Continuous Hypoxia and Glucose Metabolism: The Effects on Gene Expression in Mcf7 Breast Cancer Cell Line

Author(s): Abdel Q. Al Bawab, Malek Zihlif*, Yazan Jarrar, Ahmad Sharab

Journal Name: Endocrine, Metabolic & Immune Disorders - Drug Targets
Formerly Current Drug Targets - Immune, Endocrine & Metabolic Disorders

Volume 21 , Issue 3 , 2021

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Hypoxia (deprived oxygen in tissues) may induce molecular and genetic changes in cancer cells.

Objective: To Investigate the genetic changes of glucose metabolism in breast cancer cell line (MCF7) after exposure to continuous hypoxia (10 and 20 cycles exposure of 72 hours continuously on a weekly basis).

Methods: Gene expression of MCF7 cells was evaluated using real-time polymerase chain reactionarray method. Furthermore, cell migration and wound healing assays were also applied.

Results: It was found that 10 episodes of continuous hypoxia activated the Warburg effect in MCF7 cells, via the significant up-regulation of genes involved in glycolysis (ANOVA, p value < 0.05). The molecular changes were associated with the ability of MCF7 cells to divide and migrate. Interestingly, after 20 episodes of continuous hypoxia, the expression glycolysis mediated genes dropped significantly (from 30 to 9 folds). This could be attributed to the adaptive ability of cancer cells.

Conclusion: It is concluded that 10 hypoxic episodes increased the survival rate and aggressiveness of MCF7 cells and induced the Warburg effect by the up-regulation of the glycolysis mediating gene expression.

Keywords: Hypoxia, chronic, MCF7, glycolysis, RT-PCR, warburg effect.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2021
Published on: 05 May, 2020
Page: [511 - 519]
Pages: 9
DOI: 10.2174/1871530320666200506082020
Price: $65

Article Metrics

PDF: 103