Inflammasome Signaling and Other Factors Implicated in Atherosclerosis Development and Progression

Author(s): Zeinab Nazarian-Samani, Robert D. E. Sewell, Mahmoud Rafieian-Kopaei*

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 22 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Chronic inflammation plays an extensive role in the onset and progression of metabolic disorders such as atherosclerosis, type 2 diabetes, gout and obesity. Atherosclerosis accounts for up to 70% mortality in patients with type 2 diabetes and is also a chronic condition that causes atrial stenosis due to a lipometabolism imbalance. The purpose of this article is to consider the inflammatory factors implicated in atherosclerosis and their role in the development and progression of this vascular disease. The inflammasome signaling pathway is an important inflammatory mechanism involved in the development of atherosclerosis. The most important inflammasome pathway in this respect is the NLRP3 inflammasome (Nucleotide-binding oligomerization domain (NOD)-like receptor with a pyrin domain 3), whose activation leads to the generation of important inflammatory cytokines including interleukins 1β and 18 (IL-1β and 18). The activities of these mature cytokines and inflammatory factors produced by other inflammatory pathways lead to arterial inflammation and eventually arterial occlusion, which can result in life-threatening complications such as myocardial infarction and stroke. Therefore, it is essential to seek out more precise mechanisms for the activation of inflammasomes and other inflammatory pathways for the development of therapeutic strategies of atherosclerosis.

Keywords: Atherosclerosis, NLRP3, inflammasome, inflammation, cardiovascular disease, pyrin domain.

[1]
Piepoli MF, Hoes AW, Agewall S, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice. Rev Esp Cardiol (Engl Ed) 2016; 69(10): 939.
[http://dx.doi.org/10.1016/j.rec.2016.09.009] [PMID: 27692125]
[2]
Ference BA, Ginsberg HN, Graham I, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 2017; 38(32): 2459-72.
[http://dx.doi.org/10.1093/eurheartj/ehx144] [PMID: 28444290]
[3]
Chistiakov DA, Melnichenko AA, Grechko AV, Myasoedova VA, Orekhov AN. Potential of anti-inflammatory agents for treatment of atherosclerosis. Exp Mol Pathol 2018; 104(2): 114-24.
[http://dx.doi.org/10.1016/j.yexmp.2018.01.008] [PMID: 29378168]
[4]
Welsh P, Grassia G, Botha S, Sattar N, Maffia P. Targeting inflammation to reduce cardiovascular disease risk: a realistic clinical prospect? Br J Pharmacol 2017; 174(22): 3898-913.
[http://dx.doi.org/10.1111/bph.13818] [PMID: 28409825]
[5]
Ridker PM, Everett BM, Thuren T, et al. CANTOS Trial GroupAnti inflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017; 377(12): 1119-31.
[http://dx.doi.org/10.1056/NEJMoa1707914] [PMID: 28845751]
[6]
Elliott EI, Sutterwala FS. Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev 2015; 265(1): 35-52.
[http://dx.doi.org/10.1111/imr.12286] [PMID: 25879282]
[7]
Libby P. Inflammation in atherosclerosis Arterioscler Thromb Vasc Bio 2012 32: 2045e2051
[8]
Quick CR, Cotton LT. The measured effect of stopping smoking on intermittent claudication. Br J Surg 1982; 69(69)(Suppl.): S24-6.
[http://dx.doi.org/10.1002/bjs.1800691309] [PMID: 7082968]
[9]
Silva Marques J, Pinto FJ. The vulnerable plaque: current concepts and future perspectives on coronary morphology, composition and wall stress imaging. Rev Port Cardiol 2014; 33(2): 101-10.
[http://dx.doi.org/10.1016/j.repc.2013.07.017] [PMID: 24513090]
[10]
Pedrigi RM, de Silva R, Bovens SM, Mehta VV, Petretto E, Krams R. Thin-cap fibroatheroma rupture is associated with a fine interplay of shear and wall stress. Arterioscler Thromb Vasc Biol 2014; 34(10): 2224-31.
[http://dx.doi.org/10.1161/ATVBAHA.114.303426] [PMID: 25060797]
[11]
Chen PY, Qin L, Baeyens N, et al. Endothelial-to-mesenchymal transition drives atherosclerosis progression. J Clin Invest 2015; 125(12): 4514-28.
