s-Proline Covalented Silicapropyl Modified Magnetic Nanoparticles: Synthesis, Characterization, Biological and Catalytic Activity for the Synthesis of thiazolidin-4- ones

Author(s): Leila Zare Fekri*

Journal Name: Current Organic Synthesis

Volume 17 , Issue 6 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Thiazolidinoneones are important pharmaceutical compounds because of their biological activities. Several methods for the synthesis of 4-thiazolidinones are widely reported in the literature. The main synthetic routes to synthesize 1,3-thiazolidin-4-ones involve three components reaction between amine, a carbonyl compound and thioglycolic acid.

Objective: s-Proline covalented silicapropyl modified magnetic nanoparticles (Fe3O4@SiO2-Pr @s-proline) were prepared. The antibacterial activity of synthesized nanoparticles against four bacterias was investigated that showed that 30 Mg/L of synthesized nanoparticles is a suitable concentration for bacterial inhibitory. Finally, the catalytic application of the synthesized s-Proline covalented silicapropyl modified magnetic nanoparticles for the synthesis of thiazolidinones and pyrazolyl thiazolidinones under stirring in aqueous media was evaluated. All of the synthesized organic compounds were characterized by mp, FT IR, 1H NMR, 13C NMR and elemental analysis.

Materials and Methods: A combination of aldehyde (1.0 mmol), thioglycolic acid (1.0 mmol), various amines (1mmol) and 0.05 g Fe3O4@SiO2propyl@L-proline, were reacted at room temperature under stirring in 10 mL water. After completion of the reaction, as indicated by TLC (4:1 hexane: ethylacetate), the reaction mixture was filtered in the presence of an effective magnetic bar to separate the nanocatalyst. The nanocatalyst was washed with a mixture of hot EtOH: H2O two times. The crude products were collected and recrystallized from ethanol, if necessary.

Results and Discussion: We present a novel avenue for the synthesis of thiazolidinones in the presence of Fe3O4@SiO2-Pr @s-proline under solvent-free conditions.

Conclusion: In conclusion, we have synthesized Fe3O4@SiO2-Pr@s-proline nanoparticles. Their biological activity against 4 bacterias was investigated. It released that 30Mg/L is the suitable concentration of synthesized nanoparticle for bacterial inhibitory. The catalytic efficiency of the catalyst was checked in the multicomponent reaction of various aldehyde, thioglycolic acid and various amines under stirring. This nanoparticle is a new organic-inorganic hybrid nanoparticle. The operational simplicity, the excellent yields of products, ease of separation and recyclability of the magnetic catalyst, waste reduction and high selectivity are the main advantages of this catalytic method. Furthermore, this new avenue is inexpensive and environmentally benign.

Keywords: Fe3O4@SiO2-propyl@s-proline, aminoacid, silica, pyrazolyl thiazolidines, s-proline, nanoparticles.

