Nigella sativa and Cancer: A Review Focusing on Breast Cancer, Inhibition of Metastasis and Enhancement of Natural Killer Cell Cytotoxicity

Author(s): Tuğcan Korak*, Emel Ergül, Ali Sazci

Journal Name: Current Pharmaceutical Biotechnology

Volume 21 , Issue 12 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: In the last decade, there have been accumulating data that the use of medicinal plants could bring additional benefits to the supportive treatment of various diseases. Nigella sativa (N. sativa, family Ranunculaceae) is one of these plants that has attracted considerable interest. The extracts and seeds of N. sativa and its active component thymoquinone have been studied extensively and the results suggest that N. sativa might carry some therapeutic potential for many diseases, including cancer.

Methods: The selection criteria for references were applied through Pubmed with “N. sativa and cancer”, “N. sativa and breast cancer”, “N. sativa and metastasis”, “N. sativa and cytotoxicity of natural killer cells”. The pathway analysis was performed using the PANTHER tool by using five randomly selected N. sativa affected genes (Cyclin D1, P53, p21 protein (Cdc42/Rac) activated kinase 1 (PAK1), B-cell lymphoma 2 (Bcl-2) and vascular endothelial growth factor (VEGF)) in order to elucidate further potentially affected signaling pathways.

Results: The aim of this review was to summarize studies regarding the effects of N. sativa in cancer generally, with a focus on breast cancer, its anti-metastatic effects, and how N. sativa modulates the cytotoxicity of Natural Killer cells that play a crucial role in tumor surveillance.

Conclusion: In summary, the data suggest that N. sativa might be used for its anti-cancer and antimetastatic properties and as an immune system activator against cancer.

Keywords: Nigella sativa, cancer, breast cancer, metastasis, natural killer cells, tumor surveillance.

[1]
Donaldson, K. Introduction to the healing herbs. ORL Head Neck Nurs., 1998, 16(3), 9-16.
[PMID: 9814329]
[2]
Barrett, B.; Kiefer, D.; Rabago, D. Assessing the risks and benefits of herbal medicine: An overview of scientific evidence. Altern. Ther. Health Med., 1999, 5(4), 40-49.
[PMID: 10394673]
[3]
Majdalawieh, A.F.; Fayyad, M.W. Recent advances on the anti-cancer properties of Nigella sativa, a widely used food additive. J. Ayurveda Integr. Med., 2016, 7(3), 173-180.
[http://dx.doi.org/10.1016/j.jaim.2016.07.004 ] [PMID: 27649635]
[4]
Ahmad, A.; Husain, A.; Mujeeb, M.; Khan, S.A.; Najmi, A.K.; Siddique, N.A.; Damanhouri, Z.A.; Anwar, F. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac. J. Trop. Biomed., 2013, 3(5), 337-352.
[http://dx.doi.org/10.1016/S2221-1691(13)60075-1 ] [PMID: 23646296]
[5]
Ismail, M.Y.M. therapeutic role of prophetic medicine Habbat El Baraka (Nigella sativa L.)-A Review. World Appl. Sci. J., 2009, 7(9), 1203-1208.
[6]
Shafiq, H.; Ahmad, A.; Masud, T.; Kaleem, M. Cardio-protective and anti-cancer therapeutic potential of Nigella sativa. Iran. J. Basic Med. Sci., 2014, 17(12), 967-979.
[PMID: 25859300]
[7]
National Cancer Week Press. Turkey (TR) http://kanser.gov.tr/index.php/haberler/2189-kanser-haftasi-basin-notu (Accessed May 16, 2018)
[9]
Pappas, S.; Perlman, A. Complementary and alternative medicine. The importance of doctor-patient communication. Med. Clin. North Am., 2002, 86(1), 1-10.
[http://dx.doi.org/10.1016/S0025-7125(03)00068-3 ] [PMID: 11795082]
[10]
Sen, S.; Chakraborty, R. Revival, modernization and integration of Indian traditional herbal medicine in clinical practice: Importance, challenges and future. J. Tradit. Complement. Med., 2016, 7(2), 234-244.