[http://dx.doi.org/10.1172/JCI82719] [PMID: 26517696]
[12]
Badimon L, Vilahur G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J Intern Med 2014; 276(6): 618-32.
[http://dx.doi.org/10.1111/joim.12296] [PMID: 25156650]
[13]
Kádár A, Glasz T. Development of atherosclerosis and plaque biology. Cardiovasc Surg 2001; 9(2): 109-21.
[http://dx.doi.org/10.1016/S0967-2109(00)00097-1] [PMID: 11250172]
[14]
Mamputu JC, Levesque L, Renier G. Proliferative effect of lipoprotein lipase on human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2000; 20(10): 2212-9.
[http://dx.doi.org/10.1161/01.ATV.20.10.2212] [PMID: 11031206]
[15]
Collins R, Armitage J, Parish S, Sleigh P, Peto R. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet 2003; 361(9374): 2005-16.
[http://dx.doi.org/10.1016/S0140-6736(03)13636-7] [PMID: 12814710]
[16]
Swirski FK, Libby P, Aikawa E, et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J Clin Invest 2007; 117(1): 195-205.
[http://dx.doi.org/10.1172/JCI29950] [PMID: 17200719]
[17]
Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation 2005; 111(25): 3481-8.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.537878] [PMID: 15983262]
[18]
Packard RR, Libby P. Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clin Chem 2008; 54(1): 24-38.
[http://dx.doi.org/10.1373/clinchem.2007.097360] [PMID: 18160725]
[19]
Newby AC. Metalloproteinases and vulnerable atherosclerotic plaques. Trends Cardiovasc Med 2007; 17(8): 253-8.
[http://dx.doi.org/10.1016/j.tcm.2007.09.001] [PMID: 18021934]
[20]
Mirzababaiy H, Abolghasemi S, Aghanasiri Z, Alizadeh K. Evaluation of coronary artery disease and Helicobacter pylori infection. Ebnesina 2010; 13(1-2): 18-23.
[21]
Duewell P, Kono H, Rayner KJ, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010; 464(7293): 1357-61.
[http://dx.doi.org/10.1038/nature08938] [PMID: 20428172]
[22]
Robertson AK, Hansson GK. T cells in atherogenesis: for better or for worse? Arterioscler Thromb Vasc Biol 2006; 26(11): 2421-32.
[http://dx.doi.org/10.1161/01.ATV.0000245830.29764.84] [PMID: 16973967]
[23]
Mason DP, Kenagy RD, Hasenstab D, et al. Matrix metalloproteinase-9 overexpression enhances vascular smooth muscle cell migration and alters remodeling in the injured rat carotid artery. Circ Res 1999; 85(12): 1179-85.
[http://dx.doi.org/10.1161/01.RES.85.12.1179] [PMID: 10590245]
[24]
Alexander RW, Dzau VJ. Vascular biology: the past 50 years. Circulation 2000; 102: IV112-IV-116.
[25]
Hansson GK, Libby P, Schönbeck U, Yan ZQ. Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ Res 2002; 91(4): 281-91.
[http://dx.doi.org/10.1161/01.RES.0000029784.15893.10] [PMID: 12193460]
[26]
Glass CK, Witztum JL. Atherosclerosis. the road ahead. Cell 2001; 104(4): 503-16.
[http://dx.doi.org/10.1016/S0092-8674(01)00238-0] [PMID: 11239408]
[27]
Shaw PX, Hörkkö S, Chang MK, et al. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J Clin Invest 2000; 105(12): 1731-40.
[http://dx.doi.org/10.1172/JCI8472] [PMID: 10862788]
[28]
Tedgui A, Mallat Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 2006; 86(2): 515-81.
[http://dx.doi.org/10.1152/physrev.00024.2005] [PMID: 16601268]
[29]
Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005; 6(11): 1133-41.
[http://dx.doi.org/10.1038/ni1261] [PMID: 16200068]
[30]
Niwa T, Wada H, Ohashi H, et al. Interferon-gamma produced by bone marrow-derived cells attenuates atherosclerotic lesion formation in LDLR-deficient mice. J Atheroscler Thromb 2004; 11(2): 79-87.