Barros, C.D.; Amato, A.A.; de Oliveira, T.B.; Iannini, K.B.R.; Da Silva, A.L.; da Silva, T.G.; Leite, E.S.; Hernandes, M.Z.; De Lima, M.C.A.; Galdino, S.L.; De Assis Rocha Neves, F.; da Rocha Pitta, I. New pioglitazone metabolites and absence of opened ring metabolites in new N-substituted thiazolidinedione. Bioorg. Med. Chem., 2018, 18, 3805-3811.
[http://dx.doi.org/10.1016/j.bmc.2010.04.045] [PMID: 20471839]
Xua, X.; Qianb, X.; Zhong, L. Synthesis and fungicidal activity of fluorine-containing phenylimino-thiazolidines derivatives. J. Fluor. Chem., 2005, 126, 297-300.
Orrling, K.M.; Marzahn, M.R. Gutiérrez-de-Terلn, H.; Aqvist, J.; Dunn, B.M.; Larhed, M. alpha-Substituted norstatines as the transition-state mimic in inhibitors of multiple digestive vacuole malaria aspartic proteases. Bioorg. Med. Chem., 2009, 17(16), 5933-5949.
[http://dx.doi.org/10.1016/j.bmc.2009.06.065] [PMID: 19635672]
Barros, F.W.A.; Silva, T.G.; da Rocha Pitta, M.G.; Bezerra, D.P.; Costa-Lotufo, L.V.; de Moraes, M.O.; Pessoa, C.; de Moura, M.A.F.B.; de Abreu, F.C. de Lima, Mdo.C.; Galdino, S.L.; Pitta, Ida.R.; Goulart, M.O.F. Synthesis and cytotoxic activity of new acridine-thiazolidine derivatives. Bioorg. Med. Chem., 2012, 20(11), 3533-3539.
[http://dx.doi.org/10.1016/j.bmc.2012.04.007] [PMID: 22546208]
Onen-Bayram, F.E.; Durmaz, I.; Scherman, D.; Herscovici, J.; Cetin-Atalay, R. A novel thiazolidine compound induces caspase-9 dependent apoptosis in cancer cells. Bioorg. Med. Chem., 2012, 20(17), 5094-5102.
[http://dx.doi.org/10.1016/j.bmc.2012.07.016] [PMID: 22867707]
El-Gaby, M.S.A.; Ismail, Z.H.; Abdel-Gawad, S.M.; Aly, H.M.; Ghorab, M.M. Synthesis of thiazolidine and thiophene derivatives for evaluation as anticancer agents. Phosphorus Sulfur Silicon Relat. Elem., 2009, 184, 2645-2654.
Beharry, Z.; Zemskova, M.; Mahajan, S.; Zhang, F.; Ma, J.; Xia, Z.; Lilly, M.; Smith, C.D.; Kraft, A.S. Novel benzylidene-thiazolidine-2,4-diones inhibit Pim protein kinase activity and induce cell cycle arrest in leukemia and prostate cancer cells. Mol. Cancer Ther., 2009, 8(6), 1473-1483.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-1037] [PMID: 19509254]
Desai, N.C.; Rajpara, K.M.; Joshi, V.V. Microwave induced synthesis of fluorobenzamides containing thiazole and thiazolidine as promising antimicrobial analogs. J. Fluor. Chem., 2013, 145, 102-111.
Ami, E.; Nakahara, K.; Sato, A.; Nguyen, J-T.; Hidaka, K.; Hamada, Y.; Nakatani, S.; Kimura, T.; Hayashi, Y.; Kiso, Y. Synthesis and antiviral property of allophenylnorstatine-based HIV protease inhibitors incorporating D-cysteine derivatives as P2/P3 moieties. Bioorg. Med. Chem. Lett., 2007, 17(15), 4213-4217.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.039] [PMID: 17537628]
Li, G.; Qian, X.; Cui, J.; Huang, Q.; Cui, D.; Zhang, R.; Liu, F. Synthesis and herbicidal activities of fluorine-containing 3-pyridylmethyl-2-phenyliminothiazolidine derivatives. J. Fluor. Chem., 2006, 127, 182-186.
Li, W.; Lu, Y.; Wang, Z.; Dalton, J.T.; Miller, D.D. Synthesis and antiproliferative activity of thiazolidine analogs for melanoma. Bioorg. Med. Chem. Lett., 2007, 17(15), 4113-4117.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.059] [PMID: 17561392]
D’Ascenzio, M.; Bizzarri, B.; De Monte, C.; Carradori, S.; Bolasco, A.; Secci, D.; Rivanera, D.; Faulhaber, N. Bordَn, C.; Jones-Brando, L. Design, synthesis and biological characterization of thiazolidin-4-one derivatives as promising inhibitors of Toxoplasma gondii. Eur. J. Med. Chem., 2014, 86, 17-30.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.046] [PMID: 25140751]
