Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Research Progress in Flavonoids as Potential Anticancer Drug Including Synergy with Other Approaches

Author(s): Yusuf Hussain, Suaib Luqman and Abha Meena*

Volume 20, Issue 20, 2020

Page: [1791 - 1809] Pages: 19

DOI: 10.2174/1568026620666200502005411

Price: $65

Abstract

Background: In chemotherapy for cancer, conventional drugs aim to target the rapidly growing and dividing cells at the early stages. However, at an advanced stage, cancer cells become less susceptible because of the multidrug resistance and the recruitment of alternative salvage pathways for their survival. Besides, owing to target non-selectivity, healthy proliferating cells also become vulnerable to the damage. The combination therapies offered using flavonoids to cure cancer not only exert an additive effect against cancer cells by targetting supplementary cell carnage pathways but also hampers the drug resistance mechanisms. Thus, the review aims to discuss the potential and pharmacokinetic limitations of flavonoids in cancer treatment. Further successful synergistic studies reported using flavonoids to treat cancer has been described along with potential drug delivery systems.

Methods: A literature search was done by exploring various online databases like Pubmed, Scopus, and Google Scholar with the specific keywords like “Anticancer drugs”, “flavonoids”, “oncology research”, and “pharmacokinetics”.

Results: Dietary phytochemicals, mainly flavonoids, hinder cell signalling responsible for multidrug resistance and cancer progression, primarily targeting cancer cells sparing normal cells. Such properties establish flavonoids as a potential candidate for synergistic therapy. However, due to low absorption and high metabolism rates, the bioavailability of flavonoids becomes a challenge. Such challenges may be overcome using novel approaches like derivatization, and single or co-delivery nano-complexes of flavonoids with conventional drugs. These new approaches may improve the pharmacokinetic and pharmacodynamic of flavonoids.

Conclusion: This review highlights the application of flavonoids as a potential anticancer phytochemical class in combination with known anti-cancer drugs/nanoparticles. It also discusses flavonoid’s pharmacokinetics and pharmacodynamics issues and ways to overcome such issues. Moreover, it covers successful methodologies employed to establish flavonoids as a safe and effective phytochemical class for cancer treatment.

Keywords: Cancer, Flavonoids, Synergistic therapy, Oncology research, Drug-delivery, Pharmacodynamics.

Graphical Abstract
[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Bayat Mokhtari, R.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination therapy in combating cancer. Oncotarget, 2017, 8(23), 38022-38043.
[PMID: 28410237]
[3]
Singh, N.; Yeh, P.J. Suppressive drug combinations and their potential to combat antibiotic resistance. J. Antibiot. (Tokyo), 2017, 70(11), 1033-1042.
[http://dx.doi.org/10.1038/ja.2017.102] [PMID: 28874848]
[4]
Cheok, C.F. Protecting normal cells from the cytotoxicity of chemotherapy. Cell Cycle, 2012, 11(12), 2227-2228.
[http://dx.doi.org/10.4161/cc.20961] [PMID: 22684296]
[5]
Ijaz, S.; Akhtar, N.; Khan, M.S.; Hameed, A.; Irfan, M.; Arshad, M.A.; Ali, S.; Asrar, M. Plant derived anticancer agents: A green approach towards skin cancers. Biomed. Pharmacother., 2018, 103, 1643-1651.
[http://dx.doi.org/10.1016/j.biopha.2018.04.113] [PMID: 29864953]
[6]
Winkel-Shirley, B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol., 2001, 126(2), 485-493.
[http://dx.doi.org/10.1104/pp.126.2.485] [PMID: 11402179]
[7]
Castaldo, L.; Narváez, A.; Izzo, L.; Graziani, G.; Gaspari, A.; Minno, G.D.; Ritieni, A. Red wine consumption and cardiovascular health. Molecules, 2019, 24(19)E3626
[http://dx.doi.org/10.3390/molecules24193626] [PMID: 31597344]
[8]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J, 2013, 2013, 162750
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[9]
Ivey, K.L.; Jensen, M.K.; Hodgson, J.M.; Eliassen, A.H.; Cassidy, A.; Rimm, E.B. Association of flavonoid-rich foods and flavonoids with risk of all-cause mortality. Br. J. Nutr., 2017, 117(10), 1470-1477.
[http://dx.doi.org/10.1017/S0007114517001325] [PMID: 28606222]
[10]
Thilakarathna, S.H.; Rupasinghe, H.P. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients, 2013, 5(9), 3367-3387.
[http://dx.doi.org/10.3390/nu5093367] [PMID: 23989753]
[11]
Ozdal, T.; Sela, D.A.; Xiao, J.; Boyacioglu, D.; Chen, F.; Capanoglu, E. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients, 2016, 8(2), 78.
[http://dx.doi.org/10.3390/nu8020078] [PMID: 26861391]
[12]
Chahar, M.K.; Sharma, N.; Dobhal, M.P.; Joshi, Y.C. Flavonoids: A versatile source of anticancer drugs. Pharmacogn. Rev., 2011, 5(9), 1-12.
[http://dx.doi.org/10.4103/0973-7847.79093] [PMID: 22096313]
[13]
Batra, P.; Sharma, A.K. Anti-cancer potential of flavonoids: recent trends and future perspectives 3 Biotech, 2013, 3(6), 439-459.
[14]
Mutoh, M.; Takahashi, M.; Fukuda, K.; Komatsu, H.; Enya, T.; Matsushima-Hibiya, Y.; Mutoh, H.; Sugimura, T.; Wakabayashi, K. Suppression by flavonoids of cyclooxygenase-2 promoter-dependent transcriptional activity in colon cancer cells: structure-activity relationship. Jpn. J. Cancer Res., 2000, 91(7), 686-691.
[http://dx.doi.org/10.1111/j.1349-7006.2000.tb01000.x] [PMID: 10920275]
[15]
Murray-Stewart, T.; Casero, R.A. Regulation of polyamine metabolism by curcumin for cancer prevention and therapy. Med. Sci. (Basel), 2017, 5(4)E38
[http://dx.doi.org/10.3390/medsci5040038] [PMID: 29258259]
[16]
Wei, H.; Tye, L.; Bresnick, E.; Birt, D.F. Inhibitory effect of apigenin, a plant flavonoid, on epidermal ornithine decarboxylase and skin tumor promotion in mice. Cancer Res., 1990, 50(3), 499-502.
[PMID: 2105157]
[17]
Agarwal, R.; Katiyar, S.K.; Lundgren, D.W.; Mukhtar, H. Inhibitory effect of silymarin, an anti-hepatotoxic flavonoid, on 12-O-tetradecanoylphorbol-13-acetate-induced epidermal ornithine decarboxylase activity and mRNA in SENCAR mice. Carcinogenesis, 1994, 15(6), 1099-1103.
[http://dx.doi.org/10.1093/carcin/15.6.1099] [PMID: 8020140]
[18]
Au, A.; Li, B.; Wang, W.; Roy, H.; Koehler, K.; Birt, D. Effect of dietary apigenin on colonic ornithine decarboxylase activity, aberrant crypt foci formation, and tumorigenesis in different experimental models. Nutr. Cancer, 2006, 54(2), 243-251.
[http://dx.doi.org/10.1207/s15327914nc5402_11] [PMID: 16898869]
[19]
Nakadate, T.; Yamamoto, S.; Aizu, E.; Kato, R. Effects of flavonoids and antioxidants on 12-O-tetradecanoyl-phorbol-13-acetate-caused epidermal ornithine decarboxylase induction and tumor promotion in relation to lipoxygenase inhibition by these compounds. Gan, 1984, 75(3), 214-222.
[PMID: 6427052]
[20]
Srivastava, S.; Somasagara, R.R.; Hegde, M.; Nishana, M.; Tadi, S.K.; Srivastava, M.; Choudhary, B.; Raghavan, S.C. Quercetin, a natural flavonoid interacts with dna, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Sci. Rep., 2016, 6, 24049.
[http://dx.doi.org/10.1038/srep24049] [PMID: 27068577]
[21]
Huang, H.; Chen, A.Y.; Ye, X.; Li, B.; Rojanasakul, Y.; Rankin, G.O.; Chen, Y.C. Myricetin inhibits proliferation of cisplatin-resistant cancer cells through a p53-dependent apoptotic pathway. Int. J. Oncol., 2015, 47(4), 1494-1502.
[http://dx.doi.org/10.3892/ijo.2015.3133] [PMID: 26315556]
[22]
Ginwala, R.; Bhavsar, R.; Chigbu, D.I.; Jain, P.; Khan, Z.K. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants, 2019, 8(2)E35
[http://dx.doi.org/10.3390/antiox8020035] [PMID: 30764536]
[23]
Ye, Q.; Liu, K.; Shen, Q.; Li, Q.; Hao, J.; Han, F.; Jiang, R.W. Reversal of multidrug resistance in cancer by multi-functional flavonoids. Front. Oncol., 2019, 9, 487.
[http://dx.doi.org/10.3389/fonc.2019.00487] [PMID: 31245292]
[24]
Kitagawa, S.; Nabekura, T.; Takahashi, T.; Nakamura, Y.; Sakamoto, H.; Tano, H.; Hirai, M.; Tsukahara, G. Structure-activity relationships of the inhibitory effects of flavonoids on P-glycoprotein-mediated transport in KB-C2 cells. Biol. Pharm. Bull., 2005, 28(12), 2274-2278.
[http://dx.doi.org/10.1248/bpb.28.2274] [PMID: 16327165]
[25]
Wang, M.; Jiang, S.; Zhou, L.; Yu, F.; Ding, H.; Li, P.; Zhou, M.; Wang, K. Potential mechanisms of action of curcumin for cancer prevention: focus on cellular signaling pathways and miRNAs. Int. J. Biol. Sci., 2019, 15(6), 1200-1214.
[http://dx.doi.org/10.7150/ijbs.33710] [PMID: 31223280]
[26]
Wubetu, G.Y.; Shimada, M.; Morine, Y.; Ikemoto, T.; Ishikawa, D.; Iwahashi, S.; Yamada, S.; Saito, Y.; Arakawa, Y.; Imura, S. Epigallocatechin gallate hinders human hepatoma and colon cancer sphere formation. J. Gastroenterol. Hepatol., 2016, 31(1), 256-264.
[http://dx.doi.org/10.1111/jgh.13069] [PMID: 26241688]
[27]
Nabekura, T.; Kawasaki, T.; Furuta, M.; Kaneko, T.; Uwai, Y. Effects of natural polyphenols on the expression of drug efflux transporter p-glycoprotein in human intestinal cells. ACS Omega, 2018, 3(2), 1621-1626.
