidate on ADHD symptoms: A randomized, double blind, placebo-controlled trial. Nutr Neurosci 2018; 21(3): 202-9.
[http://dx.doi.org/10.1080/1028415X.2016.1262097] [PMID: 27924679]
[168]
[169]
De-Regil LM, Palacios C, Lombardo LK, Pena-Rosas JP. Vitamin D supplementation for women during pregnancy. Cochrane Db Syst Rev 2016; (1): CD0088763


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 21
Year: 2020
Page: [2497 - 2509]
Pages: 13
DOI: 10.2174/1381612826666200506093858
Price: $65

Article Metrics

PDF: 25
HTML: 3