[http://dx.doi.org/10.5551/jat.11.79] [PMID: 15153667]
[31]
McGeachy MJ, Cua DJ. Th17 cell differentiation: the long and winding road. Immunity 2008; 28(4): 445-53.
[http://dx.doi.org/10.1016/j.immuni.2008.03.001] [PMID: 18400187]
[32]
Yu JJ, Gaffen SL. Interleukin-17: a novel inflammatory cytokine that bridges innate and adaptive immunity. Front Biosci 2008; 13: 170-7.
[http://dx.doi.org/10.2741/2667] [PMID: 17981535]
[33]
Binder CJ, Shaw PX, Chang MK, et al. The role of natural antibodies in atherogenesis. J Lipid Res 2005; 46(7): 1353-63.
[http://dx.doi.org/10.1194/jlr.R500005-JLR200] [PMID: 15897601]
[34]
Stephens GL, Shevach EM. Foxp3+ regulatory T cells: selfishness under scrutiny. Immunity 2007; 27(3): 417-9.
[http://dx.doi.org/10.1016/j.immuni.2007.08.008] [PMID: 17892850]
[35]
Jinushi M, Nakazaki Y, Dougan M, Carrasco DR, Mihm M, Dranoff G. MFG-E8-mediated uptake of apoptotic cells by APCs links the pro- and antiinflammatory activities of GM-CSF. J Clin Invest 2007; 117(7): 1902-13.
[http://dx.doi.org/10.1172/JCI30966] [PMID: 17557120]
[36]
Haraszthy VI, Zambon JJ, Trevisan M, Zeid M, Genco RJ. Identification of periodontal pathogens in atheromatous plaques. J Periodontol 2000; 71(10): 1554-60.
[http://dx.doi.org/10.1902/jop.2000.71.10.1554] [PMID: 11063387]
[37]
Rosenfeld ME, Campbell LA. Pathogens and atherosclerosis: update on the potential contribution of multiple infectious organisms to the pathogenesis of atherosclerosis. Thromb Haemost 2011; 106(5): 858-67.
[PMID: 22012133]
[38]
Koren O, Spor A, Felin J, et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci USA 2011; 108(Suppl. 1): 4592-8.
[http://dx.doi.org/10.1073/pnas.1011383107] [PMID: 20937873]
[39]
Serra e Silva Filho W, Casarin RCV, Nicolela EL Jr, Passos HM, Sallum AW, Gonçalves RB. Microbial diversity similarities in periodontal pockets and atheromatous plaques of cardiovascular disease patients. PLoS One 2014; 9(10)e109761
[http://dx.doi.org/10.1371/journal.pone.0109761] [PMID: 25329160]
[40]
Calandrini CA, Ribeiro AC, Gonnelli AC, et al. Microbial composition of atherosclerotic plaques. Oral Dis 2014; 20(3): e128-34.
[http://dx.doi.org/10.1111/odi.12205] [PMID: 24188425]
[41]
Chen GY, Nuñez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 2010; 10(12): 826-37.
[http://dx.doi.org/10.1038/nri2873] [PMID: 21088683]
[42]
Abdul-Sater AA, Saïd-Sadier N, Ojcius DM, Yilmaz O, Kelly KA. Inflammasomes bridge signaling between pathogen identification and the immune response. Drugs Today (Barc) 2009; 45(Suppl. B): 105-12.
[PMID: 20011701]
[43]
Haghparast A, Heidari Kharaji M, Malvandi AM. Down-regulation of CD14 transcripts in human glioblastoma cell line U87 MG. Iran J Immunol 2011; 8(2): 111-9.
[PMID: 21705839]
[44]
Suzuki S, Franchi L, He Y, et al. Shigella type III secretion protein MxiI is recognized by Naip2 to induce Nlrc4 inflammasome activation independently of Pkcδ. PLoS Pathog 2014; 10(2)e1003926
[http://dx.doi.org/10.1371/journal.ppat.1003926] [PMID: 24516390]
[45]
Bürckstümmer T, Baumann C, Blüml S, et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 2009; 10(3): 266-72.
[http://dx.doi.org/10.1038/ni.1702] [PMID: 19158679]
[46]
Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 2009; 458(7237): 509-13.