[http://dx.doi.org/10.1016/j.jtcme.2016.05.006 ] [PMID: 28417092]
[11]
Mabrouk, G.M.; Moselhy, S.S.; Zohny, S.F.; Ali, E.M.; Helal, T.E.; Amin, A.A.; Khalifa, A.A. Inhibition of Methylnitrosourea (MNU) induced oxidative stress and carcinogenesis by orally administered bee honey and Nigella grains in Sprague Dawely rats. J. Exp. Clin. Cancer Res., 2002, 21(3), 341-346.
[PMID: 12385575]
[12]
Al-Sheddi, E.S.; Farshori, N.N.; Al-Oqail, M.M.; Musarrat, J.; Al-Khedhairy, A.A.; Siddiqui, M.A. Cytotoxicity of Nigella sativa seed oil and extract against human lung cancer cell line. Asian Pac. J. Cancer Prev., 2014, 15(2), 983-987.
[http://dx.doi.org/10.7314/APJCP.2014.15.2.983 ] [PMID: 24568529]
[13]
Swamy, S.M.; Tan, B.K. Cytotoxic and immunopotentiating effects of ethanolic extract of Nigella sativa L. seeds. J. Ethnopharmacol., 2000, 70(1), 1-7.
[http://dx.doi.org/10.1016/S0378-8741(98)00241-4 ] [PMID: 10720783]
[14]
Kumara, S.S.; Huat, B.T. Extraction, isolation and characterisation of antitumor principle, alpha-hederin, from the seeds of Nigella sativa. Planta Med., 2001, 67(1), 29-32.
[http://dx.doi.org/10.1055/s-2001-10628 ] [PMID: 11270717]
[15]
Salim, E.I.; Fukushima, S. Chemopreventive potential of volatile oil from black cumin (Nigella sativa L.) seeds against rat colon carcinogenesis. Nutr. Cancer, 2003, 45(2), 195-202.
[http://dx.doi.org/10.1207/S15327914NC4502_09 ] [PMID: 12881014]
[16]
Gali-Muhtasib, H.; Diab-Assaf, M.; Boltze, C.; Al-Hmaira, J.; Hartig, R.; Roessner, A.; Schneider-Stock, R. Thymoquinone extracted from black seed triggers apoptotic cell death in human colorectal cancer cells via a p53-dependent mechanism. Int. J. Oncol., 2004, 25(4), 857-866.
[PMID: 15375533]
[17]
Salim, L.Z.A.; Othman, R.; Abdulla, M.A.; Al-Jashamy, K.; Ali, H.M.; Hassandarvish, P.; Dehghan, F.; Ibrahim, M.Y.; Omer, F.A.E.A.; Mohan, S. Thymoquinone inhibits murine leukemia WEHI-3 cells in vivo and in vitro. PLoS One, 2014, 9(12)e115340
[http://dx.doi.org/10.1371/journal.pone.0115340 ] [PMID: 25531768]
[18]
Tabasi, N.; Mahmoudi, M.; Rastin, M.; Sadeghnia, H.R.; Mashhadi, M.H.; Rabe, S.Z.T.; Rad, A.K. Cytotoxic and apoptogenic properties of Nigella sativa and thymoquinone, its constituent, in human renal cell carcinoma are comparable with cisplatin. Food Agric. Immunol., 2015, 26, 138-156.
[http://dx.doi.org/10.1080/09540105.2013.878899]
[19]
Abd-Rabou, A.A.; Edris, A.E. evaluation of the antiproliferative activity of some nanoparticulate essential oils formulated in microemulsion on selected human carcinoma cell lines. Curr. Clin. Pharmacol., 2017, 12(4), 231-244.
[http://dx.doi.org/10.2174/1574884713666180110144336 ] [PMID: 29318975]
[20]
Taha, M.M.; Sheikh, B.Y.; Salim, L.Z.; Mohan, S.; Khan, A.; Kamalidehghan, B.; Ahmadipour, F.; Abdelwahab, S.I. Thymoquinone induces apoptosis and increase ROS in ovarian cancer cell line. Cell. Mol. Biol., 2016, 62(6), 97-101.