Zarghi, A.; Arfaei, S. Selective COX-2 inhibitors: A review of their structure-activity relationships. Iran. J. Pharm. Res., 2011, 10(4), 655-683.
[PMID: 24250402]
Rawal, R.K.; Tripathi, R.; Katti, S.B.; Pannecouque, C.; De Clercq, E. Design, synthesis, and evaluation of 2-aryl-3-heteroaryl-1,3-thiazolidin-4-ones as anti-HIV agents. Bioorg. Med. Chem., 2007, 15(4), 1725-1731.
[http://dx.doi.org/10.1016/j.bmc.2006.12.003] [PMID: 17178227]
Shiradkar, M.R.; Ghodake, M.; Bothara, K.G.; Bhandari, S.V.; Nikalje, A.; Chakravarthy Akula, K.; Desai, N.C.; Burange, P.J. Synthesis and anticonvulsant activity of clubbed thiazolidinone–barbituric acid and thiazolidinone–triazole derivatives. ARKIVOC, 2007, xiv, 58-74.
Kato, T.; Ozaki, T.; Tamura, K.; Suzuki, Y.; Akima, M.; Ohi, N. Synthesis and anticonvulsant activity of clubbed thiazolidinone–barbituric acid and thiazolidinone–triazole derivatives. J. Med. Chem., 1999, 42, 3134-3146.
[http://dx.doi.org/10.1021/jm9900927] [PMID: 10447958]
Marc, G.; Stana, A.; Oniga, S.D.; Pîrnau, A.; Vlase, L.; Oniga, O. New phenolic derivatives of thiazolidine-2,4-dione with antioxidant and antiradical properties: synthesis, characterization, in vitro evaluation, and quantum studies. Molecules, 2019, 24, 2060-2079.
Da Silva, T.L.; Miolo, L.M.F.; Sousa, F.S.S.; Brod, L.M.P.; Savegnago, L.; Schneider, P.H. New thioureas based on thiazolidines with antioxidant potential. Tetrahedron Lett., 2015, 56, 6674-6680.
Diurno, M.V.; Mazzoni, O.; Correale, G.; Gomez Monterrey, I.; Calignano, A.; La Rana, G.; Bolognese, A. Synthesis and structure-activity relationships of 2-(substituted phenyl)-3-[3-(N,N-dimethylamino)propyl]-1,3-thiazolidin-4-ones acting as H1-histamine antagonists. Farmaco, 1999, 54(9), 579-583.
[http://dx.doi.org/10.1016/S0014-827X(99)00064-6] [PMID: 10555258]
Tanabe, Y.; Yamamoto, H.; Murakami, M.; Yanagi, K.; Kubota, Y.; Okumura, H.; Sanemitsu, Y.; Suzukamo, G. Synthetic study of the highly potent and selective anti-platelet activating factor thiazolidin-4-one agents and related compounds. Chem. Soc. Perkin Trans., 1995, 1995(1), 935-947.
Navin, B.P.; Hemant, R.P.; Faiyazalam, M.S.; Dhanji, R. New 4-thiazolidinones from 5-ethyl pyridine-2-ethanol: their antibacterial, antifungal, and antitubercular activity. Med. Chem. Res., 2014, 23, 1360-1370.
Deep, A.; Jain, S.; Sharma, P.C.; Phogat, P.; Malhotra, M. Synthesis of 2-(aryl)-5-(arylidene)-4- thiazolidinone derivatives with potential analgesic and anti-inflammatory activity. Med. Chem. Res., 2012, 21, 1652-1659.
Markovic, R.; Stodanovic, M.; Steel, P.; Kleinpeter, E.; Stojanovic, M. Stereocontrolled synthesis of new tetrahydrofuro[2,3-d]thiazole derivatives via activated vinylogous iminium ions. Heterocycl, 2005, 65, 2635-2647.
Pawar, R.B.; Mulwad, V.V. Synthesis of some biologically active pyrazole, thiazolidinone, and azetidinone derivatives. Chem. Heterocycl. Compd., 2004, 40, 219-226.
Ocal, N.; Aydogan, F.; Yolacan, C.; Turgut, Z. Synthesis of some furo‐thiazolidine derivatives starting from aldimines. J. Heterocycl. Chem., 2003, 40, 721-724.
Nikpassand, M.; Fekri, L.Z.; Sanagou, S. Green synthesis of 2-hydrazonyl-4-phenylthiazoles using KIT-6 mesoporous silica coated magnetite nanoparticles. Dyes Pigments, 2017, 136, 140-144.
