Bio-Mediated Synthesis and Characterization of Zinc Phosphate Nanoparticles Using Enterobacter aerogenes Cells for Antibacterial and Anticorrosion Applications

Author(s): Mona Sadeghi-Aghbash, Mostafa Rahimnejad*, S. Masoomeh Pourali

Journal Name: Current Pharmaceutical Biotechnology

Volume 21 , Issue 12 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: The promising properties of Zinc Phosphate (ZnP) Nanoparticles (NPs) have made them come into prominence as one of the most favorable catalysts in various industries with ever- increasing applications. Among several proposed synthetic methods, biological methods have mostly been desired for their sheer person-environment compatibility in comparison with those of chemical and physical ones.

Objective: Therefore, the synthesis of ZnP NPs via biological route was developed in this study.

Method: Herein proposed a facile, applicable procedure for ZnP NPs via biosynthesis route, which included precipitation of Zinc Nitrate (Zn(NO3)2.6H2O) and diammonium hydrogen phosphate ((NH4)2HPO4) in the presence of Enterobacter aerogenes as the synthetic intermediate. Investigation of the anti-corrosion behavior of the synthesized NPs was explored on carbon steel in the hydrochloric acid corrosive environment to provide deeper insight into their unique anti-corrosion properties. Additionally, their antibacterial activities were also examined against Escherichia coli, Staphylococcus aureus and Streptococcus mutans.

Results: The results of X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, Field Emission Scanning Electron Microscope (FE-SEM) and the Energy Dispersive X-Ray Spectroscopy (EDS) analyses confirmed the successful synthesis of ZnP NPs. Moreover, the examinations of both anti-corrosion and antibacterial properties, revealed that the synthesized NPs could be a promising anti-corrosion/antibacterial agent.

Conclusion: ZnP NPs with an average size of 30-35 nm were successfully synthesized via the simple, suitable biological method. Results implied that these particles could be used as a non-toxic, environmentally friendly, corrosion-resistant and antibacterial agent instead of toxic and uneco-friendly ones.

Keywords: Bio-mediated synthesis, zinc phosphate nanoparticles, bacteria, Enterobacter aerogenes, anti-corrosion, antibacterial property.