[PMID: 27262811]
[21]
Subburayan, K.; Thayyullathil, F.; Pallichankandy, S.; Rahman, A.; Galadari, S. Par-4-dependent p53 up-regulation plays a critical role in thymoquinone-induced cellular senescence in human malignant glioma cells. Cancer Lett., 2018, 426, 80-97.
[http://dx.doi.org/10.1016/j.canlet.2018.04.009 ] [PMID: 29656006]
[22]
Chowdhury, F.A.; Hossain, M.K.; Mostofa, A.G.M.; Akbor, M.M.; Bin Sayeed, M.S. Therapeutic potential of thymoquinone in glioblastoma treatment: Targeting major gliomagenesis signaling pathways. BioMed Res. Int., 2018.20184010629
[http://dx.doi.org/10.1155/2018/4010629 ] [PMID: 29651429]
[23]
Barkat, M.A. Harshita.; Ahmad, J.; Khan, M.A.; Beg, S.; Ahmad, F.J. Insights into the targeting potential of thymoquinone for therapeutic intervention against triple-negative breast cancer. Curr. Drug Targets, 2018, 19(1), 70-80.
[http://dx.doi.org/10.2174/1389450118666170612095959 ] [PMID: 28606050]
[24]
Shanmugam, M.K.; Arfuso, F.; Kumar, A.P.; Wang, L.; Goh, B.C.; Ahn, K.S.; Bishayee, A.; Sethi, G. Modulation of diverse oncogenic transcription factors by thymoquinone, an essential oil compound isolated from the seeds of Nigella sativa Linn. Pharmacol. Res., 2018, 129, 357-364.
[http://dx.doi.org/10.1016/j.phrs.2017.11.023 ] [PMID: 29162539]
[25]
Majdalawieh, A.F.; Fayyad, M.W.; Nasrallah, G.K. Anti-cancer properties and mechanisms of action of thymoquinone, the major active ingredient of Nigella sativa. Crit. Rev. Food Sci. Nutr., 2017, 57(18), 3911-3928.
[http://dx.doi.org/10.1080/10408398.2016.1277971 ] [PMID: 28140613]
[26]
Soltani, A.; Pourgheysari, B.; Shirzad, H.; Sourani, Z. Antiproliferative and apoptosis-inducing activities of thymoquinone in lymphoblastic leukemia cell line. Indian J. Hematol. Blood Transfus., 2017, 33(4), 516-524.
[http://dx.doi.org/10.1007/s12288-016-0758-8 ] [PMID: 29075062]
[27]
Farah, I.O.; Begum, R.A. Effect of Nigella sativa (N. sativa L.) and oxidative stress on the survival pattern of MCF-7 breast cancer cells. Biomed. Sci. Instrum., 2003, 39, 359-364.
[PMID: 12724920]
[28]
Farah, I.O. Assessment of cellular responses to oxidative stress using MCF-7 breast cancer cells, black seed (N. Sativa L.) extracts and H2O2. Int. J. Environ. Res. Public Health, 2005, 2(3-4), 411-419.
[http://dx.doi.org/10.3390/ijerph2005030005 ] [PMID: 16819096]
[29]
Baharetha, H.M.; Nassar, Z.D.; Aisha, A.F.; Ahamed, M.B.; Al-Suede, F.S.; Abd Kadir, M.O.; Ismail, Z.; Majid, A.M. Proapoptotic and antimetastatic properties of supercritical CO2 extract of Nigella sativa Linn. against breast cancer cells. J. Med. Food, 2013, 16(12), 1121-1130.
[http://dx.doi.org/10.1089/jmf.2012.2624 ] [PMID: 24328702]
[30]
Alhazmi, M.I.; Hasan, T.N.; Shafi, G.; Al-Assaf, A.H.; Alfawaz, M.A.; Alshatwi, A.A. Roles of p53 and caspases in induction of apoptosis in MCF- 7 breast cancer cells treated with a methanolic extract of Nigella sativa seeds. Asian Pac. J. Cancer Prev., 2014, 15(22), 9655-9660.