[http://dx.doi.org/10.1021/acsomega.7b01679] [PMID: 30023810]
[28]
Leslie, E.M.; Deeley, R.G.; Cole, S.P. Bioflavonoid stimulation of glutathione transport by the 190-kDa multidrug resistance protein 1 (MRP1). Drug Metab. Dispos., 2003, 31(1), 11-15.
[http://dx.doi.org/10.1124/dmd.31.1.11] [PMID: 12485947]
[29]
Chandrika, B.B.; Steephan, M.; Kumar, T.R.S.; Sabu, A.; Haridas, M. Hesperetin and Naringenin sensitize HER2 positive cancer cells to death by serving as HER2 Tyrosine Kinase inhibitors. Life Sci., 2016, 160, 47-56.
[http://dx.doi.org/10.1016/j.lfs.2016.07.007] [PMID: 27449398]
[30]
Limtrakul, P.; Khantamat, O.; Pintha, K. Inhibition of P-glycoprotein function and expression by kaempferol and quercetin. J. Chemother., 2005, 17(1), 86-95.
[http://dx.doi.org/10.1179/joc.2005.17.1.86] [PMID: 15828450]
[31]
Imai, Y.; Tsukahara, S.; Asada, S.; Sugimoto, Y. Phytoestrogens/flavonoids reverse breast cancer resistance protein/ABCG2-mediated multidrug resistance. Cancer Res., 2004, 64(12), 4346-4352.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0078] [PMID: 15205350]
[32]
Nabekura, T.; Yamaki, T.; Hiroi, T.; Ueno, K.; Kitagawa, S. Inhibition of anticancer drug efflux transporter P-glycoprotein by rosemary phytochemicals. Pharmacol. Res., 2010, 61(3), 259-263.
[http://dx.doi.org/10.1016/j.phrs.2009.11.010] [PMID: 19944162]
[33]
Ezzati, M.; Yousefi, B.; Velaei, K.; Safa, A. A review on anti-cancer properties of Quercetin in breast cancer. Life Sci., 2020, 248117463
[http://dx.doi.org/10.1016/j.lfs.2020.117463] [PMID: 32097663]
[34]
Hussain, S.A.; Marouf, B.H. Silibinin improves the cytotoxicity of methotrexate in chemo resistant human rhabdomyosarcoma cell lines. Saudi Med. J., 2013, 34(11), 1145-1150.
[PMID: 24252892]
[35]
Athar, M.; Back, J.H.; Kopelovich, L.; Bickers, D.R.; Kim, A.L. Multiple molecular targets of resveratrol: Anti-carcinogenic mechanisms. Arch. Biochem. Biophys., 2009, 486(2), 95-102.
[http://dx.doi.org/10.1016/j.abb.2009.01.018] [PMID: 19514131]
[36]
Kimura, Y.; Ito, H.; Ohnishi, R.; Hatano, T. Inhibitory effects of polyphenols on human cytochrome P450 3A4 and 2C9 activity. Food Chem. Toxicol., 2010, 48(1), 429-435.
[http://dx.doi.org/10.1016/j.fct.2009.10.041] [PMID: 19883715]
[37]
Liu, X.Y.; Xu, T.; Li, W.S.; Luo, J.; Geng, P.W.; Wang, L.; Xia, M.M.; Chen, M.C.; Yu, L.; Hu, G.X. The effect of apigenin on pharmacokinetics of imatinib and its metabolite N-desmethyl imatinib in rats. BioMed Res. Int., 2013, 2013789184
[http://dx.doi.org/10.1155/2013/789184] [PMID: 24369535]
[38]
Maher, H.M.; Alzoman, N.Z.; Shehata, S.M.; Abahussain, A.O. Comparative pharmacokinetic profiles of selected irreversible tyrosine kinase inhibitors, neratinib and pelitinib, with apigenin in rat plasma by UPLC-MS/MS. J. Pharm. Biomed. Anal., 2017, 137, 258-267.
[http://dx.doi.org/10.1016/j.jpba.2017.01.039] [PMID: 28167419]
[39]
Surya Sandeep, M.; Sridhar, V.; Puneeth, Y.; Ravindra Babu, P.; Naveen Babu, K. Enhanced oral bioavailability of felodipine by naringenin in Wistar rats and inhibition of P-glycoprotein in everted rat gut sacs in vitro. Drug Dev. Ind. Pharm., 2014, 40(10), 1371-1377.
[http://dx.doi.org/10.3109/03639045.2013.819885] [PMID: 23883365]
[40]
Jiang, W.; Hu, M. Mutual interactions between flavonoids and enzymatic and transporter elements responsible for flavonoid disposition via phase II metabolic pathways. RSC Advances, 2012, 2(21), 7948-7963.
[http://dx.doi.org/10.1039/c2ra01369j] [PMID: 25400909]
[41]
Busch, C.; Burkard, M.; Leischner, C.; Lauer, U.M.; Frank, J.; Venturelli, S. Epigenetic activities of flavonoids in the prevention and treatment of cancer. Clin. Epigenetics, 2015, 7, 64.
[http://dx.doi.org/10.1186/s13148-015-0095-z] [PMID: 26161152]
[42]
Singh, B.N.; Shankar, S.; Srivastava, R.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem. Pharmacol., 2011, 82(12), 1807-1821.
[http://dx.doi.org/10.1016/j.bcp.2011.07.093] [PMID: 21827739]
[43]
Kumar, N.B.; Dickinson, S.I.; Schell, M.J.; Manley, B.J.; Poch, M.A.; Pow-Sang, J. Green tea extract for prevention of prostate cancer progression in patients on active surveillance. Oncotarget, 2018, 9(102), 37798-37806.
[http://dx.doi.org/10.18632/oncotarget.26519] [PMID: 30701033]
[44]
Khan, H.; Ullah, H.; Martorell, M.; Valdes, S.E.; Belwal, T.; Tejada, S.; Sureda, A.; Kamal, M.A. Flavonoids nanoparticles in cancer: Treatment, prevention and clinical prospects. Semin. Cancer Biol., 2019 In press
[http://dx.doi.org/10.1016/j.semcancer.2019.07.023] [PMID: 31374244]
[45]
Németh, K.; Plumb, G.W.; Berrin, J.G.; Juge, N.; Jacob, R.; Naim, H.Y.; Williamson, G.; Swallow, D.M.; Kroon, P.A. Deglycosylation by small intestinal epithelial cell beta-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur. J. Nutr., 2003, 42(1), 29-42.
[http://dx.doi.org/10.1007/s00394-003-0397-3] [PMID: 12594539]
[46]
Liu, Z.; Hu, M. Natural polyphenol disposition via coupled metabolic pathways. Expert Opin. Drug Metab. Toxicol., 2007, 3(3), 389-406.
[http://dx.doi.org/10.1517/17425255.3.3.389] [PMID: 17539746]
[47]
Riva, A.; Ronchi, M.; Petrangolini, G.; Bosisio, S.; Allegrini, P. Improved oral absorption of quercetin from quercetin phytosome®, a new delivery system based on food grade lecithin. Eur. J. Drug Metab. Pharmacokinet., 2019, 44(2), 169-177.
[http://dx.doi.org/10.1007/s13318-018-0517-3] [PMID: 30328058]
[48]
Gugler, R.; Leschik, M.; Dengler, H.J. Disposition of quercetin in man after single oral and intravenous doses. Eur. J. Clin. Pharmacol., 1975, 9(2-3), 229-234.
[http://dx.doi.org/10.1007/BF00614022] [PMID: 1233267]
[49]
Erlund, I.; Kosonen, T.; Alfthan, G.; Mäenpää, J.; Perttunen, K.; Kenraali, J.; Parantainen, J.; Aro, A. Pharmacokinetics of quercetin from quercetin aglycone and rutin in healthy volunteers. Eur. J. Clin. Pharmacol., 2000, 56(8), 545-553.
[http://dx.doi.org/10.1007/s002280000197] [PMID: 11151743]
[50]
Wang, M.; Firrman, J.; Liu, L.; Yam, K. A review on flavonoid apigenin: dietary intake, adme, antimicrobial effects, and interactions with human gut Microbiota. BioMed Res. Int., 2019, 20197010467
[http://dx.doi.org/10.1155/2019/7010467] [PMID: 31737673]
[51]
Galijatovic, A.; Otake, Y.; Walle, U.K.; Walle, T. Extensive metabolism of the flavonoid chrysin by human Caco-2 and Hep G2 cells. Xenobiotica, 1999, 29(12), 1241-1256.
[http://dx.doi.org/10.1080/004982599237912] [PMID: 10647910]
[52]
Walle, T.; Otake, Y.; Brubaker, J.A.; Walle, U.K.; Halushka, P.V. Disposition and metabolism of the flavonoid chrysin in normal volunteers. Br. J. Clin. Pharmacol., 2001, 51(2), 143-146.
[http://dx.doi.org/10.1111/j.1365-2125.2001.01317.x] [PMID: 11259985]
[53]
Granja, A.; Frias, I.; Neves, A.R.; Pinheiro, M.; Reis, S. Therapeutic potential of epigallocatechin gallate nanodelivery systems. BioMed Res. Int., 2017, 20175813793
[http://dx.doi.org/10.1155/2017/5813793] [PMID: 28791306]
[54]
Ramachandran, B.; Jayavelu, S.; Murhekar, K.; Rajkumar, T. Repeated dose studies with pure Epigallocatechin-3-gallate demonstrated dose and route dependant hepatotoxicity with associated dyslipidemia. Toxicol. Rep., 2016, 3, 336-345.
[http://dx.doi.org/10.1016/j.toxrep.2016.03.001] [PMID: 28959554]
[55]
Lambert, J.D.; Hong, J.; Kim, D.H.; Mishin, V.M.; Yang, C.S. Piperine enhances the bioavailability of the tea polyphenol (-)-epigallocatechin-3-gallate in mice. J. Nutr., 2004, 134(8), 1948-1952.
[http://dx.doi.org/10.1093/jn/134.8.1948] [PMID: 15284381]
[56]
Amawi, H.; Ashby, C.R., Jr; Tiwari, A.K. Cancer chemoprevention through dietary flavonoids: what’s limiting? Chin. J. Cancer, 2017, 36(1), 50.
[http://dx.doi.org/10.1186/s40880-017-0217-4] [PMID: 28629389]
[57]
Agarwal, C.; Wadhwa, R.; Deep, G.; Biedermann, D.; Gažák, R.; Křen, V.; Agarwal, R. Anti-cancer efficacy of silybin derivatives -- a structure-activity relationship. PLoS One, 2013, 8(3)e60074
[http://dx.doi.org/10.1371/journal.pone.0060074] [PMID: 23555889]
[58]
Fang, Y.; Cao, W.; Xia, M.; Pan, S.; Xu, X. Study of structure and permeability relationship of flavonoids in caco-2 cells. Nutrients, 2017, 9(12)E1301
[http://dx.doi.org/10.3390/nu9121301] [PMID: 29186068]
[59]
Rothwell, J.A.; Day, A.J.; Morgan, M.R. Experimental determination of octanol-water partition coefficients of quercetin and related flavonoids. J. Agric. Food Chem., 2005, 53(11), 4355-4360.