[1]
Senapati, U.; Sarkar, D. Characterization of biosynthesized zinc sulphide nanoparticles using edible mushroom Pleurotuss ostreatu. Indian J. Phys., 2014, 88(6), 557-562.
[http://dx.doi.org/10.1007/s12648-014-0456-z]
[2]
Mohanpuria, P.; Rana, N.K.; Yadav, S.K. Biosynthesis of nanoparticles: Technological concepts and future applications. J. Nanopart. Res., 2008, 10(3), 507-517.
[http://dx.doi.org/10.1007/s11051-007-9275-x]
[3]
Hulkoti, N.I.; Taranath, T.C. Biosynthesis of nanoparticles using microbes- A review. Colloids Surf. B Biointerfaces, 2014, 121, 474-483.
[http://dx.doi.org/10.1016/j.colsurfb.2014.05.027 ] [PMID: 25001188]
[4]
Jadhav, A.J.; Karekar, S.E.; Pinjari, D.V.; Datar, Y.G.; Bhanvase, B.A.; Sonawane, S.H.; Pandit, A.B. Development of smart nanocontainers with a zinc phosphate core and a pH-responsive shell for controlled release of immidazole. Hybrid Mater., 2015, 2(1), 71-79.
[http://dx.doi.org/10.1515/hyma-2015-0001]
[5]
He, W.; Yan, S.; Wang, Y.; Zhang, X.; Zhou, W.; Tian, X.; Sun, X.; Han, X. Biomimetic synthesis of mesoporous zinc phosphate nanoparticles. J. Alloys Compd., 2009, 477(1-2), 657-660.
[http://dx.doi.org/10.1016/j.jallcom.2008.10.136]
[6]
Boonchom, B.; Baitahe, R.; Kongtaweelert, S.; Vittayakorn, N. Kinetics and thermodynamics of zinc phosphate hydrate synthesized by a simple route in aqueous and acetone media. Ind. Eng. Chem. Res., 2010, 49(8), 3571-3576.
[http://dx.doi.org/10.1021/ie901626z]
[7]
Liu, C.; Xie, H-Z.; Wang, J-D.; Tong, Q.; Liu, J-K.; Yang, X-H. Preparation and anti-corrosion performance of zinc phosphate nanocrystals by ultrasonic–hydrothermal synergistic route. Nano, 2014, 9(6), 1-5.
[http://dx.doi.org/10.1142/S1793292014500593]
[8]
Yuan, A.; Liao, S.; Tong, Z.F.; Wu, J.; Huang, Z. Synthesis of nanoparticle zinc phosphate dihydrate by solid state reaction at room temperature and its thermochemical study. Mater. Lett., 2006, 60(17-18), 2110-2114.
[http://dx.doi.org/10.1016/j.matlet.2005.12.082]
[9]
Zhou, X.; Du, H.; Ma, H.; Sun, L.; Cao, R.; Li, H.; Zhang, P. phosphate with self-assembled flower-like micro-nanostructures. J. Phys. Chem. Solids, 2015, 78, 1-7.
[http://dx.doi.org/10.1016/j.jpcs.2014.10.020]
[10]
Jung, S-H.; Oh, E.; Shim, D.; Park, D-H.; Cho, S.; Lee, B.R.; Jeong, Y.U.; Lee, K-H.; Jeong, S-H. Sonochemical synthesis of amorphous zinc phosphate nanospheres. Bull. Korean Chem. Soc., 2009, 30(10), 2280-2282.
[http://dx.doi.org/10.5012/bkcs.2009.30.10.2280]
[11]
Parhi, P.; Manivannan, V.; Kohli, S.; McCurdy, P. Room temperature metathetic synthesis and characterization of α-hopeite, Zn3(PO4)2•4H2O. Mater. Res. Bull., 2008, 43(7), 1836-1841.
[http://dx.doi.org/10.1016/j.materresbull.2007.07.005]
[12]
Grzmil, B.; Kic, B.; Lubkowski, K. Studies on obtaining of zinc phosphate nanomaterials. Rev. Adv. Mater. Sci., 2007, 14, 46-48.
[13]
Yan, S.; He, W.; Sun, C.; Zhang, X.; Zhao, H.; Li, Z.; Zhou, W.; Tian, X.; Sun, X.; Han, X. The biomimetic synthesis of zinc phosphate nanoparticles. Dyes Pigm., 2009, 80(2), 254-258.
[http://dx.doi.org/10.1016/j.dyepig.2008.06.010]
[14]
Holister, P.; Weener, J-W.; Román, C.; Harper, T. Nanoparticles. Technol. White Papers, 2003, 3, 1-11.
[15]
Cocco, A.R.; Rosa, W.L.; Silva, A.F.; Lund, R.G.; Piva, E. A systematic review about antibacterial monomers used in dental adhesive systems: Current status and further prospects. Dent. Mater., 2015, 31(11), 1345-1362.
[http://dx.doi.org/10.1016/j.dental.2015.08.155 ] [PMID: 26345999]
[16]
Phan, T.N.; Buckner, T.; Sheng, J.; Baldeck, J.D.; Marquis, R.E. Physiologic actions of zinc related to inhibition of acid and alkali production by oral streptococci in suspensions and biofilms. Oral Microbiol. Immunol., 2004, 19(1), 31-38.
