Generic placeholder image

Current Chinese Chemistry

Editor-in-Chief

ISSN (Print): 2666-0016
ISSN (Online): 2666-0008

Research Article

Synthesis of Dandelion-like Porous Au Nanoparticles for Catalytic Reduction of Nitrophenol

Author(s): Huiying Wu and Feng Liang*

Volume 1, Issue 1, 2021

Published on: 04 May, 2020

Page: [47 - 55] Pages: 9

DOI: 10.2174/2666001601999200505080355

Abstract

Background: Porous Au nanomaterials show great potential in the fields of biomedicine, drug delivery, and catalysis for the merits of low density, large void space, and large specific surface area. The preparation of porous Au nanomaterials is usually carried out by using a hard-templating method, which is cumbersome.

Methods: Dandelion-like porous Au nanoparticles were synthesized through a soft-templating method in our work. The synthesized porous Au nanoparticles were characterized via transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and cyclic voltammetry (CV). The reduction of nitrophenol was carried out to evaluate the catalytic behavior of porous Au nanoparticles.

Results: Porous Au nanoparticles prepared were in uniform size (47.9±6.4 nm) and the morphology could be regulated by adjusting the molar ratio of reactants. The apparent rate constant (kapp) value of reducing nitrophenol catalyzed by porous Au nanoparticles was higher than Au nanospheres and nanobranches in a similar size. It could be attributed to a large amount of active sites and high proportion of high-order crystal faces proved by CV and XRD.

Conclusion: We developed a facile and reproducible method for synthesizing porous Au nanoparticles. The morphology of porous Au nanoparticles can be ajusted by changing the molar ratio of reactants. Porous Au nanoparticles that we prepared behaved better in catalysis compared with Au nanospheres and Au nanobranches.

Keywords: Porous, Au nanomaterial, aromatic nitro, wet-chemistry method, soft template, catalysis.