[http://dx.doi.org/10.7314/APJCP.2014.15.22.9655 ] [PMID: 25520084]
[31]
Kouda, K.; Iki, M. Beneficial effects of mild stress (hormetic effects): Dietary restriction and health. J. Physiol. Anthropol., 2010, 29(4), 127-132.
[http://dx.doi.org/10.2114/jpa2.29.127 ] [PMID: 20686325]
[32]
Mahmoud, S.S.; Torchilin, V.P. Hormetic/cytotoxic effects of Nigella sativa seed alcoholic and aqueous extracts on MCF-7 breast cancer cells alone or in combination with doxorubicin. Cell Biochem. Biophys., 2013, 66(3), 451-460.
[http://dx.doi.org/10.1007/s12013-012-9493-4 ] [PMID: 23242945]
[33]
Linjawi, S.A.; Khalil, W.K.; Hassanane, M.M.; Ahmed, E.S. Evaluation of the protective effect of Nigella sativa extract and its primary active component thymoquinone against DMBA-induced breast cancer in female rats. Arch. Med. Sci., 2015, 11(1), 220-229.
[http://dx.doi.org/10.5114/aoms.2013.33329 ] [PMID: 25861310]
[34]
Ganea, G.M.; Fakayode, S.O.; Losso, J.N.; van Nostrum, C.F.; Sabliov, C.M.; Warner, I.M. Delivery of phytochemical thymoquinone using molecular micelle modified Poly(D, L Lactide-co-Glycolide) (PLGA) nanoparticles. Nanotechnology, 2010, 21(28)285104
[http://dx.doi.org/10.1088/0957-4484/21/28/285104 ] [PMID: 20585163]
[35]
Effenberger, K.; Breyer, S.; Schobert, R. Terpene conjugates of the Nigella sativa seed-oil constituent thymoquinone with enhanced efficacy in cancer cells. Chem. Biodivers., 2010, 7(1), 129-139.
[http://dx.doi.org/10.1002/cbdv.200900328 ] [PMID: 20087986]
[36]
Odeh, F.; Ismail, S.I.; Abu-Dahab, R.; Mahmoud, I.S.; Al Bawab, A. Thymoquinone in liposomes: A study of loading efficiency and biological activity towards breast cancer. Drug Deliv., 2012, 19(8), 371-377.
[http://dx.doi.org/10.3109/10717544.2012.727500 ] [PMID: 23043626]
[37]
Shaarani, S.; Hamid, S.S.; Mohd Kaus, N.H. The Influence of pluronic F68 and F127 nanocarrier on physicochemical properties, in vitro release, and antiproliferative activity of thymoquinone drug. Pharmacol. Res., 2017, 9(1), 12-20.
[http://dx.doi.org/10.4103/0974-8490.199774 ] [PMID: 28250648]
[38]
Periasamy, V.S.; Athinarayanan, J.; Alshatwi, A.A. Anticancer activity of an ultrasonic nanoemulsion formulation of Nigella sativa L. essential oil on human breast cancer cells. Ultrason. Sonochem., 2016, 31, 449-455.
[http://dx.doi.org/10.1016/j.ultsonch.2016.01.035 ] [PMID: 26964971]
[39]
Dehghani, H.; Hashemi, M.; Entezari, M.; Mohsenifar, A. The comparison of anticancer activity of thymoquinone and nanothymoquinone on human breast adenocarcinoma. Iran. J. Pharm. Res., 2015, 14(2), 539-546.
[PMID: 25901162]
[40]
Şakalar, Ç.; İzgi, K.; İskender, B.; Sezen, S.; Aksu, H.; Çakır, M.; Kurt, B.; Turan, A.; Canatan, H. The combination of thymoquinone and paclitaxel shows anti-tumor activity through the interplay with apoptosis network in triple-negative breast cancer. Tumour Biol., 2016, 37(4), 4467-4477.