[http://dx.doi.org/10.1046/j.0902-0055.2003.00109.x] [PMID: 14678472]
[17]
Jadhav, A.; Holkar, C.; Pandit, A.; Pinjari, D. Intensification of synthesis of crystalline zinc phosphate (Zn3(PO4)2) nanopowder: advantage of sonochemical method over conventional method. Chem. Eng., 2016, 3(2), 1028.
[18]
Raliya, R.; Tarafdar, J.C. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agric. Res., 2013, 2(1), 48-57.
[http://dx.doi.org/10.1007/s40003-012-0049-z]
[19]
Kundu, D.; Hazra, C.; Chatterjee, A.; Chaudhari, A.; Mishra, S. Extracellular biosynthesis of zinc oxide nanoparticles using Rhodococcus pyridinivorans NT2: Multifunctional textile finishing, biosafety evaluation and in vitro drug delivery in colon carcinoma. J. Photochem. Photobiol. B, 2014, 140, 194-204.
[http://dx.doi.org/10.1016/j.jphotobiol.2014.08.001] [PMID: 25169770]
[20]
Sarkar, J.; Ghosh, M.; Mukherjee, A.; Chattopadhyay, D.; Acharya, K. Biosynthesis and safety evaluation of ZnO nanoparticles. Bioprocess Biosyst. Eng., 2014, 37(2), 165-171.
[http://dx.doi.org/10.1007/s00449-013-0982-7 ] [PMID: 23743731]
[21]
Li, X.; Xu, H.; Chen, Z-S.; Chen, G. Biosynthesis of nanoparticles by microorganisms and their applications. J. Nanomater., 2011, 2011, 1-16.
[http://dx.doi.org/10.1155/2011/270974]
[22]
Mobley, D.M.; Chengappa, M.M.; Kadel, W.L.; Stuart, J.G. Effect of pH, temperature and media on acid and alkaline phosphatase activity in “clinical” and “nonclinical” isolates of Bordetella bronchiseptica. Can. J. Comp. Med., 1984, 48(2), 175-178.
[PMID: 6722645]
[23]
Prasad, K.; Jha, A.K. ZnO nanoparticles: Synthesis and adsorption study. Nat. Sci., 2009, 1(2), 129-135.
[24]
Sandana Mala, J.G.; Rose, C. Facile production of ZnS quantum dot nanoparticles by Saccharomyces cerevisiae MTCC 2918. J. Biotechnol., 2014, 170, 73-78.
[http://dx.doi.org/10.1016/j.jbiotec.2013.11.017] [PMID: 24316439]
[25]
Singh, G.; Babele, P.K.; Kumar, A.; Srivastava, A.; Sinha, R.P.; Tyagi, M.B. Synthesis of ZnO nanoparticles using the cell extract of the cyanobacterium, Anabaena strain L31 and its conjugation with UV-B absorbing compound shinorine. J. Photochem. Photobiol. B, 2014, 138, 55-62.
[http://dx.doi.org/10.1016/j.jphotobiol.2014.04.030] [PMID: 24911272]
[26]
Azizi, S.; Ahmad, M.B.; Namvar, F.; Mohamad, R. Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater. Lett., 2014, 116, 275-277.
[http://dx.doi.org/10.1016/j.matlet.2013.11.038]
[27]
Srivastava, V.; Gusain, D.; Sharma, Y.C. Synthesis, characterization and application of zinc oxide nanoparticles (n-ZnO). Ceram. Int., 2013, 39(8), 9803-9808.
[http://dx.doi.org/10.1016/j.ceramint.2013.04.110]
[28]
Jadhav, A.J.; Pinjari, D.V.; Pandit, A.B. Surfactant assisted sonochemical synthesis of hollow structured zinc phosphate nanoparticles and their application as nanocarrier. Chem. Eng. J., 2016, 297, 116-120.
[http://dx.doi.org/10.1016/j.cej.2016.04.001]
[29]
McCafferty, E. Validation of corrosion rates measured by the Tafel extrapolation method. Corros. Sci., 2005, 47(12), 3202-3215.
[http://dx.doi.org/10.1016/j.corsci.2005.05.046]
[30]
Duffy, L.L.; Osmond-McLeod, M.J.; Judy, J.; King, T. Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry-relevant isolates of Salmonella and Campylobacter. Food Control, 2018, 92, 293-300.
[http://dx.doi.org/10.1016/j.foodcont.2018.05.008]
[31]
Emami-Karvani, Z.; Chehrazi, P. Antibacterial activity of ZnO nanoparticle on gram-positive and gram-negative bacteria. Afr. J. Microbiol. Res., 2011, 5(12), 1368-1373.
[32]
Qi, L.; Xu, Z.; Jiang, X.; Hu, C.; Zou, X. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr. Res., 2004, 339(16), 2693-2700.