[http://dx.doi.org/10.1021/jf0483669] [PMID: 15913295]
[60]
Massi, A.; Bortolini, O.; Ragno, D.; Bernardi, T.; Sacchetti, G.; Tacchini, M.; De Risi, C. Research progress in the modification of quercetin leading to anticancer agents. Molecules, 2017, 22(8)E1270
[http://dx.doi.org/10.3390/molecules22081270] [PMID: 28758919]
[61]
Patra, N.; De, U.; Kang, J.A.; Kim, J.M.; Ahn, M.Y.; Lee, J.; Jung, J.H.; Chung, H.Y.; Moon, H.R.; Kim, H.S. A novel epoxypropoxy flavonoid derivative and topoisomerase II inhibitor, MHY336, induces apoptosis in prostate cancer cells. Eur. J. Pharmacol., 2011, 658(2-3), 98-107.
[http://dx.doi.org/10.1016/j.ejphar.2011.02.015] [PMID: 21376033]
[62]
He, Z.; Zhu, H.; Xu, M.; Zeng, M.; Qin, F.; Chen, J. Complexation of bovine β-lactoglobulin with malvidin-3-O-glucoside and its effect on the stability of grape skin anthocyanin extracts. Food Chem., 2016, 209, 234-240.
[http://dx.doi.org/10.1016/j.foodchem.2016.04.048] [PMID: 27173557]
[63]
He, Z.; Xu, M.; Zeng, M.; Qin, F.; Chen, J. Interactions of milk α- and β-casein with malvidin-3-O-glucoside and their effects on the stability of grape skin anthocyanin extracts. Food Chem., 2016, 199, 314-322.
[http://dx.doi.org/10.1016/j.foodchem.2015.12.035] [PMID: 26775977]
[64]
Gnananath, K.; Sri Nataraj, K.; Ganga Rao, B. Phospholipid complex technique for superior bioavailability of phytoconstituents. Adv. Pharm. Bull., 2017, 7(1), 35-42.
[http://dx.doi.org/10.15171/apb.2017.005] [PMID: 28507935]
[65]
Kim, Y.A.; Tarahovsky, Y.S.; Yagolnik, E.A.; Kuznetsova, S.M.; Muzafarov, E.N. Integration of quercetin-iron complexes into phosphatidylcholine or phosphatidylethanolamine liposomes. Appl. Biochem. Biotechnol., 2015, 176(7), 1904-1913.
[http://dx.doi.org/10.1007/s12010-015-1686-z] [PMID: 26047928]
[66]
Majumdar, D.; Jung, K.H.; Zhang, H.; Nannapaneni, S.; Wang, X.; Amin, A.R.; Chen, Z.; Chen, Z.G.; Shin, D.M. Luteolin nanoparticle in chemoprevention: in vitro and in vivo anticancer activity. Cancer Prev. Res. (Phila.), 2014, 7(1), 65-73.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0230] [PMID: 24403290]
[67]
Bhattacharya, S.; Mondal, L.; Mukherjee, B.; Dutta, L.; Ehsan, I.; Debnath, M.C.; Gaonkar, R.H.; Pal, M.M.; Majumdar, S. Apigenin loaded nanoparticle delayed development of hepatocellular carcinoma in rats. Nanomedicine (Lond.), 2018, 14(6), 1905-1917.
[http://dx.doi.org/10.1016/j.nano.2018.05.011] [PMID: 29802937]
[68]
Tang, P.; Sun, Q.; Yang, H.; Tang, B.; Pu, H.; Li, H. Honokiol nanoparticles based on epigallocatechin gallate functionalized chitin to enhance therapeutic effects against liver cancer. Int. J. Pharm., 2018, 545(1-2), 74-83.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.060] [PMID: 29715531]
[69]
Correction: Curcumin and Apigenin - novel and promising therapeutics against chronic neuroinflammation in Alzheimer’s disease. Neural Regen. Res., 2015, 10(12), 2017.
[http://dx.doi.org/10.4103/1673-5374.172334] [PMID: 26889192]
[70]
Qiu, J.F.; Gao, X.; Wang, B.L.; Wei, X.W.; Gou, M.L.; Men, K.; Liu, X.Y.; Guo, G.; Qian, Z.Y.; Huang, M.J. Preparation and characterization of monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) micelles for the solubilization and in vivo delivery of luteolin. Int. J. Nanomedicine, 2013, 8, 3061-3069.
[PMID: 23990719]
[71]
Ersoz, M.; Erdemir, A.; Duranoglu, D.; Uzunoglu, D.; Arasoglu, T.; Derman, S.; Mansuroglu, B. Comparative evaluation of hesperetin loaded nanoparticles for anticancer activity against C6 glioma cancer cells. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 319-329.
[http://dx.doi.org/10.1080/21691401.2018.1556213] [PMID: 30688095]
[72]
Das, S.; Das, J.; Samadder, A.; Paul, A.; Khuda-Bukhsh, A.R. Efficacy of PLGA-loaded apigenin nanoparticles in Benzo[a]pyrene and ultraviolet-B induced skin cancer of mice: mitochondria mediated apoptotic signalling cascades. Food Chem. Toxicol., 2013, 62, 670-680.
[http://dx.doi.org/10.1016/j.fct.2013.09.037] [PMID: 24120900]
[73]
Zhang, H.; Liu, G.; Zeng, X.; Wu, Y.; Yang, C.; Mei, L.; Wang, Z.; Huang, L. Fabrication of genistein-loaded biodegradable TPGS-b-PCL nanoparticles for improved therapeutic effects in cervical cancer cells. Int. J. Nanomedicine, 2015, 10, 2461-2473.
[PMID: 25848264]
[74]
Sabzichi, M.; Hamishehkar, H.; Ramezani, F.; Sharifi, S.; Tabasinezhad, M.; Pirouzpanah, M.; Ghanbari, P.; Samadi, N. Luteolin-loaded phytosomes sensitize human breast carcinoma MDA-MB 231 cells to doxorubicin by suppressing Nrf2 mediated signalling. Asian Pac. J. Cancer Prev., 2014, 15(13), 5311-5316.
[http://dx.doi.org/10.7314/APJCP.2014.15.13.5311] [PMID: 25040994]
[75]
Choi, E.J.; Kim, G.H. 5-Fluorouracil combined with apigenin enhances anticancer activity through induction of apoptosis in human breast cancer MDA-MB-453 cells. Oncol. Rep., 2009, 22(6), 1533-1537.
[http://dx.doi.org/10.3892/or_00000598] [PMID: 19885610]
[76]
Hu, X.Y.; Liang, J.Y.; Guo, X.J.; Liu, L.; Guo, Y.B. 5-Fluorouracil combined with apigenin enhances anticancer activity through mitochondrial membrane potential (ΔΨm)-mediated apoptosis in hepatocellular carcinoma. Clin. Exp. Pharmacol. Physiol., 2015, 42(2), 146-153.
[http://dx.doi.org/10.1111/1440-1681.12333] [PMID: 25363523]
[77]
Gaballah, H.H.; Gaber, R.A.; Mohamed, D.A. Apigenin potentiates the antitumor activity of 5-FU on solid Ehrlich carcinoma: Crosstalk between apoptotic and JNK-mediated autophagic cell death platforms. Toxicol. Appl. Pharmacol., 2017, 316, 27-35.
[http://dx.doi.org/10.1016/j.taap.2016.12.012] [PMID: 28025107]
[78]
Sen, K.; Banerjee, S.; Mandal, M. Dual drug loaded liposome bearing apigenin and 5-Fluorouracil for synergistic therapeutic efficacy in colorectal cancer. Colloids Surf. B Biointerfaces, 2019, 180, 9-22.
[http://dx.doi.org/10.1016/j.colsurfb.2019.04.035] [PMID: 31015105]
[79]
Medhat, A.M.; Azab, K.S.; Said, M.M.; El Fatih, N.M.; El Bakary, N.M. Antitumor and radiosensitizing synergistic effects of apigenin and cryptotanshinone against solid Ehrlich carcinoma in female mice. Tumour Biol., 2017, 39(10), 1-13.
[http://dx.doi.org/10.1177/1010428317728480] [PMID: 29022496]
[80]
Jin, X.; Yang, Q.; Zhang, Y. Synergistic apoptotic effects of apigenin TPGS liposomes and tyroservatide: implications for effective treatment of lung cancer. Int. J. Nanomedicine, 2017, 12, 5109-5118.
[http://dx.doi.org/10.2147/IJN.S140096] [PMID: 28761344]
[81]
Pal, M.K.; Jaiswar, S.P.; Dwivedi, A.; Goyal, S.; Dwivedi, V.N.; Pathak, A.K.; Kumar, V.; Sankhwar, P.L.; Ray, R.S. Synergistic effect of graphene oxide coated nanotised apigenin with paclitaxel (go-na/ptx): a ros dependent mitochondrial mediated apoptosis in ovarian cancer. Anticancer. Agents Med. Chem., 2017, 17(12), 1721-1732.
[PMID: 28443516]
[82]
Chen, Z.; Tian, D.; Liao, X.; Zhang, Y.; Xiao, J.; Chen, W.; Liu, Q.; Chen, Y.; Li, D.; Zhu, L.; Cai, S. Apigenin combined with gefitinib blocks autophagy flux and induces apoptotic cell death through inhibition of hif-1α, c-MYC, p-EGFR, and glucose metabolism in EGFR l858r+t790m-mutated h1975 cells. Front. Pharmacol., 2019, 10, 260.
[http://dx.doi.org/10.3389/fphar.2019.00260] [PMID: 30967777]
[83]
Hu, W.J.; Liu, J.; Zhong, L.K.; Wang, J. Apigenin enhances the antitumor effects of cetuximab in nasopharyngeal carcinoma by inhibiting EGFR signaling. Biomed. Pharmacother., 2018, 102, 681-688.
[http://dx.doi.org/10.1016/j.biopha.2018.03.111] [PMID: 29604587]
[84]
Kim, S.H.; Kang, J.G.; Kim, C.S.; Ihm, S.H.; Choi, M.G.; Yoo, H.J.; Lee, S.J. Akt inhibition enhances the cytotoxic effect of apigenin in combination with PLX4032 in anaplastic thyroid carcinoma cells harboring BRAFV600E. J. Endocrinol. Invest., 2013, 36(11), 1099-1104.