[http://dx.doi.org/10.1038/nature07710] [PMID: 19158676]
[47]
Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell 2014; 157(5): 1013-22.
[http://dx.doi.org/10.1016/j.cell.2014.04.007] [PMID: 24855941]
[48]
Mankan AK, Kubarenko A, Hornung V. Immunology in clinic review series; focus on autoinflammatory diseases: inflammasomes: mechanisms of activation. Clin Exp Immunol 2012; 167(3): 369-81.
[http://dx.doi.org/10.1111/j.1365-2249.2011.04534.x] [PMID: 22288580]
[49]
Keller M, Rüegg A, Werner S, Beer HD. Active caspase-1 is a regulator of unconventional protein secretion. Cell 2008; 132(5): 818-31.
[http://dx.doi.org/10.1016/j.cell.2007.12.040] [PMID: 18329368]
[50]
Lamkanfi M, Dixit VM. Inflammasomes and their roles in health and disease. Annu Rev Cell Dev Biol 2012; 28: 137-61.
[http://dx.doi.org/10.1146/annurev-cellbio-101011-155745] [PMID: 22974247]
[51]
Strowig T, Henao-Mejia J, Elinav E, Flavell R. Inflammasomes in health and disease. Nature 2012; 481(7381): 278-86.
[http://dx.doi.org/10.1038/nature10759] [PMID: 22258606]
[52]
Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 2016; 16(7): 407-20.
[http://dx.doi.org/10.1038/nri.2016.58] [PMID: 27291964]
[53]
Kadota Y, Shirasu K, Guerois R. NLR sensors meet at the SGT1-HSP90 crossroad. Trends Biochem Sci 2010; 35(4): 199-207.
[http://dx.doi.org/10.1016/j.tibs.2009.12.005] [PMID: 20096590]
[54]
Jo E-K, Kim JK, Shin D-M, Sasakawa C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol 2016; 13(2): 148-59.
[http://dx.doi.org/10.1038/cmi.2015.95] [PMID: 26549800]
[55]
Srinivasula SM, Poyet JL, Razmara M, Datta P, Zhang Z, Alnemri ES. The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J Biol Chem 2002; 277(24): 21119-22.
[http://dx.doi.org/10.1074/jbc.C200179200] [PMID: 11967258]
[56]
Khare S, Luc N, Dorfleutner A, Stehlik C. Inflammasomes and their activation. Crit Rev Immunol 2010; 30(5): 463-87.
[http://dx.doi.org/10.1615/CritRevImmunol.v30.i5.50] [PMID: 21083527]
[57]
Grenier JM, Wang L, Manji GA, et al. Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NF-kappaB and caspase-1. FEBS Lett 2002; 530(1-3): 73-8.
[http://dx.doi.org/10.1016/S0014-5793(02)03416-6] [PMID: 12387869]
[58]
Elinav E, Strowig T, Kau AL, et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 2011; 145(5): 745-57.
[http://dx.doi.org/10.1016/j.cell.2011.04.022] [PMID: 21565393]
[59]
Miao EA, Mao DP, Yudkovsky N, et al. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci USA 2010; 107(7): 3076-80.
[http://dx.doi.org/10.1073/pnas.0913087107] [PMID: 20133635]
[60]
Vanaja SK, Rathinam VA, Fitzgerald KA. Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol 2015; 25(5): 308-15.
[http://dx.doi.org/10.1016/j.tcb.2014.12.009] [PMID: 25639489]
[61]
Sutterwala FS, Haasken S, Cassel SL. Mechanism of NLRP3 inflammasome activation. Ann N Y Acad Sci 2014; 1319: 82-95.
[http://dx.doi.org/10.1111/nyas.12458] [PMID: 24840700]
[62]
Ratsimandresy RA, Dorfleutner A, Stehlik C. An update on PYRIN domain-containing pattern recognition receptors: From immunity to pathology. Front Immunol 2013; 4: 440.
[http://dx.doi.org/10.3389/fimmu.2013.00440] [PMID: 24367371]
[63]
Rathinam VA, Vanaja SK, Fitzgerald KA. Regulation of inflammasome signaling. Nat Immunol 2012; 13(4): 333-42.