Graphical Abstract
[1]
Ji, M.W.; Xu, M.; Zhang, W.; Yang, Z.Z.; Huang, L.; Liu, J.J.; Zhang, Y.; Gu, L.; Yu, Y.X.; Hao, W.C.; An, P.F.; Zheng, L.R.; Zhu, H.S.; Zhang, J.T. Structurally well-defined Au@Cu2-xS core-shell nanocrystals for improved cancer treatment based on enhanced photothermal efficiency. Adv. Mater., 2016, 28(16), 3094-3101.
[http://dx.doi.org/10.1002/adma.201503201] [PMID: 26913692]
[2]
Kim, Y.K.; Na, H.K.; Kim, S.; Jang, H.J.; Chang, S.J.; Min, D.H. One-pot synthesis of multifunctional Au@graphene oxide nanocolloid core@shell nanoparticles for Raman bioimaging, photothermal, and photodynamic therapy. Small, 2015, 11(21), 2527-2535.
[http://dx.doi.org/10.1002/smll.201402269] [PMID: 25626859]
[3]
Han, S.; Park, Y.J.; Park, E.J.; Kim, Y. T98G cell death induced by photothermal treatment with hollow gold nanoshell-coupled silica microrods prepared from escherichia coli. ACS Appl. Mater. Interfaces, 2019, 11(9), 8831-8837.
[http://dx.doi.org/10.1021/acsami.8b21199] [PMID: 30763070]
[4]
Pang, B.; Zhao, Y.F.; Luehmann, H.; Yang, X.; Detering, L.; You, M.; Zhang, C.; Zhang, L.; Li, Z.Y.; Ren, Q.S.; Liu, Y.J.; Xia, Y.N. 64Cu doped pdcu@au tripods: a multifunctional nanomaterial for positron emission tomography and image-guided photothermal cancer treatment. ACS Nano, 2016, 10(3), 3121-3131.
[http://dx.doi.org/10.1021/acsnano.5b07968] [PMID: 26824412]
[5]
Luo, Z.T.; Zheng, K.Y.; Xie, J.P. Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications. Chem. Commun. (Camb.), 2014, 50(40), 5143-5155.
[http://dx.doi.org/10.1039/C3CC47512C] [PMID: 24266029]
[6]
Elahi, N.; Kamali, M.; Baghersad, M.H. Recent biomedical applications of gold nanoparticles: A review. Talanta, 2018, 184, 537-556.
[http://dx.doi.org/10.1016/j.talanta.2018.02.088] [PMID: 29674080]
[7]
Verma, N.; Kumar, N. Synthesis and biomedical applications of copper oxide nanoparticles: an expanding horizon. ACS Biomater. Sci. Eng., 2019, 5, 1170-1188.
[http://dx.doi.org/10.1021/acsbiomaterials.8b01092]
[8]
Cheng, J.; Gu, Y.J.; Cheng, S.H.; Wong, W.T. Surface functionalized gold nanoparticles for drug delivery. J. Biomed. Nanotechnol., 2013, 9(8), 1362-1369.
[http://dx.doi.org/10.1166/jbn.2013.1536] [PMID: 23926802]
[9]
Xu, P.; Feng, Q.S.; Yang, X.R.; Liu, S.M.; Xu, C.; Huang, L.Q.; Chen, M.W.; Liang, F.; Cheng, Y. Near infrared light triggered Cucurbit[7]uril- stabilized gold nanostars as a supramolecular nanoplatform for combination treatment of cancer. Bioconjug. Chem., 2018, 29(8), 2855-2866.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00438] [PMID: 30025449]
[10]
Coelho, S.C.; Rangel, M.; Pereira, M.C.; Coelho, M.A.; Ivanova, G. Structural characterization of functionalized gold nanoparticles for drug delivery in cancer therapy: a NMR based approach. Phys. Chem. Chem. Phys., 2015, 17(29), 18971-18979.
[http://dx.doi.org/10.1039/C5CP02717A] [PMID: 26126833]
[11]
Ma, X.M.; He, S.; Qiu, B.; Luo, F.; Guo, L.H.; Lin, Z.Y. Noble metal nanoparticle-based multicolor immunoassays: an approach toward visual quantification of the analytes with the naked Eye. ACS Sens., 2019, 4(4), 782-791.
[http://dx.doi.org/10.1021/acssensors.9b00438] [PMID: 30896159]
[12]
Lee, J.; Morita, M.; Takemura, K.; Park, E.Y. A multi-functional gold/iron-oxide nanoparticle-CNT hybrid nanomaterial as virus DNA sensing platform. Biosens. Bioelectron., 2018, 102, 425-431.
[http://dx.doi.org/10.1016/j.bios.2017.11.052] [PMID: 29175218]
[13]
Lee, E.; Yoon, Y.S.; Kim, D.J. Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing. ACS Sens., 2018, 3(10), 2045-2060.
[http://dx.doi.org/10.1021/acssensors.8b01077] [PMID: 30270624]
[14]
Sarkar, D.; Xie, X.J.; Kang, J.H.; Zhang, H.J.; Liu, W.; Navarrete, J.; Moskovits, M.; Banerjee, K. Functionalization of transition metal dichalcogenides with metallic nanoparticles: implications for doping and gas-sensing. Nano Lett., 2015, 15(5), 2852-2862.
[http://dx.doi.org/10.1021/nl504454u] [PMID: 25723363]
[15]
Davidson, M.; Ji, Y.Z.; Leong, G.J.; Kovach, N.C.; Trewyn, B.G.; Richards, R.M. Hybrid mesoporous silica/noble-metal nanoparticle materials-synthesis and catalytic applications. ACS Appl. Nano Mater., 2018, 1, 4386-4400.
[http://dx.doi.org/10.1021/acsanm.8b00967]
[16]
Mitsudome, T.; Yamamoto, M.; Maeno, Z.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. One-step synthesis of core-gold/shellceria nanomaterial and its catalysis for highly selective semihydrogenation of alkynes. J. Am. Chem. Soc., 2015, 137(42), 13452-13455.