[http://dx.doi.org/10.1007/s13277-015-4307-0 ] [PMID: 26500095]
[41]
Talib, W.H. Regressions of breast carcinoma syngraft following treatment with piperine in combination with thymoquinone. Sci. Pharm., 2017, 85(3), 27.
[http://dx.doi.org/10.3390/scipharm85030027 ] [PMID: 28671634]
[42]
el-Aziz, M.A.; Hassan, H.A.; Mohamed, M.H.; Meki, A.R.; Abdel-Ghaffar, S.K.; Hussein, M.R. The biochemical and morphological alterations following administration of melatonin, retinoic acid and Nigella sativa in mammary carcinoma: An animal model. Int. J. Exp. Pathol., 2005, 86(6), 383-396.
[http://dx.doi.org/10.1111/j.0959-9673.2005.00448.x ] [PMID: 16309544]
[43]
Ganji-Harsini, S.; Khazaei, M.; Rashidi, Z.; Ghanbari, A. Thymoquinone could increase the efficacy of tamoxifen induced apoptosis in human breast cancer cells: An in vitro study. Cell J., 2016, 18(2), 245-254.
[PMID: 27540530]
[44]
Khan, A.; Aldebasi, Y.H.; Alsuhaibani, S.A.; Khan, M.A. Thymoquinone augments cyclophosphamide-mediated inhibition of cell proliferation in breast cancer cells. Asian Pac. J. Cancer Prev., 2019, 20(4), 1153-1160.
[http://dx.doi.org/10.31557/APJCP.2019.20.4.1153 ] [PMID: 31030489]
[45]
Seyfried, T.N.; Huysentruyt, L.C. On the origin of cancer metastasis. Crit. Rev. Oncog., 2013, 18(1-2), 43-73.
[http://dx.doi.org/10.1615/CritRevOncog.v18.i1-2.40 ] [PMID: 23237552]
[46]
Fathy, M.; Nikaido, T. In vivo attenuation of angiogenesis in hepatocellular carcinoma by Nigella sativa. Turk. J. Med. Sci., 2018, 48(1), 178-186.
[http://dx.doi.org/10.3906/sag-1701-86 ] [PMID: 29479981]
[47]
Asfour, W.; Almadi, S.; Haffar, L. Thymoquinone suppresses cellular proliferation, inhibits VEGF production and obstructs tumor progression and invasion in the rat model of DMH-induced colon carcinogenesis. Pharmacol. Pharm., 2013, 4, 7-17.
[http://dx.doi.org/10.4236/pp.2013.41002]
[48]
Yi, T.; Cho, S.G.; Yi, Z.; Pang, X.; Rodriguez, M.; Wang, Y.; Sethi, G.; Aggarwal, B.B.; Liu, M. Thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing AKT and extracellular signal-regulated kinase signaling pathways. Mol. Cancer Ther., 2008, 7(7), 1789-1796.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0124 ] [PMID: 18644991]
[49]
Rajput, S.; Kumar, B.N.; Sarkar, S.; Das, S.; Azab, B.; Santhekadur, P.K.; Das, S.K.; Emdad, L.; Sarkar, D.; Fisher, P.B.; Mandal, M. Targeted apoptotic effects of thymoquinone and tamoxifen on XIAP mediated Akt regulation in breast cancer. PLoS One, 2013, 8(4)e61342
[http://dx.doi.org/10.1371/journal.pone.0061342 ] [PMID: 23613836]
[50]
Rahmani, A.H.; Alzohairy, M.A.; Khan, M.A.; Aly, S.M. Therapeutic implications of black seed and its constituent thymoquinone in the prevention of cancer through inactivation and activation of molecular pathways. Evid. Based Complement. Alternat. Med., 2014.2014724658
[http://dx.doi.org/10.1155/2014/724658 ] [PMID: 24959190]
[51]
Kou, B.; Liu, W.; Zhao, W.; Duan, P.; Yang, Y.; Yi, Q.; Guo, F.; Li, J.; Zhou, J.; Kou, Q. Thymoquinone inhibits epithelial-mesenchymal transition in prostate cancer cells by negatively regulating the TGF-β/Smad2/3 signaling pathway. Oncol. Rep., 2017, 38(6), 3592-3598.