[http://dx.doi.org/10.1038/ni.2237] [PMID: 22430786]
[64]
Katsnelson MA, Rucker LG, Russo HM, Dubyak GR. K+ efflux agonists induce NLRP3 inflammasome activation independently of Ca2+ signaling. J Immunol 2015; 194(8): 3937-52.
[http://dx.doi.org/10.4049/jimmunol.1402658] [PMID: 25762778]
[65]
Chae JJ, Park YH, Park C, et al. Connecting two pathways through Ca 2+ signaling: NLRP3 inflammasome activation induced by a hypermorphic PLCG2 mutation. Arthritis Rheumatol 2015; 67(2): 563-7.
[http://dx.doi.org/10.1002/art.38961] [PMID: 25418813]
[66]
Yang C-S, Kim J-J, Kim TS, et al. Small heterodimer partner interacts with NLRP3 and negatively regulates activation of the NLRP3 inflammasome. Nat Commun 2015; 6: 6115.
[http://dx.doi.org/10.1038/ncomms7115] [PMID: 25655831]
[67]
Juliana C, Fernandes-Alnemri T, Kang S, Farias A, Qin F, Alnemri ES. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J Biol Chem 2012; 287(43): 36617-22.
[http://dx.doi.org/10.1074/jbc.M112.407130] [PMID: 22948162]
[68]
Py BF, Kim MS, Vakifahmetoglu-Norberg H, Yuan J. Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol Cell 2013; 49(2): 331-8.
[http://dx.doi.org/10.1016/j.molcel.2012.11.009] [PMID: 23246432]
[69]
Rodgers MA, Bowman JW, Fujita H, et al. The linear ubiquitin assembly complex (LUBAC) is essential for NLRP3 inflammasome activation. J Exp Med 2014; 211(7): 1333-47.
[http://dx.doi.org/10.1084/jem.20132486] [PMID: 24958845]
[70]
Stutz A, Kolbe C-C, Stahl R, et al. NLRP3 inflammasome assembly is regulated by phosphorylation of the pyrin domain. J Exp Med 2017; 214(6): 1725-36.
[http://dx.doi.org/10.1084/jem.20160933] [PMID: 28465465]
[71]
Chen J, Chen ZJ. PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature 2018; 564(7734): 71-6.
[http://dx.doi.org/10.1038/s41586-018-0761-3] [PMID: 30487600]
[72]
Lu A, Magupalli VG, Ruan J, et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 2014; 156(6): 1193-206.
[http://dx.doi.org/10.1016/j.cell.2014.02.008] [PMID: 24630722]
[73]
Cai X, Chen J, Xu H, et al. Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell 2014; 156(6): 1207-22.
[http://dx.doi.org/10.1016/j.cell.2014.01.063] [PMID: 24630723]
[74]
Kang SJ, Wang S, Hara H, et al. Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. J Cell Biol 2000; 149(3): 613-22.
[http://dx.doi.org/10.1083/jcb.149.3.613] [PMID: 10791975]
[75]
Kayagaki N, Warming S, Lamkanfi M, et al. Non-canonical inflammasome activation targets caspase-11. Nature 2011; 479(7371): 117-21.
[http://dx.doi.org/10.1038/nature10558] [PMID: 22002608]
[76]
Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci 2019; 20(13): 3328.
[http://dx.doi.org/10.3390/ijms20133328] [PMID: 31284572]
[77]
Shi J, Zhao Y, Wang Y, et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 2014; 514(7521): 187-92.
[http://dx.doi.org/10.1038/nature13683] [PMID: 25119034]
[78]
Kajiwara Y, Schiff T, Voloudakis G, et al. A critical role for human caspase-4 in endotoxin sensitivity. J Immunol 2014; 193(1): 335-43.
[http://dx.doi.org/10.4049/jimmunol.1303424] [PMID: 24879791]
[79]
Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 2011; 17(11): 1410-22.
[http://dx.doi.org/10.1038/nm.2538] [PMID: 22064431]
[80]
Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 2019; 19(8): 477-89.
[http://dx.doi.org/10.1038/s41577-019-0165-0] [PMID: 31036962]
[81]
Gaidt MM, Hornung V. The NLRP3 inflammasome renders cell death pro-inflammatory. J Mol Biol 2018; 430(2): 133-41.