[PMID: 24084189]
[85]
Chan, L.P.; Chou, T.H.; Ding, H.Y.; Chen, P.R.; Chiang, F.Y.; Kuo, P.L.; Liang, C.H. Apigenin induces apoptosis via tumor necrosis factor receptor- and Bcl-2-mediated pathway and enhances susceptibility of head and neck squamous cell carcinoma to 5-fluorouracil and cisplatin. Biochim. Biophys. Acta, 2012, 1820(7), 1081-1091.
[http://dx.doi.org/10.1016/j.bbagen.2012.04.013] [PMID: 22554915]
[86]
Mohan, N.; Banik, N.L.; Ray, S.K. Combination of N-(4-hydroxyphenyl) retinamide and apigenin suppressed starvation-induced autophagy and promoted apoptosis in malignant neuroblastoma cells. Neurosci. Lett., 2011, 502(1), 24-29.
[http://dx.doi.org/10.1016/j.neulet.2011.07.016] [PMID: 21801811]
[87]
Lee, S.H.; Ryu, J.K.; Lee, K.Y.; Woo, S.M.; Park, J.K.; Yoo, J.W.; Kim, Y.T.; Yoon, Y.B. Enhanced anti-tumor effect of combination therapy with gemcitabine and apigenin in pancreatic cancer. Cancer Lett., 2008, 259(1), 39-49.
[http://dx.doi.org/10.1016/j.canlet.2007.09.015] [PMID: 17967505]
[88]
Jeon, Y.W.; Suh, Y.J. Synergistic apoptotic effect of celecoxib and luteolin on breast cancer cells. Oncol. Rep., 2013, 29(2), 819-825.
[http://dx.doi.org/10.3892/or.2012.2158] [PMID: 23229294]
[89]
Ahmed, S.; Khan, H.; Fratantonio, D.; Hasan, M.M.; Sharifi, S.; Fathi, N.; Ullah, H.; Rastrelli, L. Apoptosis induced by luteolin in breast cancer: Mechanistic and therapeutic perspectives. Phytomedicine, 2019, 59152883
[http://dx.doi.org/10.1016/j.phymed.2019.152883] [PMID: 30986716]
[90]
Chakrabarti, M.; Ray, S.K. Anti-tumor activities of luteolin and silibinin in glioblastoma cells: overexpression of miR-7-1-3p augmented luteolin and silibinin to inhibit autophagy and induce apoptosis in glioblastoma in vivo. Apoptosis, 2016, 21(3), 312-328.
[http://dx.doi.org/10.1007/s10495-015-1198-x] [PMID: 26573275]
[91]
Chakrabarti, M.; Ray, S.K. Synergistic anti-tumor actions of luteolin and silibinin prevented cell migration and invasion and induced apoptosis in glioblastoma SNB19 cells and glioblastoma stem cells. Brain Res., 2015, 1629, 85-93.
[http://dx.doi.org/10.1016/j.brainres.2015.10.010] [PMID: 26471408]
[92]
Xu, H.; Yang, T.; Liu, X.; Tian, Y.; Chen, X.; Yuan, R.; Su, S.; Lin, X.; Du, G. Luteolin synergizes the antitumor effects of 5-fluorouracil against human hepatocellular carcinoma cells through apoptosis induction and metabolism. Life Sci., 2016, 144, 138-147.
[http://dx.doi.org/10.1016/j.lfs.2015.12.002] [PMID: 26656468]
[93]
Ryu, S.; Park, S.; Lim, W.; Song, G. Effects of luteolin on canine osteosarcoma: Suppression of cell proliferation and synergy with cisplatin. J. Cell. Physiol., 2019, 234(6), 9504-9514.
[http://dx.doi.org/10.1002/jcp.27638] [PMID: 30362587]
[94]
Ou, Y.C.; Li, J.R.; Kuan, Y.H.; Raung, S.L.; Wang, C.C.; Hung, Y.Y.; Pan, P.H.; Lu, H.C.; Chen, C.J. Luteolin sensitizes human 786-O renal cell carcinoma cells to TRAIL-induced apoptosis. Life Sci., 2014, 100(2), 110-117.
[http://dx.doi.org/10.1016/j.lfs.2014.02.002] [PMID: 24530290]
[95]
Yin, H.; Wang, L.; Wu, M.; Liu, Y.; Li, N.; Chen, T. Cyanidin-3-O-glucoside chloride acts synergistically with luteolin to inhibit the growth of colon and breast carcinoma cells. Pharmazie, 2019, 74(1), 54-61.
[PMID: 30782251]
[96]
Gurunathan, S.; Jeyaraj, M.; Kang, M.H.; Kim, J.H. Tangeretin-assisted platinum nanoparticles enhance the apoptotic properties of doxorubicin: combination therapy for osteosarcoma treatment. Nanomaterials (Basel), 2019, 9(8)E1089
[http://dx.doi.org/10.3390/nano9081089] [PMID: 31362420]
[97]
Alam, M.N.; Almoyad, M.; Huq, F. Polyphenols in colorectal cancer: current state of knowledge including clinical trials and molecular mechanism of action. BioMed Res. Int., 2018, 20184154185
[http://dx.doi.org/10.1155/2018/4154185] [PMID: 29568751]
[98]
Arafa, S.A.; Zhu, Q.; Barakat, B.M.; Wani, G.; Zhao, Q.; El-Mahdy, M.A.; Wani, A.A. Tangeretin sensitizes cisplatin-resistant human ovarian cancer cells through downregulation of phosphoinositide 3-kinase/Akt signaling pathway. Cancer Res., 2009, 69(23), 8910-8917.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1543] [PMID: 19903849]
[99]
Bracke, M.E.; Depypere, H.T.; Boterberg, T.; Van Marck, V.L.; Vennekens, K.M.; Vanluchene, E.; Nuytinck, M.; Serreyn, R.; Mareel, M.M. Influence of tangeretin on tamoxifen’s therapeutic benefit in mammary cancer. J. Natl. Cancer Inst., 1999, 91(4), 354-359.
[http://dx.doi.org/10.1093/jnci/91.4.354] [PMID: 10050869]
[100]
Langner, E.; Lemieszek, M.K.; Rzeski, W. Lycopene, sulforaphane, quercetin, and curcumin applied together show improved antiproliferative potential in colon cancer cells in vitro. J. Food Biochem., 2019, 43(4)e12802
[http://dx.doi.org/10.1111/jfbc.12802] [PMID: 31353575]
[101]
Liu, H.; Lee, J.I.; Ahn, T.G. Effect of quercetin on the anti-tumor activity of cisplatin in EMT6 breast tumor-bearing mice. Obstet. Gynecol. Sci., 2019, 62(4), 242-248.
[http://dx.doi.org/10.5468/ogs.2019.62.4.242] [PMID: 31338341]
[102]
Demiroglu-Zergeroglu, A.; Ergene, E.; Ayvali, N.; Kuete, V.; Sivas, H. Quercetin and Cisplatin combined treatment altered cell cycle and mitogen activated protein kinase expressions in malignant mesotelioma cells. BMC Complement. Altern. Med., 2016, 16(1), 281.
[http://dx.doi.org/10.1186/s12906-016-1267-x] [PMID: 27514524]
[103]
Cote, B.; Carlson, L.J.; Rao, D.A.; Alani, A.W.G. Combinatorial resveratrol and quercetin polymeric micelles mitigate doxorubicin induced cardiotoxicity in vitro and in vivo. J. Control. Release, 2015, 213, 128-133.
[http://dx.doi.org/10.1016/j.jconrel.2015.06.040] [PMID: 26160305]
[104]
Taylor, M.A.; Khathayer, F.; Ray, S.K. Quercetin and sodium butyrate synergistically increase apoptosis in rat c6 and human t98g glioblastoma cells through inhibition of autophagy. Neurochem. Res., 2019, 44(7), 1715-1725.
[http://dx.doi.org/10.1007/s11064-019-02802-8] [PMID: 31011879]
[105]
Chuang, C.H.; Chan, S.T.; Chen, C.H.; Yeh, S.L. Quercetin enhances the antitumor activity of trichostatin A through up-regulation of p300 protein expression in p53 null cancer cells. Chem. Biol. Interact., 2019, 306, 54-61.
[http://dx.doi.org/10.1016/j.cbi.2019.04.006] [PMID: 30958996]
[106]
Tiwari, H.; Karki, N.; Pal, M.; Basak, S.; Verma, R.K.; Bal, R.; Kandpal, N.D.; Bisht, G.; Sahoo, N.G. Functionalized graphene oxide as a nanocarrier for dual drug delivery applications: The synergistic effect of quercetin and gefitinib against ovarian cancer cells. Colloids Surf. B Biointerfaces, 2019, 178, 452-459.
[http://dx.doi.org/10.1016/j.colsurfb.2019.03.037] [PMID: 30921680]
[107]
Scambia, G.; Ranelletti, F.O.; Panici, P.B.; De Vincenzo, R.; Bonanno, G.; Ferrandina, G.; Piantelli, M.; Bussa, S.; Rumi, C.; Cianfriglia, M. Quercetin potentiates the effect of adriamycin in a multidrug-resistant MCF-7 human breast-cancer cell line: P-glycoprotein as a possible target. Cancer Chemother. Pharmacol., 1994, 34(6), 459-464.
[http://dx.doi.org/10.1007/BF00685655] [PMID: 7923555]
[108]
Shindikar, A.; Singh, A.; Nobre, M.; Kirolikar, S. Curcumin and resveratrol as promising natural remedies with nanomedicine approach for the effective treatment of triple negative breast cancer. J. Oncol., 2016, 20169750785
[http://dx.doi.org/10.1155/2016/9750785] [PMID: 27242900]
[109]
Mutlu Altundağ, E.; Yılmaz, A.M.; Koçtürk, S.; Taga, Y.; Yalçın, A.S. Synergistic induction of apoptosis by quercetin and curcumin in chronic myeloid leukemia (k562) cells. Nutr. Cancer, 2018, 70(1), 97-108.
[http://dx.doi.org/10.1080/01635581.2018.1380208] [PMID: 29161179]
[110]
Pereira, M.A.; Grubbs, C.J.; Barnes, L.H.; Li, H.; Olson, G.R.; Eto, I.; Juliana, M.; Whitaker, L.M.; Kelloff, G.J.; Steele, V.E.; Lubet, R.A. Effects of the phytochemicals, curcumin and quercetin, upon azoxymethane-induced colon cancer and 7,12-dimethylbenz[a]anthracene-induced mammary cancer in rats. Carcinogenesis, 1996, 17(6), 1305-1311.
[http://dx.doi.org/10.1093/carcin/17.6.1305] [PMID: 8681447]
[111]
Nair, P.; Malhotra, A.; Dhawan, D.K. Curcumin and quercetin trigger apoptosis during benzo(a)pyrene-induced lung carcinogenesis. Mol. Cell. Biochem., 2015, 400(1-2), 51-56.