[http://dx.doi.org/10.3892/or.2017.6012 ] [PMID: 29039572]
[52]
Brabletz, T.; Kalluri, R.; Nieto, M.A.; Weinberg, R.A. EMT in cancer. Nat. Rev. Cancer, 2018, 18(2), 128-134.
[http://dx.doi.org/10.1038/nrc.2017.118 ] [PMID: 29326430]
[53]
Arshad Malik, M.S.; Al Jaouni, S.K.; Harakeh, S.M.; Arshad Malik, M.F. Review-Therapeutic implications of Nigella sativa against cancer metastasis. Pak. J. Pharm. Sci., 2016, 29(5)(Suppl.), 1881-1884.
[PMID: 28476718]
[54]
Ahmad, I.; Muneer, K.M.; Tamimi, I.A.; Chang, M.E.; Ata, M.O.; Yusuf, N. Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome. Toxicol. Appl. Pharmacol., 2013, 270(1), 70-76.
[http://dx.doi.org/10.1016/j.taap.2013.03.027 ] [PMID: 23583630]
[55]
Chou, Y.C.; Sheu, J.R.; Chung, C.L.; Chen, C.Y.; Lin, F.L.; Hsu, M.J.; Kuo, Y.H.; Hsiao, G. Nuclear-targeted inhibition of NF-kappaB on MMP-9 production by N-2-(4-bromophenyl) ethyl caffeamide in human monocytic cells. Chem. Biol. Interact., 2010, 184(3), 403-412.
[http://dx.doi.org/10.1016/j.cbi.2010.01.010 ] [PMID: 20093109]
[56]
Wu, Z.H.; Chen, Z.; Shen, Y.; Huang, L.L.; Jiang, P. Anti-metastasis effect of thymoquinone on human pancreatic cancer. Yao Xue Xue Bao, 2011, 46(8), 910-914.
[PMID: 22007514]
[57]
Torres, M.P.; Ponnusamy, M.P.; Chakraborty, S.; Smith, L.M.; Das, S.; Arafat, H.A.; Batra, S.K. Effects of thymoquinone in the expression of mucin 4 in pancreatic cancer cells: Implications for the development of novel cancer therapies. Mol. Cancer Ther., 2010, 9(5), 1419-1431.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0075 ] [PMID: 20423995]
[58]
Ait Mbarek, L.; Ait Mouse, H.; Elabbadi, N.; Bensalah, M.; Gamouh, A.; Aboufatima, R.; Benharref, A.; Chait, A.; Kamal, M.; Dalal, A.; Zyad, A. Anti-tumor properties of blackseed (Nigella sativa L.) extracts. Braz. J. Med. Biol. Res., 2007, 40(6), 839-847.
[http://dx.doi.org/10.1590/S0100-879X2006005000108 ] [PMID: 17581684]
[59]
Awad, E.M. In vitro decreases of the fibrinolytic potential of cultured human fibrosarcoma cell line, HT1080, by Nigella sativa oil. Phytomedicine, 2005, 12(1-2), 100-107.
[http://dx.doi.org/10.1016/j.phymed.2003.09.003 ] [PMID: 15693715]
[60]
Shanmugam, M.K.; Ahn, K.S.; Hsu, A.; Woo, C.C.; Yuan, Y.; Tan, K.H.B.; Chinnathambi, A.; Alahmadi, T.A.; Alharbi, S.A.; Koh, A.P.F.; Arfuso, F.; Huang, R.Y.; Lim, L.H.K.; Sethi, G.; Kumar, A.P. thymoquinone inhibits bone metastasis of breast cancer cells through abrogation of the CXCR4 signaling axis. Front. Pharmacol., 2018, 9, 1294.