[http://dx.doi.org/10.1016/j.jmb.2017.11.013] [PMID: 29203171]
[82]
Wang Z, Zhang S, Xiao Y, et al. NLRP3 inflammasome and inflammatory diseases. Oxid Med Cell Longev 2020; 20204063562
[http://dx.doi.org/10.1155/2020/4063562] [PMID: 32148650]
[83]
Tan HW, Liu X, Bi XP, et al. IL-18 overexpression promotes vascular inflammation and remodeling in a rat model of metabolic syndrome. Atherosclerosis 2010; 208(2): 350-7.
[http://dx.doi.org/10.1016/j.atherosclerosis.2009.07.053] [PMID: 19717152]
[84]
de Nooijer R, von der Thüsen JH, Verkleij CJN, et al. Overexpression of IL-18 decreases intimal collagen content and promotes a vulnerable plaque phenotype in apolipoprotein-E-deficient mice. Arterioscler Thromb Vasc Biol 2004; 24(12): 2313-9.
[http://dx.doi.org/10.1161/01.ATV.0000147126.99529.0a] [PMID: 15472128]
[85]
Masters SL, Latz E, O’Neill LA. The inflammasome in atherosclerosis and type 2 diabetes. Sci Transl Med 2011; 3(81)81ps17
[http://dx.doi.org/10.1126/scitranslmed.3001902] [PMID: 21543720]
[86]
Man SM, Karki R, Malireddi RK, et al. The transcription factor IRF1 and guanylate-binding proteins target activation of the AIM2 inflammasome by Francisella infection. Nat Immunol 2015; 16(5): 467-75.
[http://dx.doi.org/10.1038/ni.3118] [PMID: 25774715]
[87]
Sheedy FJ, Grebe A, Rayner KJ, et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol 2013; 14(8): 812-20.
[http://dx.doi.org/10.1038/ni.2639] [PMID: 23812099]
[88]
De Nardo D, Latz E. NLRP3 inflammasomes link inflammation and metabolic disease. Trends Immunol 2011; 32(8): 373-9.
[http://dx.doi.org/10.1016/j.it.2011.05.004] [PMID: 21733753]
[89]
Menu P, Pellegrin M, Aubert J-F, et al. Atherosclerosis in ApoE-deficient mice progresses independently of the NLRP3 inflammasome. Cell Death Dis 2011; 2 e137
[http://dx.doi.org/10.1038/cddis.2011.18] [PMID: 21451572]
[90]
Baldrighi M, Mallat Z, Li X. NLRP3 inflammasome pathways in atherosclerosis. Atherosclerosis 2017; 267: 127-38.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.10.027] [PMID: 29126031]
[91]
Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature 2011; 469(7330): 323-35.
[http://dx.doi.org/10.1038/nature09782] [PMID: 21248839]
[92]
Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008; 132(1): 27-42.
[http://dx.doi.org/10.1016/j.cell.2007.12.018] [PMID: 18191218]
[93]
Razani B, Feng C, Coleman T, et al. Autophagy links inflammasomes to atherosclerotic progression. Cell Metab 2012; 15(4): 534-44.
[http://dx.doi.org/10.1016/j.cmet.2012.02.011] [PMID: 22440612]
[94]
Förstermann U, Xia N, Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res 2017; 120(4): 713-35.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.309326] [PMID: 28209797]
[95]
Madamanchi NR, Runge MS. Redox signaling in cardiovascular health and disease. Free Radic Biol Med 2013; 61: 473-501.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.04.001] [PMID: 23583330]
[96]
Stefan F, Franziska A, Gunther S, et al. Nrf2 is essential for cholesterol crystal-induced inflammasome activation and exacerbation of atherosclerosis. Eur J Immunol 2011; 41: 2040-51.
[97]
Xia N, Daiber A, Förstermann U, Li H. Antioxidant effects of resveratrol in the cardiovascular system. Br J Pharmacol 2017; 174(12): 1633-46.
[http://dx.doi.org/10.1111/bph.13492] [PMID: 27058985]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 22
Year: 2020
Published on: 04 May, 2020
Page: [2583 - 2590]
Pages: 8
DOI: 10.2174/1381612826666200504115045
Price: $65

Article Metrics

PDF: 21
HTML: 3