Nikpassand, M.; Fekri, L.Z.; Gharib, M.; Marvi, O. Comparative study for the aqueous synthesis of new generation of diindolylmethanes using L-Proline, K10 and Nano-Fe3O4 under ultrasound irradiation. Lett. Org. Chem., 2012, 2012(9), 745-748.
Zare Fekri, L.Z.; Nikpassand, M.; Nazari, S. Green, effective and chromatography free synthesis of benzoimidazo[1,2-a]pyrimidine and tetrahydrobenzo [4,5]imidazo [1,2-d]quinazolin-1(2H)-one and their pyrazolyl moiety using Fe3O4@SiO2@l-proline reusable catalyst in aqueous media. J. Org. Chem., 2018, 894, 18-27.
Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal., 2016, 6(2), 71-79.
[http://dx.doi.org/10.1016/j.jpha.2015.11.005] [PMID: 29403965]
Zare, L.; Mahmoodi, N.; Yahyazadeh, A.; Mamaghani, M.; Tabatabaeian, K. An efficient one‐pot synthesis of pyridazinones and phthalazinones using HY‐zeolite. J. Heterocycl. Chem., 2011, 48, 864-867.
Fekri, L.Z.; Nikpassand, M.; Shariati, S.; Aghazadeh, B.; Zarkeshvari, R. Synthesis and characterization of amino glucose-functionalized silica-coated NiFe2O4 nanoparticles: A heterogeneous, new and magnetically separable catalyst for the solventthe solvent-free synthesis of 2,4,5–trisubstituted imidazoles, benzo[d]imidazoles, benzo[d] oxazoles and azo-linked benzo[d]oxazoles. J. Org. Chem., 2018, 871, 60-73.
Fekri, L.Z.; Maleki, R. KIT‐6 Mesoporous silica‐coated magnetite nanoparticles: A highly efficient and easily reusable catalyst for the synthesis of benzo[d]imidazole derivatives. J. Heterocycl. Chem., 2017, 54, 1167-1171.
Fekri, L. Z.; Nikpassand, M.; Pourmirzajani, S.; Aghazadeh, B. Synthesisand characterization of amino glucose-functionalized silica-coated NiFe2O4 nanoparticles: A heterogeneous, new and magnetically separable catalyst for the solvent-free synthesis of pyrano[3,2-c]chromen-5(4H)-ones RSC adv, 2018, 8, 22313-22320.
Zare, L.; Mahmoodi, N.O.; Yahyazadeh, A.; Mamaghani, M.; Tabatabaeian, K. An efficient chemo-and regioselective three-component synthesis of pyridazinones and phthalazinones using activated KSF. Chin. Chem. Lett., 2010, 21, 538-541.
Zare Fekri, L.; Darya-Laal, A.R. NiFe2O4@SiO2@amino glucose magnetic nanoparticle as a green, effective and magnetically separable catalyst for the synthesis of xanthene-ones under solvent-free condition. Polycycl. Aromat. Compd., In Press
Fekri, L.Z.; Nikpassand, M.; Pour, K.H. Green aqueous synthesis of mono, bis and trisdihydropyridines using nano Fe3O4 under ultrasound irradiation. Curr. Org. Synth., 2015, 12, 76-79.
Nikpassand, M.; Zare, L.; Shafaati, T.; Shariati, S. Regioselective synthesis of fused azo‐linked pyrazolo[4,3‐e]pyridines using nano‐Fe3O4. Chin. J. Chem., 2012, 30, 604-608.
Azgomi, N.; Mokhtary, M. Nano-Fe3O4@SiO2supported ionic liquid as an efficient catalyst forthe synthesis of 1,3-thiazolidin-4-ones under solvent-free. J. Mol. Catal. Chem., 2015, 398, 58-64.
Kalhor, M.; Banibairami, S.; Mirshokraei, S.A. Ni@zeolite-Y nanoporous: A valuable and efficient nanocatalyst for the synthesis of Nbenzimidazole-1,3-thiazolidinones. Green Chem. Lett. Rev., 2018, 11, 334-344.
Harale, R.R.; Shitre, P.V.; Sathe, B.R.; Shingare, M.S. Pd nanoparticles: An efficient catalyst for the solvent free synthesis of 2,3-disubstituted-4-thiazolidinones. Res. Chem. Intermed., 2016, 42, 6695-6703.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 24 September, 2020
Page: [464 - 472]
Pages: 9
DOI: 10.2174/1570179417666200430121809
Price: $65

Article Metrics

PDF: 22