[http://dx.doi.org/10.3389/fphar.2018.01294 ] [PMID: 30564115]
[61]
Kabil, N.; Bayraktar, R.; Kahraman, N.; Mokhlis, H.A.; Calin, G.A.; Lopez-Berestein, G.; Ozpolat, B. Thymoquinone inhibits cell proliferation, migration, and invasion by regulating the elongation factor 2 kinase (eEF-2K) signaling axis in triple-negative breast cancer. Breast Cancer Res. Treat., 2018, 171(3), 593-605.
[http://dx.doi.org/10.1007/s10549-018-4847-2 ] [PMID: 29971628]
[62]
Mi, H.; Thomas, P. Protein networks and pathway analysis. Methods Mol. Biol., 2009, 563, 123-140.
[http://dx.doi.org/10.1007/978-1-60761-175-2_7 ] [PMID: 19597783]
[63]
Yang, Y. Cancer immunotherapy: Harnessing the immune system to battle cancer. J. Clin. Invest., 2015, 125(9), 3335-3337.
[http://dx.doi.org/10.1172/JCI83871 ] [PMID: 26325031]
[64]
Mellman, I.; Coukos, G.; Dranoff, G. Cancer immunotherapy comes of age. Nature, 2011, 480(7378), 480-489.
[http://dx.doi.org/10.1038/nature10673 ] [PMID: 22193102]
[65]
Chan, C.J.; Smyth, M.J.; Martinet, L. Molecular mechanisms of natural killer cell activation in response to cellular stress. Cell Death Differ., 2014, 21(1), 5-14.
[http://dx.doi.org/10.1038/cdd.2013.26 ] [PMID: 23579243]
[66]
Majdalawieh, A.F.; Fayyad, M.W. Immunomodulatory and anti-inflammatory action of Nigella sativa and thymoquinone: A comprehensive review. Int. Immunopharmacol., 2015, 28(1), 295-304.
[http://dx.doi.org/10.1016/j.intimp.2015.06.023 ] [PMID: 26117430]
[67]
Alshatwi, A.A. Bioactivity-guided identification to delineate the immunomodulatory effects of methanolic extract of Nigella sativa seed on human peripheral blood mononuclear cells. Chin. J. Integr. Med., 2014. Epub ahead of print
[http://dx.doi.org/10.1007/s11655-013-1534-3 ] [PMID: 24584754]
[68]
Majdalawieh, A.F.; Hmaidan, R.; Carr, R.I. Nigella sativa modulates splenocyte proliferation, Th1/Th2 cytokine profile, macrophage function and NK anti-tumor activity. J. Ethnopharmacol., 2010, 131(2), 268-275.
[http://dx.doi.org/10.1016/j.jep.2010.06.030 ] [PMID: 20600757]
[69]
Abuharfeil, N.M.; Maraqa, A.; Von Kleist, S. Augmentation of natural killer cell activity in vitro against tumor cells by wild plants from Jordan. J. Ethnopharmacol., 2000, 71(1-2), 55-63.
[http://dx.doi.org/10.1016/S0378-8741(99)00176-2 ] [PMID: 10904146]
[70]
Abuharfeil, N.M.; Salim, M.; Von Kleist, S. Augmentation of natural killer cell activity in vivo against tumour cells by some wild plants from Jordan. Phytother. Res., 2001, 15(2), 109-113.
[http://dx.doi.org/10.1002/ptr.692 ] [PMID: 11268107]
[71]
Shabsoug, B.; Khalil, R.; Abuharfeil, N. Enhancement of natural killer cell activity in vitro against human tumor cells by some plants from Jordan. J. Immunotoxicol., 2008, 5(3), 279-285.
[http://dx.doi.org/10.1080/15376510802312027 ] [PMID: 18830888]
[72]
Salem, M.L.; Hossain, M.S. Protective effect of black seed oil from Nigella sativa against murine cytomegalovirus infection. Int. J. Immunopharmacol., 2000, 22(9), 729-740.
[http://dx.doi.org/10.1016/S0192-0561(00)00036-9] [PMID: 10884593]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 12
Year: 2020
Page: [1176 - 1185]
Pages: 10
DOI: 10.2174/1389201021666200430120453
Price: $65

Article Metrics

PDF: 23
HTML: 2
EPUB: 1
PRC: 1