[http://dx.doi.org/10.1021/jacs.5b07521] [PMID: 26460694]
[17]
Zhan, W.W.; Zhu, Q.L.; Xu, Q. Dehydrogenation of ammonia borane by metal nanoparticle catalysts. ACS Catal., 2016, 6, 6892-6905.
[http://dx.doi.org/10.1021/acscatal.6b02209]
[18]
Ma, T.; Yang, W.S.; Liu, S.M.; Zhang, H.; Liang, F. A comparison reduction of 4-nitrophenol by gold nanospheres and gold nanostars. Catalysts, 2017, 7, 38.
[http://dx.doi.org/10.3390/catal7020038]
[19]
Ma, T.; Liang, F.; Chen, R.S.; Liu, S.M.; Zhang, H. Synthesis of Au-Pd bimetallic nanoflowers for catalytic reduction of 4-nitrophenol. Nanomaterials (Basel), 2017, 7(9), 239.
[http://dx.doi.org/10.3390/nano7090239] [PMID: 28846598]
[20]
Hakimian, F.; Ghourchian, H. Simple and rapid method for synthesis of porous gold nanoparticles and its application in improving DNA loading capacity. Mater. Sci. Eng. C, 2019, 103109795
[http://dx.doi.org/10.1016/j.msec.2019.109795] [PMID: 31349459]
[21]
Zhang, Q.F.; Large, N.; Nordlander, P.; Wang, H. Porous Au nanoparticles with tunable plasmon resonances and intense field enhancements for single-particle SERS. J. Phys. Chem. Lett., 2014, 5(2), 370-374.
[http://dx.doi.org/10.1021/jz402795x] [PMID: 26270713]
[22]
Hu, J.H.; Jiang, R.B.; Zhang, H.; Guo, Y.Z.; Wang, J.; Wang, J.T. Colloidal porous gold nanoparticles. Nanoscale, 2018, 10(39), 18473-18481.
[http://dx.doi.org/10.1039/C8NR06149A] [PMID: 30277240]
[23]
Guo, M.Z.; He, J.; Li, Y.; Ma, S.; Sun, X.B. One-step synthesis of hollow porous gold nanoparticles with tunable particle size for the reduction of 4-nitrophenol. J. Hazard. Mater., 2016, 310, 89-97.
[http://dx.doi.org/10.1016/j.jhazmat.2016.02.016] [PMID: 26905608]
[24]
Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B, 2006, 110(32), 15700-15707.
[http://dx.doi.org/10.1021/jp061667w] [PMID: 16898714]
[25]
Ataee-Esfahani, H.; Liu, J.; Hu, M.; Miyamoto, N.; Tominaka, S.; Wu, K.C.W.; Yamauchi, Y. Mesoporous metallic cells: design of uniformly sized hollow mesoporous Pt-Ru particles with tunable shell thicknesses. Small, 2013, 9(7), 1047-1051.
[http://dx.doi.org/10.1002/smll.201202539] [PMID: 23281242]
[26]
Sakai, T.; Alexandridis, P. Mechanism of gold metal ion reduction, nanoparticle growth and size control in aqueous amphiphilic block copolymer solutions at ambient conditions. J. Phys. Chem. B, 2005, 109(16), 7766-7777.
[http://dx.doi.org/10.1021/jp046221z] [PMID: 16851902]
[27]
Khullar, P.; Mahal, A.; Singh, V.; Banipal, T.S.; Kaur, G.; Bakshi, M.S. How PEO-PPO-PEO triblock polymer micelles control the synthesis of gold nanoparticles: temperature and hydrophobic effects. Langmuir, 2010, 26(13), 11363-11371.
[http://dx.doi.org/10.1021/la100734p] [PMID: 20369849]
[28]
Sakai, T.; Horiuchi, Y.; Alexandridis, P.; Okada, T.; Mishima, S. Block copolymer-mediated synthesis of gold nanoparticles in aqueous solutions: segment effect on gold ion reduction, stabilization, and particle morphology. J. Colloid Interface Sci., 2013, 394, 124-131.
[http://dx.doi.org/10.1016/j.jcis.2012.12.003] [PMID: 23332370]
[29]
Zeng, J.; Zhang, Q.; Chen, J.Y.; Xia, Y.N. A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles. Nano Lett., 2010, 10(1), 30-35.
[http://dx.doi.org/10.1021/nl903062e] [PMID: 19928909]
[30]
Yoon, Y.; Yan, B.; Surendranath, Y. Suppressing ion transfer enables versatile measurements of electrochemical surface area for intrinsic activity comparisons. J. Am. Chem. Soc., 2018, 140(7), 2397-2400.
[http://dx.doi.org/10.1021/jacs.7b10966] [PMID: 29266936]
[31]
Wang, L.; He, X.M.; Sun, W.T.; Wang, J.L.; Li, Y.D.; Fan, S.S. Crystal orientation tuning of LiFePO4 nanoplates for high rate lithium battery cathode materials. Nano Lett., 2012, 12(11), 5632-5636.
[http://dx.doi.org/10.1021/nl3027839] [PMID: 23074971]
[32]
Xu, B.; Li, X.J.; Chen, Z.M.; Zhang, T.; Li, C.C. Pd@MIL-100(Fe) composite nanoparticles as efficient catalyst for reduction of 2/3/4- nitrophenol: Synergistic effect between Pd and MIL-100(Fe). Microporous Mesoporous Mater., 2018, 255, 1-6.
[http://dx.doi.org/10.1016/j.micromeso.2017.07.008]
[33]
Li, Z.; Li, X.; Yang, Y.W. Conjugated macrocycle polymer nanoparticles with alternating pillarenes and porphyrins as struts and cyclic Nodes. Small, 2019, 15(12), e1805509.
[http://dx.doi.org/10.1002/smll.201805509] [PMID: 30735309]

© 2024 Bentham Science Publishers | Privacy Policy