[http://dx.doi.org/10.1007/s11010-014-2261-6] [PMID: 25359171]
[112]
Russo, M.; Nigro, P.; Rosiello, R.; D’Arienzo, R.; Russo, G.L. Quercetin enhances CD95- and TRAIL-induced apoptosis in leukemia cell lines. Leukemia, 2007, 21(5), 1130-1133.
[http://dx.doi.org/10.1038/sj.leu.2404610] [PMID: 17330100]
[113]
Kovacovicova, K.; Skolnaja, M.; Heinmaa, M.; Mistrik, M.; Pata, P.; Pata, I.; Bartek, J.; Vinciguerra, M. Senolytic cocktail dasatinib+quercetin (d+q) does not enhance the efficacy of senescence-inducing chemotherapy in liver cancer. Front. Oncol., 2018, 8, 459.
[http://dx.doi.org/10.3389/fonc.2018.00459] [PMID: 30425964]
[114]
Maurya, A.K.; Vinayak, M. PI-103 and quercetin attenuate pi3k-akt signaling pathway in t- cell lymphoma exposed to hydrogen peroxide. PLoS One, 2016, 11(8)e0160686
[http://dx.doi.org/10.1371/journal.pone.0160686] [PMID: 27494022]
[115]
Lee, S.H.; Lee, E.J.; Min, K.H.; Hur, G.Y.; Lee, S.H.; Lee, S.Y.; Kim, J.H.; Shin, C.; Shim, J.J.; In, K.H.; Kang, K.H.; Lee, S.Y. Quercetin enhances chemosensitivity to gemcitabine in lung cancer cells by inhibiting heat shock protein 70 expression. Clin. Lung Cancer, 2015, 16(6), e235-e243.
[http://dx.doi.org/10.1016/j.cllc.2015.05.006] [PMID: 26050647]
[116]
Li, S.Z.; Qiao, S.F.; Zhang, J.H.; Li, K. Quercetin increase the chemosensitivity of breast cancer cells to doxorubicin via PTEN/AKT pathway. Anticancer. Agents Med. Chem., 2015, 15(9), 1185-1189.
[http://dx.doi.org/10.2174/1871520615999150121121708] [PMID: 25612678]
[117]
Staedler, D.; Idrizi, E.; Kenzaoui, B.H.; Juillerat-Jeanneret, L. Drug combinations with quercetin: doxorubicin plus quercetin in human breast cancer cells. Cancer Chemother. Pharmacol., 2011, 68(5), 1161-1172.
[http://dx.doi.org/10.1007/s00280-011-1596-x] [PMID: 21400027]
[118]
Shu, Y.; Xie, B.; Liang, Z.; Chen, J. Quercetin reverses the doxorubicin resistance of prostate cancer cells by downregulating the expression of c-met. Oncol. Lett., 2018, 15(2), 2252-2258.
[PMID: 29434932]
[119]
Wang, C.; Su, L.; Wu, C.; Wu, J.; Zhu, C.; Yuan, G. RGD peptide targeted lipid-coated nanoparticles for combinatorial delivery of sorafenib and quercetin against hepatocellular carcinoma. Drug Dev. Ind. Pharm., 2016, 42(12), 1938-1944.
[http://dx.doi.org/10.1080/03639045.2016.1185435] [PMID: 27142812]
[120]
Sun, S.; Gong, F.; Liu, P.; Miao, Q. Metformin combined with quercetin synergistically repressed prostate cancer cells via inhibition of VEGF/PI3K/Akt signaling pathway. Gene, 2018, 664, 50-57.
[http://dx.doi.org/10.1016/j.gene.2018.04.045] [PMID: 29678660]
[121]
Li, X.M.; Liu, J.; Pan, F.F.; Shi, D.D.; Wen, Z.G.; Yang, P.L. Quercetin and aconitine synergistically induces the human cervical carcinoma HeLa cell apoptosis via endoplasmic reticulum (ER) stress pathway. PLoS One, 2018, 13(1)e0191062
[http://dx.doi.org/10.1371/journal.pone.0191062] [PMID: 29324796]
[122]
Li, J.; Zhang, J.; Wang, Y.; Liang, X.; Wusiman, Z.; Yin, Y.; Shen, Q. Synergistic inhibition of migration and invasion of breast cancer cells by dual docetaxel/quercetin-loaded nanoparticles via Akt/MMP-9 pathway. Int. J. Pharm., 2017, 523(1), 300-309.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.040] [PMID: 28336457]
[123]
Caddeo, C.; Nacher, A.; Vassallo, A.; Armentano, M.F.; Pons, R.; Fernàndez-Busquets, X.; Carbone, C.; Valenti, D.; Fadda, A.M.; Manconi, M. Effect of quercetin and resveratrol co-incorporated in liposomes against inflammatory/oxidative response associated with skin cancer. Int. J. Pharm., 2016, 513(1-2), 153-163.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.014] [PMID: 27609664]
[124]
Chuang-Xin, L.; Wen-Yu, W.; Yao, C.; Xiao-Yan, L.; Yun, Z. Quercetin enhances the effects of 5-fluorouracil-mediated growth inhibition and apoptosis of esophageal cancer cells by inhibiting NF-κB. Oncol. Lett., 2012, 4(4), 775-778.
[http://dx.doi.org/10.3892/ol.2012.829] [PMID: 23226792]
[125]
Xavier, C.P.; Lima, C.F.; Rohde, M.; Pereira-Wilson, C. Quercetin enhances 5-fluorouracil-induced apoptosis in MSI colorectal cancer cells through p53 modulation. Cancer Chemother. Pharmacol., 2011, 68(6), 1449-1457.
[http://dx.doi.org/10.1007/s00280-011-1641-9] [PMID: 21479885]
[126]
Wang, P.; Phan, T.; Gordon, D.; Chung, S.; Henning, S.M.; Vadgama, J.V. Arctigenin in combination with quercetin synergistically enhances the antiproliferative effect in prostate cancer cells. Mol. Nutr. Food Res., 2015, 59(2), 250-261.
[http://dx.doi.org/10.1002/mnfr.201400558] [PMID: 25380086]
[127]
Yuan, Z.; Wang, H.; Hu, Z.; Huang, Y.; Yao, F.; Sun, S.; Wu, B. Quercetin inhibits proliferation and drug resistance in KB/VCR oral cancer cells and enhances its sensitivity to vincristine. Nutr. Cancer, 2015, 67(1), 126-136.
[http://dx.doi.org/10.1080/01635581.2015.965334] [PMID: 25514492]
[128]
Yang, F.Q.; Liu, M.; Li, W.; Che, J.P.; Wang, G.C.; Zheng, J.H. Combination of quercetin and hyperoside inhibits prostate cancer cell growth and metastasis via regulation of microRNA 21. Mol. Med. Rep., 2015, 11(2), 1085-1092.
[http://dx.doi.org/10.3892/mmr.2014.2813] [PMID: 25354548]
[129]
Li, W.; Liu, M.; Xu, Y.F.; Feng, Y.; Che, J.P.; Wang, G.C.; Zheng, J.H. Combination of quercetin and hyperoside has anticancer effects on renal cancer cells through inhibition of oncogenic microRNA-27a. Oncol. Rep., 2014, 31(1), 117-124.
[http://dx.doi.org/10.3892/or.2013.2811] [PMID: 24173369]
[130]
Arzuman, L.; Beale, P.; Chan, C.; Yu, J.Q.; Huq, F. Synergism from combinations of tris(benzimidazole) monochloroplatinum(II) chloride with capsaicin, quercetin, curcumin and cisplatin in human ovarian cancer cell lines. Anticancer Res., 2014, 34(10), 5453-5464.
[PMID: 25275041]
[131]
Appari, M.; Babu, K.R.; Kaczorowski, A.; Gross, W.; Herr, I. Sulforaphane, quercetin and catechins complement each other in elimination of advanced pancreatic cancer by miR-let-7 induction and K-ras inhibition. Int. J. Oncol., 2014, 45(4), 1391-1400.
[http://dx.doi.org/10.3892/ijo.2014.2539] [PMID: 25017900]
[132]
Wang, G.; Song, L.; Wang, H.; Xing, N. Quercetin synergizes with 2-methoxyestradiol inhibiting cell growth and inducing apoptosis in human prostate cancer cells. Oncol. Rep., 2013, 30(1), 357-363.
[http://dx.doi.org/10.3892/or.2013.2469] [PMID: 23673431]
[133]
Moreira, L.; Araújo, I.; Costa, T.; Correia-Branco, A.; Faria, A.; Martel, F.; Keating, E. Quercetin and epigallocatechin gallate inhibit glucose uptake and metabolism by breast cancer cells by an estrogen receptor-independent mechanism. Exp. Cell Res., 2013, 319(12), 1784-1795.
[http://dx.doi.org/10.1016/j.yexcr.2013.05.001] [PMID: 23664836]
[134]
Sang, D.P.; Li, R.J.; Lan, Q. Quercetin sensitizes human glioblastoma cells to temozolomide in vitro via inhibition of Hsp27. Acta Pharmacol. Sin., 2014, 35(6), 832-838.
[http://dx.doi.org/10.1038/aps.2014.22] [PMID: 24902789]
[135]
Del Follo-Martinez, A.; Banerjee, N.; Li, X.; Safe, S.; Mertens-Talcott, S. Resveratrol and quercetin in combination have anticancer activity in colon cancer cells and repress oncogenic microRNA-27a. Nutr. Cancer, 2013, 65(3), 494-504.
[http://dx.doi.org/10.1080/01635581.2012.725194] [PMID: 23530649]
[136]
Riahi-Chebbi, I.; Souid, S.; Othman, H.; Haoues, M.; Karoui, H.; Morel, A.; Srairi-Abid, N.; Essafi, M.; Essafi-Benkhadir, K. The Phenolic compound Kaempferol overcomes 5-fluorouracil resistance in human resistant LS174 colon cancer cells. Sci. Rep., 2019, 9(1), 195.
[http://dx.doi.org/10.1038/s41598-018-36808-z] [PMID: 30655588]
[137]
Luo, H.; Daddysman, M.K.; Rankin, G.O.; Jiang, B.H.; Chen, Y.C. Kaempferol enhances cisplatin’s effect on ovarian cancer cells through promoting apoptosis caused by down regulation of cMyc. Cancer Cell Int., 2010, 10, 16.
[http://dx.doi.org/10.1186/1475-2867-10-16] [PMID: 20459793]
[138]
Wang, L.; Feng, J.; Chen, X.; Guo, W.; Du, Y.; Wang, Y.; Zang, W.; Zhang, S.; Zhao, G. Myricetin enhance chemosensitivity of 5-fluorouracil on esophageal carcinoma in vitro and in vivo. Cancer Cell Int., 2014, 14, 71.