[http://dx.doi.org/10.1016/j.carres.2004.09.007 ] [PMID: 15519328]
[33]
Zhang, N.; Weir, M.D.; Chen, C.; Melo, M.A.; Bai, Y.; Xu, H.H. Orthodontic cement with protein-repellent and antibacterial properties and the release of calcium and phosphate ions. J. Dent., 2016, 50, 51-59.
[http://dx.doi.org/10.1016/j.jdent.2016.05.001 ] [PMID: 27157089]
[34]
Sadeghi Aqbash, M.; Rahimnejad, M. Effect of zinc phosphate nanoparticles in combination with glass ionomer cements on Streptococcus mutans. Jmums, 2017, 27(153), 39-48.
[35]
Khodashenas, B.; Ghorbani, H.R. Synthesis of copper nanoparticles: An overview of the various methods. Korean J. Chem. Eng., 2014, 31(7), 1105-1109.
[http://dx.doi.org/10.1007/s11814-014-0127-y]
[36]
Ingale, A.G.; Chaudhari, A.N. Biogenic synthesis of nanoparticles and potential applications: An eco-friendly approach. J. Nanomed. Nanotechnol., 2013, 4(165), 1-7.
[http://dx.doi.org/10.4172/2157-7439.1000165]
[37]
Jayaseelan, C.; Rahuman, A.A.; Kirthi, A.V.; Marimuthu, S.; Santhoshkumar, T.; Bagavan, A.; Gaurav, K.; Karthik, L.; Rao, K.V. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 90, 78-84.
[http://dx.doi.org/10.1016/j.saa.2012.01.006 ] [PMID: 22321514]
[38]
Baskar, G.; Chandhuru, J.; Fahad, K.S.; Praveen, A. Mycological synthesis, characterization and antifungal activity of zinc oxide nanoparticles. AJPTech., 2013, 3(4), 142-146.
[39]
Selvarajan, E.; Mohanasrinivasan, V. Biosynthesis and characterization of ZnO nanoparticles using Lactobacillus plantarum VITES07. Mater. Lett., 2013, 112, 180-182.
[http://dx.doi.org/10.1016/j.matlet.2013.09.020]
[40]
Asemani, H.R.; Ahmadi, P.; Sarabi, A.A.; Mohammadloo, H.E. Effect of zirconium conversion coating: Adhesion and anti-corrosion properties of epoxy organic coating containing Zinc Aluminum Polyphosphate (ZAPP) pigment on carbon mild steel. Prog. Org. Coat., 2016, 94, 18-27.
[http://dx.doi.org/10.1016/j.porgcoat.2016.01.015]
[41]
Jadhav, A.J.; Holkar, C.R.; Pinjari, D.V. Anticorrosive performance of super-hydrophobic imidazole encapsulated hollow zinc phosphate nanoparticles on mild steel. Prog. Org. Coat., 2018, 114, 33-39.
[http://dx.doi.org/10.1016/j.porgcoat.2017.09.017]
[42]
Pal, S.; Tak, Y.K.; Song, J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol., 2007, 73(6), 1712-1720.
[http://dx.doi.org/10.1128/AEM.02218-06 ] [PMID: 17261510]
[43]
Reddy, K.M.; Feris, K.; Bell, J.; Wingett, D.G.; Hanley, C.; Punnoose, A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett., 2007, 90(213902), 2139021-2139023.
[http://dx.doi.org/10.1063/1.2742324 ] [PMID: 18160973]
[44]
Atmaca, S.; Kadri, G.; Cicek, R. The effect of zinc on microbial growth. Turk. J. Med. Sci., 1998, 28(6), 595-598.
[45]
Sonia, S.; Linda, J.K.H.; Ruckmani, K.; Sivakumar, M. Antimicrobial and antioxidant potentials of biosynthesized colloidal zinc oxide nanoparticles for a fortified cold cream formulation: A potent nanocosmeceutical application. Mater. Sci. Eng. C, 2017, 79, 581-589.
[http://dx.doi.org/10.1016/j.msec.2017.05.059 ] [PMID: 28629056]
[46]
Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett., 2015, 7(3), 219-242.
[http://dx.doi.org/10.1007/s40820-015-0040-x ] [PMID: 30464967]
[47]
Pasquet, J.; Chevalier, Y.; Pelletier, J.; Couval, E.; Bouvier, D.; Bolzinger, M.A. The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids Surf. A Physicochem. Eng. Asp., 2014, 457, 263-274.
[http://dx.doi.org/10.1016/j.colsurfa.2014.05.057]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 12
Year: 2020
Page: [1232 - 1241]
Pages: 10
DOI: 10.2174/1389201021666200506073534
Price: $65

Article Metrics

PDF: 17
HTML: 2
EPUB: 1
PRC: 1