[http://dx.doi.org/10.1186/s12935-014-0071-2] [PMID: 25788859]
[139]
Jeng, L.B.; Kumar Velmurugan, B.; Chen, M.C.; Hsu, H.H.; Ho, T.J.; Day, C.H.; Lin, Y.M.; Padma, V.V.; Tu, C.C.; Huang, C.Y. Fisetin mediated apoptotic cell death in parental and Oxaliplatin/irinotecan resistant colorectal cancer cells in vitro and in vivo. J. Cell. Physiol., 2018, 233(9), 7134-7142.
[http://dx.doi.org/10.1002/jcp.26532] [PMID: 29574877]
[140]
Szliszka, E.; Helewski, K.J.; Mizgala, E.; Krol, W. The dietary flavonol fisetin enhances the apoptosis-inducing potential of TRAIL in prostate cancer cells. Int. J. Oncol., 2011, 39(4), 771-779.
[PMID: 21743964]
[141]
Klimaszewska-Wisniewska, A.; Halas-Wisniewska, M.; Tadrowski, T.; Gagat, M.; Grzanka, D.; Grzanka, A. Paclitaxel and the dietary flavonoid fisetin: a synergistic combination that induces mitotic catastrophe and autophagic cell death in A549 non-small cell lung cancer cells. Cancer Cell Int., 2016, 16, 10.
[http://dx.doi.org/10.1186/s12935-016-0288-3] [PMID: 26884726]
[142]
Shi, B.; Wang, L.F.; Meng, W.S.; Chen, L.; Meng, Z.L. Carnosic acid and fisetin combination therapy enhances inhibition of lung cancer through apoptosis induction. Int. J. Oncol., 2017, 50(6), 2123-2135.
[http://dx.doi.org/10.3892/ijo.2017.3970] [PMID: 28440400]
[143]
Yu, S.; Gong, L.S.; Li, N.F.; Pan, Y.F.; Zhang, L. Galangin (GG) combined with cisplatin (DDP) to suppress human lung cancer by inhibition of STAT3-regulated NF-κB and Bcl-2/Bax signaling pathways. Biomed. Pharmacother., 2018, 97, 213-224.
[http://dx.doi.org/10.1016/j.biopha.2017.10.059] [PMID: 29091869]
[144]
Rahideh, S.T.; Shidfar, F.; Nourbakhsh, M.; Hoseini, M.; Koohdani, F.; Entezam, M.; Keramatipour, M. The individual or combinational effects of Hesperetin and Letrozole on the activity and expression of aromatase in MCF-7 cells. Cell. Mol. Biol., 2016, 62(6), 38-43.
[PMID: 27262800]
[145]
Coutinho, L.; Oliveira, H.; Pacheco, A.R.; Almeida, L.; Pimentel, F.; Santos, C.; Ferreira de Oliveira, J.M. Hesperetin-etoposide combinations induce cytotoxicity in U2OS cells: Implications on therapeutic developments for osteosarcoma. DNA Repair (Amst.), 2017, 50, 36-42.
[http://dx.doi.org/10.1016/j.dnarep.2016.12.006] [PMID: 28063664]
[146]
Parashar, P.; Tripathi, C.B.; Arya, M.; Kanoujia, J.; Singh, M.; Yadav, A.; Kumar, A.; Guleria, A.; Saraf, S.A. Biotinylated naringenin intensified anticancer effect of gefitinib in urethane-induced lung cancer in rats: favourable modulation of apoptotic regulators and serum metabolomics. Artif Cells Nanomed Biotechnol, 2018, 46(sup3), S598-S610.
[http://dx.doi.org/10.1080/21691401.2018.1505738] [PMID: 24881818]
[147]
Hatkevich, T.; Ramos, J.; Santos-Sanchez, I.; Patel, Y.M. A naringenin-tamoxifen combination impairs cell proliferation and survival of MCF-7 breast cancer cells. Exp. Cell Res., 2014, 327(2), 331-339.
[http://dx.doi.org/10.1016/j.yexcr.2014.05.017] [PMID: 24881818]
[148]
Anand, K.; Sarkar, A.; Kumar, A.; Ambasta, R.K.; Kumar, P. Combinatorial antitumor effect of naringenin and curcumin elicit angioinhibitory activities in vivo. Nutr. Cancer, 2012, 64(5), 714-724.
[http://dx.doi.org/10.1080/01635581.2012.686648] [PMID: 22642894]
[149]
Torricelli, P.; Ricci, P.; Provenzano, B.; Lentini, A.; Tabolacci, C. Synergic effect of α-tocopherol and naringenin in transglutaminase-induced differentiation of human prostate cancer cells. Amino Acids, 2011, 41(5), 1207-1214.
[http://dx.doi.org/10.1007/s00726-010-0788-8] [PMID: 20981458]
[150]
Zhang, Z.R.; Al Zaharna, M.; Wong, M.M.; Chiu, S.K.; Cheung, H.Y. Taxifolin enhances andrographolide-induced mitotic arrest and apoptosis in human prostate cancer cells via spindle assembly checkpoint activation. PLoS One, 2013, 8(1)e54577
[http://dx.doi.org/10.1371/journal.pone.0054577] [PMID: 23382917]
[151]
Lu, C.H.; Chen, W.T.; Hsieh, C.H.; Kuo, Y.Y.; Chao, C.Y. Thermal cycling-hyperthermia in combination with polyphenols, epigallocatechin gallate and chlorogenic acid, exerts synergistic anticancer effect against human pancreatic cancer PANC-1 cells. PLoS One, 2019, 14(5)e0217676
[http://dx.doi.org/10.1371/journal.pone.0217676] [PMID: 31150487]
[152]
Chakrabarty, S.; Nag, D.; Ganguli, A.; Das, A.; Ghosh Dastidar, D.; Chakrabarti, G. Theaflavin and epigallocatechin-3-gallate synergistically induce apoptosis through inhibition of PI3K/Akt signaling upon depolymerizing microtubules in HeLa cells. J. Cell. Biochem., 2019, 120(4), 5987-6003.
[http://dx.doi.org/10.1002/jcb.27886] [PMID: 30390323]
[153]
Pal, D.; Sur, S.; Roy, R.; Mandal, S.; Kumar Panda, C. Epigallocatechin gallate in combination with eugenol or amarogentin shows synergistic chemotherapeutic potential in cervical cancer cell line. J. Cell. Physiol., 2018, 234(1), 825-836.
[http://dx.doi.org/10.1002/jcp.26900] [PMID: 30078217]
[154]
Wang, W.; Chen, D.; Zhu, K. SOX2OT variant 7 contributes to the synergistic interaction between EGCG and Doxorubicin to kill osteosarcoma via autophagy and stemness inhibition. J. Exp. Clin. Cancer Res., 2018, 37(1), 37.
[http://dx.doi.org/10.1186/s13046-018-0689-3] [PMID: 29475441]
[155]
Ying, L.; Yan, F.; Williams, B.R.; Xu, P.; Li, X.; Zhao, Y.; Hu, Y.; Wang, Y.; Xu, D.; Dai, J. (-)-Epigallocatechin-3-gallate and EZH2 inhibitor GSK343 have similar inhibitory effects and mechanisms of action on colorectal cancer cells. Clin. Exp. Pharmacol. Physiol., 2018, 45(1), 58-67.
[http://dx.doi.org/10.1111/1440-1681.12854] [PMID: 28925507]
[156]
Goker, B.; Caliskan, C.; Onur Caglar, H.; Kayabasi, C.; Balci, T.; Erbaykent Tepedelen, B.; Aygunes, D.; Yilmaz Susluer, S.; Mutlu, Z.; Selvi Gunel, N.; Korkmaz, M.; Saydam, G.; Gunduz, C.; Biray Avci, C. Synergistic effect of ponatinib and epigallocatechin-3-gallate induces apoptosis in chronic myeloid leukemia cells through altering expressions of cell cycle regulatory genes. J. BUON, 2014, 19(4), 992-998.
[PMID: 25536607]
[157]
Eom, D.W.; Lee, J.H.; Kim, Y.J.; Hwang, G.S.; Kim, S.N.; Kwak, J.H.; Cheon, G.J.; Kim, K.H.; Jang, H.J.; Ham, J.; Kang, K.S.; Yamabe, N. Synergistic effect of curcumin on epigallocatechin gallate-induced anticancer action in PC3 prostate cancer cells. BMB Rep., 2015, 48(8), 461-466.
[http://dx.doi.org/10.5483/BMBRep.2015.48.8.216] [PMID: 25441423]
[158]
Luo, T.; Wang, J.; Yin, Y.; Hua, H.; Jing, J.; Sun, X.; Li, M.; Zhang, Y.; Jiang, Y. (-)-Epigallocatechin gallate sensitizes breast cancer cells to paclitaxel in a murine model of breast carcinoma. Breast Cancer Res., 2010, 12(1), R8.
[http://dx.doi.org/10.1186/bcr2473] [PMID: 20078855]
[159]
Chen, L.; Ye, H.L.; Zhang, G.; Yao, W.M.; Chen, X.Z.; Zhang, F.C.; Liang, G. Autophagy inhibition contributes to the synergistic interaction between EGCG and doxorubicin to kill the hepatoma Hep3B cells. PLoS One, 2014, 9(1)e85771
[http://dx.doi.org/10.1371/journal.pone.0085771] [PMID: 24465696]
[160]
Jiang, P.; Wu, X.; Wang, X.; Huang, W.; Feng, Q. NEAT1 upregulates EGCG-induced CTR1 to enhance cisplatin sensitivity in lung cancer cells. Oncotarget, 2016, 7(28), 43337-43351.
[http://dx.doi.org/10.18632/oncotarget.9712] [PMID: 27270317]
[161]
Wang, X.; Jiang, P.; Wang, P.; Yang, C.S.; Wang, X.; Feng, Q. Correction: EGCG enhances cisplatin sensitivity by regulating expression of the copper and cisplatin influx transporter CTR1 in ovary cancer. PLoS One, 2015, 10(6)e0132086
[http://dx.doi.org/10.1371/journal.pone.0132086] [PMID: 26121483]
[162]
Du, G.J.; Wang, C.Z.; Qi, L.W.; Zhang, Z.Y.; Calway, T.; He, T.C.; Du, W.; Yuan, C.S. The synergistic apoptotic interaction of panaxadiol and epigallocatechin gallate in human colorectal cancer cells. Phytother. Res., 2013, 27(2), 272-277.
[http://dx.doi.org/10.1002/ptr.4707] [PMID: 22566066]
[163]
Yunos, N.M.; Beale, P.; Yu, J.Q.; Huq, F. Synergism from the combination of oxaliplatin with selected phytochemicals in human ovarian cancer cell lines. Anticancer Res., 2011, 31(12), 4283-4289.
[PMID: 22199293]
[164]
Scandlyn, M.J.; Stuart, E.C.; Somers-Edgar, T.J.; Menzies, A.R.; Rosengren, R.J. A new role for tamoxifen in oestrogen receptor-negative breast cancer when it is combined with epigallocatechin gallate. Br. J. Cancer, 2008, 99(7), 1056-1063.
[http://dx.doi.org/10.1038/sj.bjc.6604634] [PMID: 18797454]
[165]
Ohishi, T.; Kishimoto, Y.; Miura, N.; Shiota, G.; Kohri, T.; Hara, Y.; Hasegawa, J.; Isemura, M. Synergistic effects of (-)-epigallocatechin gallate with sulindac against colon carcinogenesis of rats treated with azoxymethane. Cancer Lett., 2002, 177(1), 49-56.
[http://dx.doi.org/10.1016/S0304-3835(01)00767-4] [PMID: 11809530]
[166]
Li, W.; Wu, J.X.; Tu, Y.Y. Synergistic effects of tea polyphenols and ascorbic acid on human lung adenocarcinoma SPC-A-1 cells. J. Zhejiang Univ. Sci. B, 2010, 11(6), 458-464.
[http://dx.doi.org/10.1631/jzus.B0900355] [PMID: 20506578]
[167]
Amin, A.R.; Khuri, F.R.; Chen, Z.G.; Shin, D.M. Synergistic growth inhibition of squamous cell carcinoma of the head and neck by erlotinib and epigallocatechin-3-gallate: the role of p53-dependent inhibition of nuclear factor-kappaB. Cancer Prev. Res. (Phila.), 2009, 2(6), 538-545.
[http://dx.doi.org/10.1158/1940-6207.CAPR-09-0063] [PMID: 19470788]
[168]
Kim, M.H.; Chung, J. Synergistic cell death by EGCG and ibuprofen in DU-145 prostate cancer cell line. Anticancer Res., 2007, 27(6B), 3947-3956.
[PMID: 18225555]
[169]
Siddiqui, I.A.; Malik, A.; Adhami, V.M.; Asim, M.; Hafeez, B.B.; Sarfaraz, S.; Mukhtar, H. Green tea polyphenol EGCG sensitizes human prostate carcinoma LNCaP cells to TRAIL-mediated apoptosis and synergistically inhibits biomarkers associated with angiogenesis and metastasis. Oncogene, 2008, 27(14), 2055-2063.
[http://dx.doi.org/10.1038/sj.onc.1210840] [PMID: 17998943]
[170]
Nair, S.; Hebbar, V.; Shen, G.; Gopalakrishnan, A.; Khor, T.O.; Yu, S.; Xu, C.; Kong, A.N. Synergistic effects of a combination of dietary factors sulforaphane and (-) epigallocatechin-3-gallate in HT-29 AP-1 human colon carcinoma cells. Pharm. Res., 2008, 25(2), 387-399.
[http://dx.doi.org/10.1007/s11095-007-9364-7] [PMID: 17657594]
[171]
Suganuma, M.; Kurusu, M.; Suzuki, K.; Tasaki, E.; Fujiki, H. Green tea polyphenol stimulates cancer preventive effects of celecoxib in human lung cancer cells by upregulation of GADD153 gene. Int. J. Cancer, 2006, 119(1), 33-40.
[http://dx.doi.org/10.1002/ijc.21809] [PMID: 16463383]
[172]
Shirakami, Y.; Shimizu, M.; Tsurumi, H.; Hara, Y.; Tanaka, T.; Moriwaki, H. EGCG and Polyphenon E attenuate inflammation-related mouse colon carcinogenesis induced by AOM plus DDS. Mol. Med. Rep., 2008, 1(3), 355-361.
[http://dx.doi.org/10.3892/mmr.1.3.355] [PMID: 21479417]
[173]
Sandhu, P.S.; Kumar, R.; Beg, S.; Jain, S.; Kushwah, V.; Katare, O.P.; Singh, B. Natural lipids enriched self-nano-emulsifying systems for effective co-delivery of tamoxifen and naringenin: Systematic approach for improved breast cancer therapeutics. Nanomedicine (Lond.), 2017, 13(5), 1703-1713.
[http://dx.doi.org/10.1016/j.nano.2017.03.003] [PMID: 28343014]
[174]
Fang, J.; Zhang, S.; Xue, X.; Zhu, X.; Song, S.; Wang, B.; Jiang, L.; Qin, M.; Liang, H.; Gao, L. Quercetin and doxorubicin co-delivery using mesoporous silica nanoparticles enhance the efficacy of gastric carcinoma chemotherapy. Int. J. Nanomedicine, 2018, 13, 5113-5126.
[http://dx.doi.org/10.2147/IJN.S170862] [PMID: 30233175]
[175]
Lv, L.; Liu, C.; Chen, C.; Yu, X.; Chen, G.; Shi, Y.; Qin, F.; Ou, J.; Qiu, K.; Li, G. Quercetin and doxorubicin co-encapsulated biotin receptor-targeting nanoparticles for minimizing drug resistance in breast cancer. Oncotarget, 2016, 7(22), 32184-32199.
[http://dx.doi.org/10.18632/oncotarget.8607] [PMID: 27058756]
[176]
Jeong, D.; Bae, B.C.; Park, S.J.; Na, K. Reactive oxygen species responsive drug releasing nanoparticle based on chondroitin sulfate-anthocyanin nanocomplex for efficient tumor therapy. J. Control. Release, 2016, 222, 78-85.
[http://dx.doi.org/10.1016/j.jconrel.2015.12.009] [PMID: 26686664]
[177]
Mendes, L.P.; Gaeti, M.P.; de Ávila, P.H.; de Sousa Vieira, M.; Dos Santos Rodrigues, B.; de Ávila Marcelino, R.I.; Dos Santos, L.C.; Valadares, M.C.; Lima, E.M. Multicompartimental nanoparticles for co-encapsulation and multimodal drug delivery to tumor cells and neovasculature. Pharm. Res., 2014, 31(5), 1106-1119.
[PMID: 24170281]
[178]
Liao, B.; Ying, H.; Yu, C.; Fan, Z.; Zhang, W.; Shi, J.; Ying, H.; Ravichandran, N.; Xu, Y.; Yin, J.; Jiang, Y.; Du, Q. (-)-Epigallocatechin gallate (EGCG)-nanoethosomes as a transdermal delivery system for docetaxel to treat implanted human melanoma cell tumors in mice. Int. J. Pharm., 2016, 512(1), 22-31.
[http://dx.doi.org/10.1016/j.ijpharm.2016.08.038] [PMID: 27544847]
[179]
Ji, J.H.; Jung, J.H.; Kim, S.S.; Yoon, J.U.; Park, J.D.; Choi, B.S.; Chung, Y.H.; Kwon, I.H.; Jeong, J.; Han, B.S.; Shin, J.H.; Sung, J.H.; Song, K.S.; Yu, I.J. Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhal. Toxicol., 2007, 19(10), 857-871.
[http://dx.doi.org/10.1080/08958370701432108] [PMID: 17687717]
[180]
Khan, N.; Bharali, D.J.; Adhami, V.M.; Siddiqui, I.A.; Cui, H.; Shabana, S.M.; Mousa, S.A.; Mukhtar, H. Oral administration of naturally occurring chitosan-based nanoformulated green tea polyphenol EGCG effectively inhibits prostate cancer cell growth in a xenograft model. Carcinogenesis, 2014, 35(2), 415-423.
[http://dx.doi.org/10.1093/carcin/bgt321] [PMID: 24072771]
[181]
Siddiqui, I.A.; Bharali, D.J.; Nihal, M.; Adhami, V.M.; Khan, N.; Chamcheu, J.C.; Khan, M.I.; Shabana, S.; Mousa, S.A.; Mukhtar, H. Excellent anti-proliferative and pro-apoptotic effects of (-)-epigallocatechin-3-gallate encapsulated in chitosan nanoparticles on human melanoma cell growth both in vitro and in vivo. Nanomedicine (Lond.), 2014, 10(8), 1619-1626.
[http://dx.doi.org/10.1016/j.nano.2014.05.007] [PMID: 24965756]
[182]
Lin, Y.H.; Chen, Z.R.; Lai, C.H.; Hsieh, C.H.; Feng, C.L. Active targeted nanoparticles for oral administration of gastric cancer therapy. active targeted nanoparticles for oral administration of gastric cancer therapy. Biomacromolecules, 2015, 16(9), 3021-3032.
[http://dx.doi.org/10.1021/acs.biomac.5b00907] [PMID: 26286711]
[183]
Chen, C.C.; Hsieh, D.S.; Huang, K.J.; Chan, Y.L.; Hong, P.D.; Yeh, M.K.; Wu, C.J. Improving anticancer efficacy of (-)-epigallocatechin-3-gallate gold nanoparticles in murine B16F10 melanoma cells. Drug Des. Devel. Ther., 2014, 8, 459-474.
[PMID: 24855338]
[184]
Hsieh, D.S.; Wang, H.; Tan, S.W.; Huang, Y.H.; Tsai, C.Y.; Yeh, M.K.; Wu, C.J. The treatment of bladder cancer in a mouse model by epigallocatechin-3-gallate-gold nanoparticles. Biomaterials, 2011, 32(30), 7633-7640.
[http://dx.doi.org/10.1016/j.biomaterials.2011.06.073] [PMID: 21782236]
[185]
Hsieh, D.S.; Lu, H.C.; Chen, C.C.; Wu, C.J.; Yeh, M.K. The preparation and characterization of gold-conjugated polyphenol nanoparticles as a novel delivery system. Int. J. Nanomedicine, 2012, 7, 1623-1633.
[PMID: 22615529]
[186]
Balakrishnan, S.; Bhat, F.A.; Raja Singh, P.; Mukherjee, S.; Elumalai, P.; Das, S.; Patra, C.R.; Arunakaran, J. Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Prolif., 2016, 49(6), 678-697.
[http://dx.doi.org/10.1111/cpr.12296] [PMID: 27641938]
[187]
Mandal, A.K.; Ghosh, D.; Sarkar, S.; Ghosh, A.; Swarnakar, S.; Das, N. Nanocapsulated quercetin downregulates rat hepatic MMP-13 and controls diethylnitrosamine-induced carcinoma. Nanomedicine (Lond.), 2014, 9(15), 2323-2337.
[http://dx.doi.org/10.2217/nnm.14.11] [PMID: 24593002]
[188]
Gao, X.; Wang, B.; Wei, X.; Men, K.; Zheng, F.; Zhou, Y.; Zheng, Y.; Gou, M.; Huang, M.; Guo, G.; Huang, N.; Qian, Z.; Wei, Y. Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer. Nanoscale, 2012, 4(22), 7021-7030.
[http://dx.doi.org/10.1039/c2nr32181e] [PMID: 23044718]
[189]
Zhao, J.; Liu, J.; Wei, T.; Ma, X.; Cheng, Q.; Huo, S.; Zhang, C.; Zhang, Y.; Duan, X.; Liang, X.J. Quercetin-loaded nanomicelles to circumvent human castration-resistant prostate cancer in vitro and in vivo. Nanoscale, 2016, 8(9), 5126-5138.
[http://dx.doi.org/10.1039/C5NR08966B] [PMID: 26875690]
[190]
Baksi, R.; Singh, D.P.; Borse, S.P.; Rana, R.; Sharma, V.; Nivsarkar, M. In vitro and in vivo anticancer efficacy potential of Quercetin loaded polymeric nanoparticles. Biomed. Pharmacother., 2018, 106, 1513-1526.
[http://dx.doi.org/10.1016/j.biopha.2018.07.106] [PMID: 30119227]
[191]
Jain, A.S.; Shah, S.M.; Nagarsenker, M.S.; Nikam, Y.; Gude, R.P.; Steiniger, F.; Thamm, J.; Fahr, A. Lipid colloidal carriers for improvement of anticancer activity of orally delivered quercetin: formulation, characterization and establishing in vitro-in vivo advantage. J. Biomed. Nanotechnol., 2013, 9(7), 1230-1240.
[http://dx.doi.org/10.1166/jbn.2013.1636] [PMID: 23909137]
[192]
Luo, C.L.; Liu, Y.Q.; Wang, P.; Song, C.H.; Wang, K.J.; Dai, L.P.; Zhang, J.Y.; Ye, H. The effect of quercetin nanoparticle on cervical cancer progression by inducing apoptosis, autophagy and anti-proliferation via JAK2 suppression. Biomed. Pharmacother., 2016, 82, 595-605.
[http://dx.doi.org/10.1016/j.biopha.2016.05.029] [PMID: 27470402]
[193]
Ren, K.W.; Li, Y.H.; Wu, G.; Ren, J.Z.; Lu, H.B.; Li, Z.M.; Han, X.W. Quercetin nanoparticles display antitumor activity via proliferation inhibition and apoptosis induction in liver cancer cells. Int. J. Oncol., 2017, 50(4), 1299-1311.
[http://dx.doi.org/10.3892/ijo.2017.3886] [PMID: 28259895]
[194]
Lou, M.; Zhang, L.N.; Ji, P.G.; Feng, F.Q.; Liu, J.H.; Yang, C.; Li, B.F.; Wang, L. Quercetin nanoparticles induced autophagy and apoptosis through AKT/ERK/Caspase-3 signaling pathway in human neuroglioma cells: In vitro and in vivo. Biomed. Pharmacother., 2016, 84, 1-9.
[http://dx.doi.org/10.1016/j.biopha.2016.08.055] [PMID: 27621033]
[195]
Sharma, G.; Park, J.; Sharma, A.R.; Jung, J.S.; Kim, H.; Chakraborty, C.; Song, D.K.; Lee, S.S.; Nam, J.S. Methoxy poly(ethylene glycol)-poly(lactide) nanoparticles encapsulating quercetin act as an effective anticancer agent by inducing apoptosis in breast cancer. Pharm. Res., 2015, 32(2), 723-735.
[http://dx.doi.org/10.1007/s11095-014-1504-2] [PMID: 25186442]
[196]
Xu, G.; Shi, H.; Ren, L.; Gou, H.; Gong, D.; Gao, X.; Huang, N. Enhancing the anti-colon cancer activity of quercetin by self-assembled micelles. Int. J. Nanomedicine, 2015, 10, 2051-2063.
[PMID: 25844036]
[197]
Guan, X.; Gao, M.; Xu, H.; Zhang, C.; Liu, H.; Lv, L.; Deng, S.; Gao, D.; Tian, Y. Quercetin-loaded poly (lactic-co-glycolic acid)-d-α-tocopheryl polyethylene glycol 1000 succinate nanoparticles for the targeted treatment of liver cancer. Drug Deliv., 2016, 23(9), 3307-3318.
[http://dx.doi.org/10.1080/10717544.2016.1176087] [PMID: 27067032]
[198]
Xing, L.; Lyu, J.Y.; Yang, Y.; Cui, P.F.; Gu, L.Q.; Qiao, J.B.; He, Y.J.; Zhang, T.Q.; Sun, M.; Lu, J.J.; Xu, X.; Liu, Y.; Jiang, H.L. pH-Responsive de-PEGylated nanoparticles based on triphenylphosphine-quercetin self-assemblies for mitochondria-targeted cancer therapy. Chem. Commun. (Camb.), 2017, 53(62), 8790-8793.
[http://dx.doi.org/10.1039/C7CC04058J] [PMID: 28736782]
[199]
Li, J.; Shi, M.; Ma, B.; Niu, R.; Zhang, H.; Kun, L. Antitumor activity and safety evaluation of nanaparticle-based delivery of quercetin through intravenous administration in mice. Mater. Sci. Eng. C, 2017, 77, 803-810.
[http://dx.doi.org/10.1016/j.msec.2017.03.191] [PMID: 28532095]
[200]
Dora, C.L.; Silva, L.F.; Mazzarino, L.; Siqueira, J.M.; Fernandes, D.; Pacheco, L.K.; Maioral, M.F.; Santos-Silva, M.C.; Baischl, A.L.; Assreuy, J.; Lemos-Senna, E. Oral delivery of a high quercetin payload nanosized emulsion: in vitro and in vivo activity against b16-f10 melanoma. J. Nanosci. Nanotechnol., 2016, 16(2), 1275-1281.
[http://dx.doi.org/10.1166/jnn.2016.11675] [PMID: 27433577]
[201]
Tan, B.J.; Liu, Y.; Chang, K.L.; Lim, B.K.; Chiu, G.N. Perorally active nanomicellar formulation of quercetin in the treatment of lung cancer. Int. J. Nanomedicine, 2012, 7, 651-661.
[PMID: 22334787]
[202]
Long, Q.; Xiel, Y.; Huang, Y.; Wu, Q.; Zhang, H.; Xiong, S.; Liu, Y.; Chen, L.; Wei, Y.; Zhao, X.; Gong, C. Induction of apoptosis and inhibition of angiogenesis by PEGylated liposomal quercetin in both cisplatin-sensitive and cisplatin-resistant ovarian cancers. J. Biomed. Nanotechnol., 2013, 9(6), 965-975.
[http://dx.doi.org/10.1166/jbn.2013.1596] [PMID: 23858960]
[203]
Chaurasia, S.; Patel, R.R.; Vure, P.; Mishra, B. Oral naringenin nanocarriers: Fabrication, optimization, pharmacokinetic and chemotherapeutic efficacy assessments. Nanomedicine (Lond.), 2017, 12(11), 1243-1260.
[http://dx.doi.org/10.2217/nnm-2016-0436] [PMID: 28593828]
[204]
Chaurasia, S.; Patel, R.R.; Vure, P.; Mishra, B. Potential of cationic-polymeric nanoparticles for oral delivery of naringenin: in vitro and in vivo investigations. J. Pharm. Sci., 2018, 107(2), 706-716.
[http://dx.doi.org/10.1016/j.xphs.2017.10.006] [PMID: 29031951]
[205]
Krishnakumar, N.; Sulfikkarali, N.K.; Manoharan, S.; Venkatachalam, P. Raman spectroscopic investigation of the chemopreventive response of naringenin and its nanoparticles in DMBA-induced oral carcinogenesis. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 115, 648-653.
[http://dx.doi.org/10.1016/j.saa.2013.05.076] [PMID: 23880406]
[206]
Sulfikkarali, N.; Krishnakumar, N.; Manoharan, S.; Nirmal, R.M. Chemopreventive efficacy of naringenin-loaded nanoparticles in 7,12-dimethylbenz(a)anthracene induced experimental oral carcinogenesis. Pathol. Oncol. Res., 2013, 19(2), 287-296.
[http://dx.doi.org/10.1007/s12253-012-9581-1] [PMID: 23233294]
[207]
Wu, B.; Liang, Y.; Tan, Y.; Xie, C.; Shen, J.; Zhang, M.; Liu, X.; Yang, L.; Zhang, F.; Liu, L.; Cai, S.; Huai, D.; Zheng, D.; Zhang, R.; Zhang, C.; Chen, K.; Tang, X.; Sui, X. Genistein-loaded nanoparticles of star-shaped diblock copolymer mannitol-core PLGA-TPGS for the treatment of liver cancer. Mater. Sci. Eng. C, 2016, 59, 792-800.
[http://dx.doi.org/10.1016/j.msec.2015.10.087] [PMID: 26652434]
[208]
Sharma, V.K.; Siskova, K.M.; Zboril, R.; Gardea-Torresdey, J.L. Organic-coated silver nanoparticles in biological and environmental conditions: fate, stability and toxicity. Adv. Colloid Interface Sci., 2014, 204, 15-34.
[http://dx.doi.org/10.1016/j.cis.2013.12.002] [PMID: 24406050]
[209]
Ivask, A.; Juganson, K.; Bondarenko, O.; Mortimer, M.; Aruoja, V.; Kasemets, K.; Blinova, I.; Heinlaan, M.; Slaveykova, V.; Kahru, A. Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro: a comparative review. Nanotoxicology, 2014, 8(Suppl. 1), 57-71.
[http://dx.doi.org/10.3109/17435390.2013.855831] [PMID: 24256211]
[210]
Tang, T.; Zhang, Z.; Zhu, X. Toxic Effects of TiO2 NPs on Zebrafish. Int. J. Environ. Res. Public Health, 2019, 16(4)E523
[http://dx.doi.org/10.3390/ijerph16040523] [PMID: 30781732]
[211]
Mohammadinejad, R.; Moosavi, M.A.; Tavakol, S.; Vardar, D.O.; Hosseini, A.; Rahmati, M.; Dini, L.; Hussain, S.; Mandegary, A.; Klionsky, D.J. Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy, 2019, 15(1), 4-33.
[http://dx.doi.org/10.1080/15548627.2018.1509171] [PMID: 30160607]
[212]
Nguyen, K.C.; Rippstein, P.; Tayabali, A.F.; Willmore, W.G. Mitochondrial toxicity of cadmium telluride quantum dot nanoparticles in mammalian hepatocytes. Toxicol. Sci., 2015, 146(1), 31-42.
[http://dx.doi.org/10.1093/toxsci/kfv068] [PMID: 25809595]
[213]
Petrache Voicu, S.N.; Dinu, D.; Sima, C.; Hermenean, A.; Ardelean, A.; Codrici, E.; Stan, M.S.; Zărnescu, O.; Dinischiotu, A. Silica nanoparticles induce oxidative stress and autophagy but not apoptosis in the MRC-5 cell Line. Int. J. Mol. Sci., 2015, 16(12), 29398-29416.
[http://dx.doi.org/10.3390/ijms161226171] [PMID: 26690408]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy